
Parallel Processes with Real-Time
and Data: The ATLANTIF

Intermediate Format

Jan Stöcker, Frédéric Lang,
and Hubert Garavel

INRIA Grenoble Rhône-Alpes / LIG
 Montbonnot Saint-Martin

 VASY project team
http://www.inrialpes.fr/vasy

2iFM, Düsseldorf - February 17, 2009

•

Design of realistic industrial applications
(e.g., embedded systems)

•

Formal methods integration: from modeling
to formal verification

•

Need for formal and concise languages to
represent:
–

Complex data: arrays, unions, lists, etc.

–

Control & concurrency: events, synchronization,
communication, dynamic process activation, etc.

–

Real-time: delays, urgency, latency, etc.

Context and objective

3iFM, Düsseldorf - February 17, 2009

Existing languages & models
•

Process algebras
–

Extensions of CCS and ACP: aimed to study
theoretical problems

–

Extensions of CSP and of the LOTOS ISO standard
(T-LOTOS, RT-LOTOS, ET-LOTOS, …): application
oriented, but with steep learning curve

–

Emergence of new languages: E-LOTOS, LOTOS NT
–

But few verification tools exist

•

Graphical models
–

Timed automata, time Petri nets, …

–

Existence of tools (e.g., Uppaal, Tina, Red, …)
–

But hard to model realistic applications

4iFM, Düsseldorf - February 17, 2009

E-LOTOS example

specification Two_Robots

is
gates Next, RB
behaviour (loop wait 3; Next

endloop

|[Next]|
loop wait 5; Next

endloop) [> RB; null

endspec

task A

task B tasks finished,
 next product

 arrives

“red button”,
 robots stop

5iFM, Düsseldorf - February 17, 2009

Timed automata example

0:

3

1

1

=

≥

X
!Next

X

?RB
0:

5

2

2

=

≥

X
?Next

X

?RB !RB

6iFM, Düsseldorf - February 17, 2009

•

Make connections between
–

high-level languages convenient to model realistic
applications

–

and graphical models for which efficient
verification tools exist

•

Need for an intermediate model, that
–

concisely expresses high-level constructs

–

preserves the semantics
–

allows automated translations to graphical models

•

This talk: define a suitable intermediate
model named ATLANTIF

Our goal

7iFM, Düsseldorf - February 17, 2009

Intermediate models
High-level
languages

(process algebras)

Intermediate
models

Graphical
models

Optimization
 Control flow analysis

 Data flow analysis

Validation
 LTS generation

 Simulation
 Model checking

Design

8iFM, Düsseldorf - February 17, 2009

Existing intermediate models
•

MoDeST [D’Argenio-Hermanns-Katoen-Klaren-2001]
–

Probabilistic model without concurrency

•

BIP [Basu-Bozga-Sifakis-2006]
–

Concurrent model, restricted data manipulation

•

NTIF [Garavel-Lang-2002]
–

Manipulation of complex data structures

–

Sequential processes without concurrency or time
•

Fiacre [Berthomieu-Bodeveix-Farail-et-al-2008]
–

Pivot language in translations to tools (CADP, Tina)

–

Real-time syntax restricted to TPN-like constructs

9iFM, Düsseldorf - February 17, 2009

The ATLANTIF intermediate model
An ATLANTIF program consists of:
•

A set of data type and function definitions

•

A set of hierarchical real-time asynchronous
sequential processes, named units

•

A set of synchronizers defining the parallel
composition, process activations, and
synchronizations between units

10iFM, Düsseldorf - February 17, 2009

An ATLANTIF program
module (name)

is

init unit_1, unit_2, …, unit_x

end module

Type and function declarations

Synchronizers

Units

Subunits

()[]timedensediscreteno
real-time option

initially started units

11iFM, Düsseldorf - February 17, 2009

Data types and functions
•

Inherited from the NTIF model

•

Data types
–

predefined: int, bool, float

–

user-defined: enumerations, structures, arrays,
lists, trees, etc.

–

constant and parameterized constructors

•

Functions
–

predefined: +, -, =, ≤, >, etc.

–

user-defined: typed parameters, typed return
value, sequential statement

12iFM, Düsseldorf - February 17, 2009

•

Definition of sequential behaviour
•

Extension of NTIF processes with real-time
constructs and hierarchical structure

unit (name)

is
variables V1

: T1

[:= E1

], …, Vn

: Tn

[:= En

]
from state_1

<action>

…
from state_m

<action>

end unit

Units

Subunits

discrete state

multibranch transition action

subunits can access

 the variables V1

, …, Vn

13iFM, Düsseldorf - February 17, 2009

Actions

[]

[][]

enddowhile
endiscase

endselect

to
inmaymust

reset
whereany

wait
null

AE
APAPE

AA
AA
s

WOOG
VV

ETTVV
EEVV

E
A

nn

n

n

n

nn

nn

→→

=
=

=

K

K

K

K

KK

KK

00

0

21

1

0

00

00

[][]
;

,,
,,:,,

,,:,,

::
delay action

variable
manipulation

gate communication

 with time restriction
jump

composition

two extensions
w.r.t. NTIF

 action syntax

14iFM, Düsseldorf - February 17, 2009

•

Optionally, gate communication actions have
a time window

W:

–

intervals
–

unions and intersections of intervals

•

A keyword defines the behaviour at the end
of the time window
–

“may”: time can elapse further

–

“must”: time elapsing blocks

Communication timing constraints

212111

21212121

[][[
[][[]]][::

