
FMICS 2011 – August 29, 2011

Model Checking and Co-simulation of
a Dynamic Task Dispatcher Circuit

using CADP

Etienne Lantreibecq
STMicroelectronics
http://www.st.com

Wendelin Serwe
INRIA and LIG / VASY

http://vasy.inria.fr

http://www.st.com/
http://vasy.inria.fr/

FMICS 2011 – August 29, 2011 2

Introduction
• increasing complexity of architectures

for mobile multi-media applications
• globally asynchronous, locally synchronous
• costly design errors:

errors to be found as early as possible
• validation of complex control blocks:

– formal verification not addressed by the CAD
tools used by STMicroelectronics

– current practice: simulation
this talk: case-study on a hardware block

 designed by STMicroelectronics using

FMICS 2011 – August 29, 2011 3

Plan of the presentation
• presentation of the dynamic task dispatcher
• formal modeling using LNT
• model checking using MCL
• co-simulation of the C++ and LNT models
• conclusion

FMICS 2011 – August 29, 2011 4

Context: “Platform 2012” project
• many-core programmable accelerator
• 16-processor cluster for fine-grain parallelism

(shared data memory and instruction cache)
• tasks divided in parallel executable sub-tasks

(same code, different data) “dup (f, i)”:
i instances of function f

• task programming model
“ready to run until
completion”:
– no sub-tasks interaction
– any ordering of sub-tasks

• dedicated hardware to
switch tasks in only few
clock cycles: DTD

http://www.2parma.eu/images/stories/p2012_whitepaper.pdf

FMICS 2011 – August 29, 2011 5

• dispatch tasks on idle processors
– queue for task-request of the host
– sub-tasks requested by processors of the cluster

(at most three levels of sub-tasks)

• wake-up processors as needed
• processor-DTD communication using standard load/store

on dedicated addresses

Dynamic Task Dispatcher (DTD)

shared data memory

proc.

shared instruction cache

host

Dynamic Task Dispatcher

... proc. proc. proc.

thanks to Michel Favre
for discussion on the DTD

FMICS 2011 – August 29, 2011 6

DTD: interactions with a processor
• store:

– ST (dup (pc, i)): request to execute pc i-times
– ST (boot): a processor signals is ready to execute

• load: two phases (request – response)
– LD_RQ (need_job): request a task
– LD_RSP (exec (pc, i)): task pc with index i
– LD_RSP (none): no more work left (go to sleep)
– LD_RSP (wait_slave): wait for sub-tasks
– LD_RSP (done): all sub-tasks finished

• wakeup (WAKEUP): activate the processor

FMICS 2011 – August 29, 2011 7

Execution scenario
Proc0 DTD

ST !DUP(bar(), 4)

LD_RQ !0 !need_job
LD_RSP !0 !exec(bar(), 3)

Proc1 Proc2

WAKEUP
WAKEUP

LD_RQ !1 !need_job
LD_RQ !2 !need_job

LD_RSP !2 !exec(bar(), 2)
LD_RSP !1 !exec(bar(), 1)
LD_RQ !1 !need_job
LD_RQ !1 !exec(bar(), 0)

LD_RQ !2 !need_job
LD_RSP !2 !none

LD_RQ !0 !need_job
LD_RSP !0 !wait_slaves

LD_RQ !1 !need_job
LD_RSP !1 !none
LD_RQ !0 !need_job
LD_RSP !0 !done

FMICS 2011 – August 29, 2011 8

Formal Modeling using LNT

FMICS 2011 – August 29, 2011 9

LNT (LOTOS NT) language
• integration of the features of

– process algebras
– imperative programming languages

• easy-to-learn, user-friendly syntax
• formal semantics
• recommended input language for CADP (lnt.open)

– compilation to LOTOS & EXEC/CÆSAR
– generation of the labeled transition system
– connection to on-the-fly verification tools

• reference manual:
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/
Champelovier-Clerc-Garavel-et-al-10.pdf

FMICS 2011 – August 29, 2011 10

Modeling approach
• scenarios to avoid state space explosion

– represent constraints on applications
– abstract processors
– abstract data & memory

• scenario description as LNT types & functions
• both hardware and software as LNT processes
• no global clock

FMICS 2011 – August 29, 2011 11

Representing simultaneous signals
• DTD clock based:

several signals per clock cycle possible
•no immediate reaction on a single event
• multi-phase approach:

