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Introduction 
• increasing complexity of architectures 

for mobile multi-media applications 
• globally asynchronous, locally synchronous 
• costly design errors: 

errors to be found as early as possible 
• validation of complex control blocks: 

– formal verification not addressed by the CAD 
tools used by STMicroelectronics 

– current practice: simulation 
this talk: case-study on a hardware block 

 designed by STMicroelectronics using 
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Plan of the presentation 
• presentation of the dynamic task dispatcher 
• formal modeling using LNT 
• model checking using MCL 
• co-simulation of the C++ and LNT models 
• conclusion 
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Context: “Platform 2012” project 
• many-core programmable accelerator 
• 16-processor cluster for fine-grain parallelism 

(shared data memory and instruction cache) 
• tasks divided in parallel executable sub-tasks 

(same code, different data) “dup (f, i)”: 
i instances of function f 

• task programming model 
“ready to run until 
completion”: 
– no sub-tasks interaction 
– any ordering of sub-tasks 

• dedicated hardware to 
switch tasks in only few 
clock cycles: DTD 

http://www.2parma.eu/images/stories/p2012_whitepaper.pdf 
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• dispatch tasks on idle processors 
– queue for task-request of the host 
– sub-tasks requested by processors of the cluster 

(at most three levels of sub-tasks) 

• wake-up processors as needed 
• processor-DTD communication using standard load/store 

on dedicated addresses 

Dynamic Task Dispatcher (DTD) 

shared data memory     

proc. 

shared instruction cache     

host 

Dynamic Task Dispatcher     

... proc. proc. proc. 

thanks to Michel Favre 
for discussion on the DTD 
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DTD: interactions with a processor 
• store:  

– ST (dup (pc, i)): request to execute pc i-times 
– ST (boot): a processor signals is ready to execute 

• load: two phases (request – response) 
– LD_RQ (need_job): request a task 
– LD_RSP (exec (pc, i)): task pc with index i 
– LD_RSP (none): no more work left (go to sleep) 
– LD_RSP (wait_slave): wait for sub-tasks 
– LD_RSP (done): all sub-tasks finished 

• wakeup (WAKEUP): activate the processor 
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Execution scenario 
Proc0 DTD 

ST !DUP(bar(), 4) 

LD_RQ !0 !need_job 
LD_RSP !0 !exec(bar(), 3) 

Proc1 Proc2 

WAKEUP 
WAKEUP 

LD_RQ !1 !need_job 
LD_RQ !2 !need_job 

LD_RSP !2 !exec(bar(), 2) 
LD_RSP !1 !exec(bar(), 1) 
LD_RQ !1 !need_job 
LD_RQ !1 !exec(bar(), 0) 

LD_RQ !2 !need_job 
LD_RSP !2 !none 

LD_RQ !0 !need_job 
LD_RSP !0 !wait_slaves 

LD_RQ !1 !need_job 
LD_RSP !1 !none 
LD_RQ !0 !need_job 
LD_RSP !0 !done 
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Formal Modeling using LNT 
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LNT (LOTOS NT) language 
• integration of the features of 

– process algebras 
– imperative programming languages 

• easy-to-learn, user-friendly syntax 
• formal semantics 
• recommended input language for CADP (lnt.open) 

– compilation to LOTOS & EXEC/CÆSAR 
– generation of the labeled transition system 
– connection to on-the-fly verification tools 

• reference manual: 
ftp://ftp.inrialpes.fr/pub/vasy/publications/cadp/ 
Champelovier-Clerc-Garavel-et-al-10.pdf 
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Modeling approach 
• scenarios to avoid state space explosion 

– represent constraints on applications 
– abstract processors 
– abstract data & memory 

• scenario description as LNT types & functions 
• both hardware and software as LNT processes 
• no global clock 
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Representing simultaneous signals 
• DTD clock based: 

several signals per clock cycle possible 
•no immediate reaction on a single event 
• multi-phase approach: 