WWWW,Ε,Ε
,ΕΕ,ΕΕ,ΕΕ,ΕΕW

andorKK

=

15iFM, Düsseldorf - February 17, 2009

•

A subset of the units executes (asynchronously)
•

Gates are synchronized following synchronizers

Concurrency and synchronizations

()
()0

1

21

21

,,

::

C
CCN

CC
CC

uC

nK among
or

 and
=

()[]

[]
[]

sync end
start
stop
is

visibleurgent hidden silent
 sync

',,'
,,

:
::

1

1

n

m

uu
uu

C

GS

K

K

=

()0

21

::

N
NN

nN
or

=

synchronizer /

 gate name

optional:

 visibility

synchronization
formula

optional:

 unit starting

 and stopping

16iFM, Düsseldorf - February 17, 2009

•

The visibility of a gate G

defines how it
appears in the semantics:
–

“visible”: transitions labeled with G and offers

–

“hidden”: internal transition (τ)
–

“urgent”: internal transition (τ), time is blocked
when synchronization is possible

–

“silent”: no transition in the semantics

•

By default, gates are visible

Gate visibility

17iFM, Düsseldorf - February 17, 2009

Every synchronization formula defines one or
several sets (called synchronization sets) of
units that may synchronize on the gate G

•

Example 1: Competition
–

“sync G

is u1

and (u2

or u3

) end sync”

expresses
synchronization of u1

with either u2

or u3

–

Synchronization sets: {u1

, u2

}, {u1

, u3

}
•

Example 2:

Multiway synchronization (n

 processes synchronizing altogether)
–

“sync G

is u1

and u2

and u3

end sync”

expresses
synchronization of u1, u2

,

and u3 altogether
–

Synchronization set: {u1

, u2

, u3

}

Examples of synchronizers

18iFM, Düsseldorf - February 17, 2009

•

Example 3:

Generalized parallel composition
–

“sync G

is (2

or 3) among (u1

, u2

, u3

) end sync”
–

Synchronization sets:

{u1

, u2

}, {u1

, u3

}, {u2

, u3

},
 {u1

, u2

, u3

}

•

Example 4: dynamically stopped and started
units
–

“sync G

is u1

and u2

stop u1

, u2

start u3

, u4 end
sync”

–

Synchronization set: {u1

, u2

}
–

At synchronization on G, u1

and u2

are stopped and
u3

and u4

are started

Examples of synchronizers

19iFM, Düsseldorf - February 17, 2009

•

Static

semantics imposes restrictions on the
definition of a specification:
–

typing

–

variable initialization
–

variable access conflicts, etc.

•

Dynamic

semantics rules define a timed
labeled transition system, which satisfies
several “good”

properties:

–

time additivity
–

time determinism

–

maximal progress of urgent actions

Semantics

20iFM, Düsseldorf - February 17, 2009

module Two_Robots

is dense time
sync Next

is Rob1

and Rob2

end sync

sync RB

is Rob1

and Rob2

stop Rob1, Rob2

end sync
init Rob1, Rob2
unit Rob1

is

from Task_A
 select wait 3; Next

[] RB

end; to Task_A

 end unit
unit Rob2

is

from Task_B
 select wait 5; Next

[] RB

end; to Task_B

 end unit
end module

Example

21iFM, Düsseldorf - February 17, 2009

Translation to Uppaal
ATLANTIF construct translated to (Uppaal)

module network of timed automata
synchronizer

each synchronization set
 containing 1 or 2 units

each synchronization set
 containing n > 2 units

one or several channels:
one binary channel

(n –

1) binary channels to
 emulate multiway synchr.

unit one timed automaton
discrete state location
multibranch transition one transition per path
gate communication action label on transition
timing constraints guards and invariants
communication offers emulated by global variables

22iFM, Düsseldorf - February 17, 2009

Translation to Tina
ATLANTIF construct translated to (Tina)

module one time Petri net (TPN)
synchronizer no direct translation

unit subset of the TPN
discrete state place
multibranch transition first one transition per path,

 then multiplication and fusion
with synchronizing transitions

gate communication action label on transition
timing constraints auxiliary transitions,

priorities, and inhibitor arcs
data manipulation,
communication offers

translated to C functions

23iFM, Düsseldorf - February 17, 2009

•

~18,000 lines of code in LOTOS NT, C, Syntax

Tool overview

.ant

ATLANTIF
specification

atlantif
tool

Uppaal
 timed automata

1)

static
semantics
verification

2)

translation

simulation
& formal

verification
Tina

 time Petri net

Fiacre
 program

Fiacre-to-LOTOS
(flac)

Fiacre-to-Tina
(frac)

24iFM, Düsseldorf - February 17, 2009

•

Specifications from high-level languages can
easily be represented in ATLANTIF:
–

intuitive textual syntax, easy to read and to write

–

process-algebra-inspired high-level constructs for
synchronization, choice, etc.

•

ATLANTIF is linked to formal verification tools:
–

translations to Uppaal TA and Tina TPN

•

Future work:
–

extend the subsets of ATLANTIF understood by the
translator tool

–

explore automated translations of process algebras

Conclusion and future work

	Parallel Processes with Real-Time �and Data: The ATLANTIF�Intermediate Format
	Context and objective
	Existing languages & models
	E-LOTOS example
	Timed automata example
	Our goal
	Intermediate models
	Existing intermediate models
	The ATLANTIF intermediate model
	An ATLANTIF program
	Data types and functions
	Units
	Actions
	Communication timing constraints
	Concurrency and synchronizations
	Gate visibility
	Examples of synchronizers
	Examples of synchronizers
	Semantics
	Example
	Translation to Uppaal
	Translation to Tina
	Tool overview
	Conclusion and future work