– accept inputs and memorize their presence
– take decisions and/or compute outputs:

internal transition on a particular gate
– asynchronously propose outputs

• representation of all possible interleavings

FMICS 2011 – August 29, 2011 12

Modeling style: example
process Arbiter [IA, OA, IB, OB, D: none] is
 var sa, sb: Nat in
 sa := 0; sb := 0;
 loop select
 (* handling inputs *)
 [] when sa == 0 then IA; sa := 1 end when
 [] when sb == 0 then IB; sb := 1 end when
 (* decision *)
 [] when sa == 1 then sa := 2 else
 [] when sb == 1 then sb := 2 end when ;
 [] D
 (* handling outputs *)
 [] when sa == 2 then OA; sa := 0 end when
 [] when sb == 2 then OB; sb := 0 end when
 end select end loop
 end var
end process 0

2 1

7

4

6

8

5 3

IA IB

IB IA D D

D IB IA

D D

OB OA

OB OA

OA OB

no input

input arrived

input accepted

arbiter IA
IB

OA
OB

D

FMICS 2011 – August 29, 2011 13
ST !0

LD
_RQ

 !0

W
AKEU

P !0

LD
_RSP !0

Architecture of the LNT model
Processor 0

Host Dynamic Task Dispatcher
HOST

Processors described by three LNT processes:
– Processor: status automaton

– Dup: implementation of dup()
– Execute: scenario-specific definition of instructions

ST !N

LD
_RQ

 !N

W
AKEU

P !N

LD
_RSP !N

Processor N

ST !1

LD
_RQ

 !1

W
AKEU

P !1

LD
_RSP !1

Processor 1 …

init running sleeping boot

wakeup

none

execute

FMICS 2011 – August 29, 2011 14

Scenario description in LNT
type PC is pc_1, pc_2, pc_3 with “==“, “!=“ end type

process Execute [ST, LD_RQ, LD_RSP: any]
process Execute (j:Job, inout s:Job_Stack)
is
 var pc: PC in
 pc := get_PC (j);
 case pc in
 |pc_1 -> Dup [ST, LD_RQ, LD_RSP]
 |pc_1 -> Dup (pc_3, 4, dup (pc_2, -1), !?s)
 |pc_2 -> (* instructions of the duplicated function *)
 |pc_3 -> (* instructions of the continuation *)
 end case
 end var
end process

mapping between
program counters and
instructions to execute

FMICS 2011 – August 29, 2011 15

LNT processes Dup and Processor
process Dup [ST, LD_RQ, LD_RSP: any]
process Dup (pc: PC, i: Int, c: Job, inout s: Job_Stack) is
 s := push (c, s); ST (dup (pc, i))
end process

process Processor [ST, LD_RQ, LD_RSP, WAKEUP: any] is
 var s: Job_Stack := {} in ST (boot); loop
 WAKEUP;
 loop l in var j: Job in
 LD_RQ (need_job); LD_RSP (?j);
 case j in var pc: PC, i: Int in
 |exec (pc, i) ->
 |wait_slave -> null
 |done -> if empty(s) then break l else
 |done -> j := head(s); s := pop(s); Execute [ST, LD_RQ, LD_RSP] (j, !?s)
 |done -> end if
 |none -> break l
 end case
 end var end loop
end loop end var end process

init running sleeping boot

wakeup

none

“execute”

FMICS 2011 – August 29, 2011 16

Modeling approach
• hand-written model for four processors
• development of a model generator

– parameterized by the number of processes
– generation of models for 4, 6, and 16 processors

• different versions
– fit to CADP tools
– experiment complex optimizations

FMICS 2011 – August 29, 2011 17

State space generation: scenarios
• N = number of available processors

total number of tasks > N for all scenarios
• Scenario 1: without dup()
• Scenario 2: one task forking subtasks

– variant 2_1: more subtasks
– variant 2_2: more tasks without dup()

• Scenario 3: nested calls to dup()
– variants 3_1 & 3_2: different number of

subtasks per level of nested dup()
– variant 3_3: more main tasks without dup()

• Scenario 4: consecutive calls to dup()
– variant 4_1: more subtasks at each invocation

• Scenario 5: two main tasks calling dup()