– accept inputs and memorize their presence 
– take decisions and/or compute outputs: 

internal transition on a particular gate 
– asynchronously propose outputs 

• representation of all possible interleavings 
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Modeling style: example 
process Arbiter [IA, OA, IB, OB, D: none] is 
  var sa, sb: Nat in 
    sa := 0; sb := 0; 
    loop select 
    (* handling inputs *) 
    [] when sa == 0 then IA; sa := 1 end when 
    [] when sb == 0 then IB; sb := 1 end when 
    (* decision *) 
    [] when sa == 1 then sa := 2 else 
    [] when sb == 1 then sb := 2 end when ; 
    [] D 
    (* handling outputs *) 
    [] when sa == 2 then OA; sa := 0 end when 
    [] when sb == 2 then OB; sb := 0 end when 
    end select end loop 
  end var 
end process 0 

2 1 

7 

4 

6 

8 

5 3 

IA IB 

IB IA D D 

D IB IA 

D D 

OB OA 

OB OA 

OA OB 

no input 

input arrived 

input accepted 

arbiter IA 
IB 

OA 
OB 

D 
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ST !0 

LD
_RQ

 !0 

W
AKEU

P !0 

LD
_RSP !0 

Architecture of the LNT model 
Processor 0 

Host Dynamic Task Dispatcher     
HOST 

Processors described by three LNT processes: 
– Processor: status automaton 
 
 
 

– Dup: implementation of dup()  
– Execute: scenario-specific definition of instructions 

ST !N
 

LD
_RQ

 !N
 

W
AKEU

P !N
 

LD
_RSP !N

 

Processor N 

ST !1 

LD
_RQ

 !1 

W
AKEU

P !1 

LD
_RSP !1 

Processor 1 … 

init running sleeping boot 

wakeup 

none 

execute 
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Scenario description in LNT 
type PC is pc_1, pc_2, pc_3 with “==“, “!=“ end type 

process Execute [ST, LD_RQ, LD_RSP: any] 
process Execute (j:Job, inout s:Job_Stack) 
is 
  var pc: PC in 
    pc := get_PC (j); 
    case pc in 
    |pc_1 -> Dup [ST, LD_RQ, LD_RSP] 
    |pc_1 -> Dup (pc_3, 4, dup (pc_2, -1), !?s) 
    |pc_2 -> (* instructions of the duplicated function *) 
    |pc_3 -> (* instructions of the continuation *) 
    end case 
  end var 
end process 

mapping between 
program counters and 
instructions to execute 
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LNT processes Dup and Processor 
process Dup [ST, LD_RQ, LD_RSP: any] 
process Dup (pc: PC, i: Int, c: Job, inout s: Job_Stack) is 
  s := push (c, s); ST (dup (pc, i)) 
end process  

process Processor [ST, LD_RQ, LD_RSP, WAKEUP: any] is 
  var s: Job_Stack := {} in ST (boot); loop 
    WAKEUP; 
    loop l in var j: Job in 
      LD_RQ (need_job); LD_RSP (?j); 
      case j in var pc: PC, i: Int in 
      |exec (pc, i) -> 
      |wait_slave -> null 
      |done -> if empty(s) then break l else 
      |done ->   j := head(s); s := pop(s); Execute [ST, LD_RQ, LD_RSP] (j, !?s) 
      |done -> end if 
      |none -> break l 
      end case 
    end var end loop 
end loop end var end process 

init running sleeping boot 

wakeup 

none 

“execute” 
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Modeling approach 
• hand-written model for four processors 
• development of a model generator 

– parameterized by the number of processes 
– generation of models for 4, 6, and 16 processors 

• different versions 
– fit to CADP tools 
– experiment complex optimizations 
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State space generation: scenarios  
• N = number of available processors 

total number of tasks > N for all scenarios 
• Scenario 1: without dup()  
• Scenario 2: one task forking subtasks 

– variant 2_1: more subtasks 
– variant 2_2: more tasks without dup() 

• Scenario 3: nested calls to dup() 
– variants 3_1 & 3_2: different number of 

subtasks per level of nested dup() 
– variant 3_3: more main tasks without dup() 

• Scenario 4: consecutive calls to dup() 
– variant 4_1: more subtasks at each invocation 

