Model Checking and Co-simulation of
a Dynamic Task Dispatcher Circuit

using CADP
Etienne Lantreibecq Wendelin Serwe
STMicroelectronics INRIA and LIG /7 VASY
http://www.st.com http://vasy.inria.fr

S7]

e
FMICS 2011 - August 29, 2011

W/ INRIA L'.'

G

http://www.st.com/
http://vasy.inria.fr/

Introduction

e Increasing architectures ¢
for £
e globally asynchronous, locally synchronous

e costly design errors:
errors to be found as early as possible

e validation of complex control blocks:

- formal verification not addressed by the CAD
tools used by STMicroelectronics

- current practice: simulation

this talk: case-study on a hardware block . AR
designed by STMicroelectronics using - w%p

WINRIA ‘ oo

FMICS 2011 - August 29, 2011 N 2

Plan of the presentation

e presentation of the dynamic task dispatcher
e formal modeling using LNT

e model checking using MCL

e co-simulation of the C++ and LNT models

e conclusion

m— ZINRIA® -
FMICS 2011 - August 29, 2011 L G

Context: “Platform 2012 project

e many-core programmable accelerator

e 16-

processor cluster for fine-grain parallelism

(shared data memory and instruction cache)

e tas

ks divided in parallel executable sub-tasks

(same code, different data) “dup (f, 1):

I 1IN

e task programming model
“ready to run until
completion”:

- No sub-tasks interaction
- any ordering of sub-tasks g [==1 =11

e dedicated hardware to comrr| | |° DA [ci
switch tasks in only few f
clock cycles: DTD

FMICS 2011 - August 29, 2011

stances of function f

XKL

Shared 256-KB,

— T3

— T1

— Event

EEERED

i .
T T T v | $ -
™ —— Interrupt

Control

W ' http://www.2parma.eu/images/stories/p2012_whitepaper.pdf
INRIA L —

Dynamic Task Dispatcher (DTD)

e dispatch tasks on idle processors
- queue for task-request of the host

- sub-tasks requested by processors of the cluster
(at most three levels of sub-tasks)

e wake-up processors as needed

e processor-DTD communication using standard load/store
on dedicated addresses

thanks to Michel Favre
for discussion on the DTD

shared instruction cache

A A

shared data memory

host

proc.

proc.

proc.

[

- |»proc. -

L

Dynamic Task Dispatcher

FMICS 2011 - August 29, 2011

ZINRIA®

DTD: Interactions with a processor

e store:
- ST (dup (pc, 1)): request to execute -times
- ST (boot): a processor signals Is ready to execute

e |oad: two phases (request - response)

- LD _RQ (): request a task

- LD_RSP ((pc, 1)): task pc with index

- LD RSP (): no more work left (go to sleep)
- LD_RSP (): wait for sub-tasks

- LD RSP (): all sub-tasks finished

e wakeup (WAKEUP): activate the processor

W[NRIA _‘ G

FMICS 2011 - August 29, 2011

Execution scenario

DTD ProcO Procl
) ST IDUP(bar(), 4)
WAKEUP 5 b
; WAKEUP 5 5
LD RQ !0 !need job ;
; ;
LD_RSP !0 lexec(bar(), 3) b
) LD_RQ I2 Ineed_job
) LD RQ !1 Ineed job 5
: LD RSP 12 lexec(bar(), 2)
LD RSP !1 lexec(bar(), 1))
] LD RO !1 Ineed_job
LD RO !1 lexec(bar(), 0) >
5 LD_RQ !0 !need_job
LD RSP !0 !wait slaves)
) LD RQ !2 Ineed job
: LD RSP !2 Inone
‘ LD_RQ !1 'need_job
LD RSP !1 Inone)
3 LD RQ !0 'need job :
s LD RSP !0 !done)

FMICS 2011 - August 29, 2011

W/ INRIA L'.'

G

Formal Modeling using LNT

Z INRIA L'."‘G

e
FMICS 2011 - August 29, 2011

LNT (LOTOS NT) language

e integration of the features of

- process algebras

- Imperative programming languages
e easy-to-learn, user-friendly syntax
e formal semantics

e recommended input language for CADP (Int.open)
- compilation to LOTOS & EXEC/CASAR
- generation of the labeled transition system
- connection to on-the-fly verification tools

e reference manual:

ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/
Champelovier-Clerc-Garavel-et-al-10.pdf

S W{NR[A‘ L —

FMICS 2011 - August 29, 2011

Modeling approach

e scenarios to avoid state space explosion
- represent constraints on applications
- abstract processors
- abstract data & memory

e scenario description as LNT types & functions
e both hardware and software as LNT processes
e no global clock