N scenario states transitions

4

1 664,555 2,527,653

2 28,032 91,623

2_1 73,984 255,391

2_2 920,649 3,537,763

3 168,466 557,363

3_1 1,445,922 5,204,671

3_2 655,546 2,387,195

3_3 4,435,309 17,328,979

4 63,760 211,579

4_1 168,288 586,539

5 181,170 596,022

5_1 1,626,933 5,989,205

6

2 4,998,344 24,324,439

2_1 14,778,488 74,826,343

4 12,696,086 62,482,651

4_1 37,090,190 189,595,795

5 97,297,953 489,846,494

FMICS 2011 – August 29, 2011 18

Model Checking using MCL

FMICS 2011 – August 29, 2011 19

Model checking: property 1
• the scenario terminates:

µX . [true] X

 false for all scenarios with a Dup operation

• the scenario terminates, ignoring “active waiting”:
µX . [true] X or
µX . exists y:Nat .
µX . < true* . {LD_RSP !y !”wait_slave”} >@

 true for all scenarios
LD_RQ !y !need_job LD_RSP !x !none ST !x !dup(f, 4)

LD_RSP !y !wait_slave

thanks to Radu Mateescu
for help with MCL

FMICS 2011 – August 29, 2011 20

Further verified MCL properties
• property 2: for each processor woken up, eventually

there is no more work left
[true* . {WAKEUP ?x:Nat}]
inevitable ({LD_RSP !x !”none”})

• property 3: each call to dup() executes to completion
[true* . {ST ?x:Nat !”dup”}]
inevitable ({LD_RSP !x !”done”})

• property 4: each task of the host is executed exactly
once
[true*. {HOST ?c:String}]
 inevitable ({LD_RSP ?x:Nat !c}) and
 [(true* . {LD_RSP ?y:Nat !c){2}] false

definition of inevitable
in the paper

FMICS 2011 – August 29, 2011 21

Co-simulation

FMICS 2011 – August 29, 2011 22

Co-simulation goals
• simultaneous execution / mutual cross-checking of:

– the architect’s design:
synthesizable C++ code

– the formal, verified LNT model:
C code generated using the EXEC/CÆSAR framework

• reuse the architect’s simulation environment
• main challenges:

– connection between synchronous and asynchronous
– arbitration decisions taken on clock signals
– varying number of signals per clock cycle
– choose one interleaving of the signals

FMICS 2011 – August 29, 2011 23

EXEC/CÆSAR framework
• translation of a LNT model to a C function f()
• rendezvous = call to a Boolean gate function

– gate function parameters to exchange values
– rendezvous accepted iff gate function returns true

• given a state s, f():
– computes the set of outgoing transitions O
– signals a deadlock if O = {}
– iterates over the elements of O, calling gate functions
– moves to next state when a rendezvous is accepted
– allows to start over if no rendezvous is accepted

enables to compute the set of proposed rendezvous

FMICS 2011 – August 29, 2011 24

Co-simulation scheme

C++ model

inputs I

outputs OC++

clock

LNT model outputs OLnt

1. collect OC++ since
last clock cycle

2. compare OC++ and OLnt
if different: error

at each clock cycle

3. compute I

5. send inputs

4. check acceptability of I
if refusal of one input:
error

decision

6. force decision

FMICS 2011 – August 29, 2011 25

Conclusion
• case-study of a complex industrial hardware block

• formal LNT model
– developed by engineers - understandable by designers
– discuss problems and experiment optimizations
– increase confidence in both models (LNT & C++)

• model checking
– express complex properties
– verify all interleavings (instead of testing only some)

• co-simulation
– mutual cross-check of both models (LNT & C++)
– uncovered ambiguity in natural language specification

LNT: formal modeling of complex
control blocks practically feasible!

FMICS 2011 – August 29, 2011 26

Thank you !

for more information about CADP, LNT, and MCL
• http://vasy.inria.fr/cadp
• http://cadp.forumotion.com

http://vasy.inria.fr/cadp
http://cadp.forumotion.com/

	Model Checking and Co-simulation of a Dynamic Task Dispatcher Circuit using CADP
	Introduction
	Plan of the presentation
	Context: “Platform 2012” project
	Dynamic Task Dispatcher (DTD)
	DTD: interactions with a processor
	Execution scenario
	Formal Modeling using LNT
	LNT (LOTOS NT) language
	Modeling approach
	Representing simultaneous signals
	Modeling style: example
	Architecture of the LNT model
	Scenario description in LNT
	LNT processes Dup and Processor
	Modeling approach
	State space generation: scenarios
	Model Checking using MCL
	Model checking: property 1
	Further verified MCL properties
	Co-simulation
	Co-simulation goals
	EXEC/CÆSAR framework
	Co-simulation scheme
	Conclusion
	Thank you !