• Scenario 5: two main tasks calling dup() 

N scenario states transitions 

4 

1 664,555 2,527,653 

2 28,032 91,623 

2_1 73,984 255,391 

2_2 920,649 3,537,763 

3 168,466 557,363 

3_1 1,445,922 5,204,671 

3_2 655,546 2,387,195 

3_3 4,435,309 17,328,979 

4 63,760 211,579 

4_1 168,288 586,539 

5 181,170 596,022 

5_1 1,626,933 5,989,205 

6 

2 4,998,344 24,324,439 

2_1 14,778,488 74,826,343 

4 12,696,086 62,482,651 

4_1 37,090,190 189,595,795 

5 97,297,953 489,846,494 
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Model Checking using MCL 
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Model checking: property 1 
• the scenario terminates: 

µX . [true] X 

 false for all scenarios with a Dup operation 

• the scenario terminates, ignoring “active waiting”: 
µX .    [true] X       or  
µX .      exists y:Nat .  
µX .      < true* . {LD_RSP !y !”wait_slave”} >@ 

 true for all scenarios 
LD_RQ !y !need_job LD_RSP !x !none ST !x !dup(f, 4) 

LD_RSP !y !wait_slave 

thanks to Radu Mateescu 
for help with MCL 
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Further verified MCL properties 
• property 2: for each processor woken up, eventually 

there is no more work left 
[true* . {WAKEUP ?x:Nat}] 
inevitable ({LD_RSP !x !”none”}) 

• property 3: each call to dup() executes to completion 
[true* . {ST ?x:Nat !”dup”}] 
inevitable ({LD_RSP !x !”done”}) 

• property 4: each task of the host is executed exactly 
once 
[true*. {HOST ?c:String}] 
   inevitable ({LD_RSP ?x:Nat !c})   and 
   [(true* . {LD_RSP ?y:Nat !c){2}] false 

definition of inevitable 
in the paper 
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Co-simulation 



FMICS 2011 – August 29, 2011 22 

Co-simulation goals 
• simultaneous execution / mutual cross-checking of: 

– the architect’s design: 
synthesizable C++ code 

– the formal, verified LNT model: 
C code generated using the EXEC/CÆSAR framework 

• reuse the architect’s simulation environment 
• main challenges: 

– connection between synchronous and asynchronous 
– arbitration decisions taken on clock signals 
– varying number of signals per clock cycle 
– choose one interleaving of the signals 
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EXEC/CÆSAR framework 
• translation of a LNT model to a C function f() 
• rendezvous = call to a Boolean gate function 

– gate function parameters to exchange values 
– rendezvous accepted iff gate function returns true 

• given a state s, f(): 
– computes the set of outgoing transitions O 
– signals a deadlock if O = {} 
– iterates over the elements of O, calling gate functions 
– moves to next state when a rendezvous is accepted 
– allows to start over if no rendezvous is accepted 

enables to compute the set of proposed rendezvous 
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Co-simulation scheme 

C++ model 

inputs I 

outputs OC++ 

clock 

LNT model outputs OLnt 

1. collect OC++ since 
last clock cycle 

2. compare OC++ and OLnt 
if different: error  

at each clock cycle 

3. compute I 

5. send inputs 

4. check acceptability of I 
if refusal of one input: 
error 

decision 

6. force decision 



FMICS 2011 – August 29, 2011 25 

Conclusion 
• case-study of a complex industrial hardware block 

• formal LNT model 
– developed by engineers - understandable by designers 
– discuss problems and experiment optimizations 
– increase confidence in both models (LNT & C++) 

• model checking 
– express complex properties 
– verify all interleavings (instead of testing only some) 

• co-simulation  
– mutual cross-check of both models (LNT & C++) 
– uncovered ambiguity in natural language specification 

LNT: formal modeling of complex 
control blocks practically feasible! 
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Thank you ! 

for more information about CADP, LNT, and  MCL 
• http://vasy.inria.fr/cadp 
• http://cadp.forumotion.com 

http://vasy.inria.fr/cadp
http://cadp.forumotion.com/
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