— W[NR[A < _ L —
FMICS 2011 - August 29, 2011 : 10

Representing simultaneous signals

e DTD clock based:
several signals per clock cycle possible

e N0 Immediate reaction on a single event

e multi-phase approach:
- accept Iinputs and memorize their presence

- take decisions and/or compute outputs:
Internal transition on a particular gate

- asynchronously propose outputs
e representation of all possible interleavings

S W[NR[A ‘
FMICS 2011 - August 29, 2011 L G 11

Modeling style: example

process Arbiter [IA, OA, IB, OB, D: none] is OB
var sa, Nat |n A no input]
Ioop select input arrived |
when sa == 0 then IA; sa := 1 end when ,
[] when sb == 0 then IB; sb := 1 end when OB
IB
[] when sa == 1 then sa := 2 else
when sb == 1 then = 2 end when ;
D
[_ir!p?accepted |
[] when sa == 2 then OA; sa := 0 end when B 1A
[] when sb == 2 then OB; sb := 0 end when
end select end loop D IA 1B
end var A | OA
end process g > arbiter OB OA OB
— ‘JINR[A [2

FMICS 2011 - August 29, 2011 LNe 12

Architecture of the LNT model

Processor 0 Processor 1 Processor N

w (. — — I_ I_ (.
—IlUIIU)% cﬁloloé cﬂlonoé
—~ = — = — =
o | T IR = |2 128 |/ = | 12 |A
O 19S5 |c O |S | O |9 |c
o S _'E = |=1° = 1=1°C
HOST — = 1= — 1=

Host Dynamic Task Dispatcher

Processors described by three LNT processes:
- Processor: status automaton wakeup

sleeping

none

9]1NJ9Xo

- Dup: implementation of dup()
- Execute: scenario-specific definition of instructions

% |
S INRIA® C—
FMICS 2011 - August 29, 2011 7 i 13

Scenario description in LNT
type PC is : : with “==*, “I=* end type

process Execute [ST, LD _RQ, LD RSP: any]
(J:Job, Inout s:Job_Stack)
IS

var pc: PCin mapping between
. . program counters and
] get__PC (1) __Instructions to execute
case IN AN

-> Dup [ST, LD RQ, LD RSP]

(, 4, dup (, 1), 179)
| ->
| ->
end case
end var
end process
ZINRIA® - | —

FMICS 2011 - August 29, 2011 N 14

LNT processes Dup and Processor

process Dup [ST, LD_RQ, LD RSP: any]
(oc: PC, 12 Int, c: Job, inout s: Job_Stack) is

:= push (¢, s); ST (dup (pc, 1))
end process

process Processor [ST, LD _RQ, LD RSP, WAKEUP: any] is
var s: Job_Stack :={} in ST (boot); loop
WAKEUP;

wakeu
loop | in var |: Job In P &
LD RQ (); LD RSP (?)); _ x
case | in var pc: PC, i: Intin Sleeping w 2
(pc, 1) -> ,

none

| -> null
| -> if empty(c) then break | else
.= head(s); s := pop(c); Execute [ST, LD RQ, LD RSP] (j, 1?%%)
end if
| -> preak |
end case
end var end loop

end loop end var end process o
— ﬁ"[NRITA P T—
FMICS 2011 - August 29, 2011 L1 G 15

Modeling approach

e hand-written model for four processors

e development of a model generator

- parameterized by the number of processes

- generation of models for 4, 6, and 16 processors
e different versions

- fit to CADP tools
- experiment complex optimizations

I W[NR[AF_?: C—

FMICS 2011 - August 29, 2011

16

State space generation: scenarios

e N = number of available processors
total number of tasks > N for all scenarios

e Scenario 1: without dup()

e Scenario 2: one task forking subtasks
- variant 2_1: more subtasks
- variant 2_2: more tasks without dup()

e Scenario 3: nested calls to dup()

- variants 3_1 & 3 2: different number of
subtasks per level of nested dup()

- variant 3_3: more main tasks without dup()

e Scenario 4: consecutive calls to dup()
- variant 4_1: more subtasks at each invocation

e Scenario 5: two main tasks calling dup()

m— ZINRIA® -
FMICS 2011 - August 29, 2011 L G

N | scenario| states | transitions
1 664,555 2,527,653
2 28,032 91,623
2.1 73,984 255,391
2.2 920,649 3,537,763
3 168,466 557,363
31 1,445,922 5,204,671

4 32 655,546 2,387,195
33 4,435,309 17,328,979
4 63,760 211,579
41 168,288 586,539
5 181,170 596,022
51 1,626,933 5,989,205
2 4,998,344 24,324,439
21 14,778,488 74,826,343

6 4 12,696,086 62,482,651
41 37,090,190 189,595,795
5 97,297,953| 489,846,494

17

Model Checking using MCL

Z INRIA L'."‘G

e
FMICS 2011 - August 29, 2011

18

Model checking: property 1
e the scenario terminates: {thanks to Radu I\/Iateescu]
u - [true] for help with MCL

false for all scenarios with a Dup operation

e the scenario terminates, ignoring “active waiting’:
. ([true] or A

exists y:Nat .
_ < true* . {LD RSP !y wait_slave”} >@ y
true for all scenarios
ST Ix Idup(f, 4) LD RQ !y Ineed job LD RSP Ix Inone

B

LD RSP !y lwait_slave

I W{NRIA‘ L

FMICS 2011 - August 29, 2011 _ B 19

Further verified MCL properties

e property 2: for each
there IS N0 more wor
[true* . {WAKEUP ?x:

processor woken up, eventually

K left definition of inevitable
N at}] In the paper
inevitable ({LD_RSP !x I"’none”})

e property 3: each call

to dup() executes to completion

[true* . {ST ?x:Nat I”’dup”}]
Inevitable ({LD_RSP !x I’done™})

 property 4: each task of the host is executed exactly

once

——
FMICS 2011 - August 29, 2011

‘true*. {HOST ?c:String}]
" inevitable ({LD RSP ?x:Nat !c}) and
. [(true* . {LD RSP ?y:Nat !c){2}] false

ZIINRIA 5‘

20

e
FMICS 2011 - August 29, 2011

Co-simulation

Wl NRIA L‘;. -

G

21

Co-simulation goals

e simultaneous execution / mutual cross-checking of:

- the architect’s design:
synthesizable C++ code

- the formal, verified LNT model:
C code generated using the EXEC/CASAR framework

e reuse the architect’s simulation environment

e main challenges:
- connection between synchronous and asynchronous
- arbitration decisions taken on clock signals
- varying number of signals per clock cycle
- choose one interleaving of the signals

VTR ZINRIA® - I
FMICS 2011 - August 29, 2011

EXEC/CAESAR framework

e translation of a LNT model to a C function f()

e rendezvous = call to a Boolean gate function
- gate function parameters to exchange values
- rendezvous accepted Iff gate function returns true
e given a state s, f():
- computes the set of outgoing transitions O
- signals a deadlock if O = {}
- Iterates over the elements of O, calling gate functions
- moves to next state when a rendezvous Is accepted
- allows to start over if no rendezvous Is accepted

A\

[enables to compute the set of proposed rendezvous]

E— W[NR[A g _ L —
FMICS 2011 - August 29, 2011 23

Co-simulation scheme

at each clock cycle]

[5. send inputs

clock 1. collect O, since
l last clock cycle
\I
[3- compute |] C++ model —» outputs Oc,, ——
N
Inputs |

—» outputs O, ,, =

4{ LNT model

T . compare O.,, and O, J

(4. check acceptability of | | decision If different: error

If refusal of one input:
error) 6. force decision]

—— W[NR[A < _ —
FMICS 2011 - August 29, 2011 . 24

N | N—— N/

Conclusion

e case-study of a complex industrial hardware block

LNT: formal modeling of complex
e formal LNT model control blocks practically feasible!

- developed by engineers - understandable by designers
- discuss problems and experiment optimizations
- increase confidence in both models (LNT & C++)

e model checking

- express complex properties

- verify all interleavings (instead of testing only some)
e co-simulation

- mutual cross-check of both models (LNT & C++)
- uncovered ambiguity in natural language specification

—— W[NR[A < _ —
FMICS 2011 - August 29, 2011 . 25

Thank you !

for more information about CADP, LNT, and MCL
e http://vasy.inria.fr/cadp
e http://cadp.forumotion.com

I W{NR]AL'I---

FMICS 2011 - August 29, 2011 G

http://vasy.inria.fr/cadp
http://cadp.forumotion.com/

	Model Checking and Co-simulation of a Dynamic Task Dispatcher Circuit using CADP
	Introduction
	Plan of the presentation
	Context: “Platform 2012” project
	Dynamic Task Dispatcher (DTD)
	DTD: interactions with a processor
	Execution scenario
	Formal Modeling using LNT
	LNT (LOTOS NT) language
	Modeling approach
	Representing simultaneous signals
	Modeling style: example
	Architecture of the LNT model
	Scenario description in LNT
	LNT processes Dup and Processor
	Modeling approach
	State space generation: scenarios
	Model Checking using MCL
	Model checking: property 1
	Further verified MCL properties
	Co-simulation
	Co-simulation goals
	EXEC/CÆSAR framework
	Co-simulation scheme
	Conclusion
	Thank you !

