
Modern languages for modeling and
verifying asynchronous systems

Damien THIVOLLE
Advisors:

Dr. Valentin CRISTEA (UPB)
Dr. Hubert GARAVEL (INRIA)

VASY 2

PLAN

Introduction

Formal verification of GALS systems

Formal verification of BPEL Web services

Conclusion

Overview
•  Objective is to create connections

between:
– modern modelling languages (compatible with

the Model-Driven Engineering paradigm), and
– formal verification tools (typically CADP)

•  How?
– By creating connections at a language level,

using semantic transformations

VASY 3

Why?
•  Complementarity at different levels:

VASY 4

MDE
Languages

Formal
Methods
Languages

Syntax graphical,
attractive

textual,
unattractive

Semantics informally
defined

mathematically
defined

Industrial
acceptance

almost
standard

weak

•  MDE languages lack verification tools

Applications
•  TFTP case study
– Given by Airbus

– Verification of a variant of the TFTP protocol used for
the A350

–  Specification written in SAM, modelling language from
Airbus

•  BPEL
–  Language for describing the logic of Business Processes

and exposing their interface as Web Services
– MDE-oriented (graphical syntax that fits the MDE

paradigm)

VASY 5

VASY 6

Model-Driven Engineering
• Development paradigm where everything is a

model:
– Application, requirements, executable code…

• Environments like Eclipse, Netbeans provide
necessary tools:
– Model transformations, editors, code generators…

• Adopted in the industry (TOPCASED project, with
Airbus, Thales, EADS…)

• Suited to dedicated languages (DSLs)

VASY 7

CADP
•  Formal verification toolbox (http://vasy.inria.fr/cadp)!

•  Systems specified in process algebras (LOTOS / LOTOS NT):

•  Process algebra code compiled into transition systems:

•  Model checking = evaluation of temporal logic formulas (requirements)

process P [SEND, RECV:any] is
 SEND; RECV; P [SEND, RECV]
end process

[true* . SEND . (not RECV)* . SEND] false

RECV

SEND

LOTOS NT (1/2)
•  Simplified version of E-LOTOS (Sighireanu-99)
•  Function definitions:

VASY 8

function funcName (in ArgIn1:T1, … ,in ArgInm:Tm,T1…
 out ArgOut1:T’1, out ArgOutn:T’n) is
 …
end function

•  Type definitions (with constructors):
Type NatList is
 Cons (head:Nat, tail:NatList),
 Nil
end type
…
 Cons (1, Cons (2, Cons (3, Cons (4, Nil))))

definition

instantiation

LOTOS NT (2/2)
•  hide operator

VASY 9

hide B in
 A; B; C
end hide

0 1 A i 2 3 C

•  par operator
par B in
 A1; B; A2
||
 C1; B; C2
end par
•  disrupt operator
disrupt
 A; B
by C
end disrupt

0

1

2

3

5

6

7

A1 C1 C2
4

C1 A1
B

C2

A2

A2

0 1 2

3

C

A B

C C

Verification of GALS Systems

VASY 10

Synchronous languages
•  Synchronous systems receive a set of inputs

and reply a set of outputs
•  They are deterministic and the

computation of the outputs is intantaneous
•  For programming these systems,

synchronous languages are used:
– ESTEREL

– SCADE/LUSTRE
– SIGNAL

•  Many « synchronous » tools for verification
VASY 11

Synchronous paradigm

VASY 12

• One function = one cable/wire
• In modern designs (car, plane, train), too many

wires needed

engine_sensor

pressure_sensor

fuel_sensor

engine
controller

pressure
controller

fuel
controller

Cockpit
failure
display

disp_engine_fail

disp_pressure_fail

disp_fuel_fail

GALS Paradigm

•  GALS = Globally Asynchronous Locally Synchronous

•  One bus/network = many functions (Fly-by-wire, X-by-wire)

•  Problems:
•  Verification of complex of communication protocols (Toyota ABS recall)

•  “synchronous tools” not suited to asynchronous communications

VASY 13

engine
controller

pressure
controller

fuel
controller

Cockpit
failure
display

Network/bus

Asynchronous
communications

Related work
•  Exclusively from the synchronous community
•  Attempts to model GALS systems:

• with synchronous languages (proved possible by
Milner but cumbersome)

•  By adding new operators to synchronous
languages to introduce a degree of asynchrony

•  A problem remains, synchronous tools not
made to handle asynchrony (lack of
optimizations for interleaved semantics)

•  Severely limits the size of verifiable systems

VASY 14

Our method (1/2)
•  Garavel-Thivolle-09, proceedings of SPIN’09
•  Each synchronous component is a function:

– Inputs: current state and input values

– Outputs: next state and output values

•  We encode that function in LOTOS NT:
function transition (in state:State, in input1:T1…

 out nextState:State, out output1:T’1…) is

 …

end function

VASY 15

Our method (2/2)

VASY 16

LOTOS NT Wrapper
Process for engine

controller

LOTOS NT Wrapper Process for
cockpit failure display

Network/Bus as LOTOS NT Process(es)

LOTOS NT Wrapper
Process for pressure

controller

LOTOS NT Wrapper
Process for fuel

controller

Engine controller
LOTOS NT function

Pressure controller
LOTOS NT function

Fuel controller
LOTOS NT function

Cockpit failure display
LOTOS NT function

VASY 17

Case-study from Airbus
• TFTP variant written in SAM, a DSL from Airbus, and used

for the upcoming A350 (plane-aiport communications)

• TFTP protocol entity encoded as SAM program: 7 states, 39
transitions

• GALS system: 2 TFTP protocol entities connected
asynchronously by a UDP link

• Requirements expressed as temporal logic formulas (29 in
total)

LOTOS NT
TFTP

Wrapper
Process

LOTOS NT
TFTP

Wrapper
Process
LOTOS NT

TFTP function
LOTOS NT

TFTP function

UDP Link
encoded in
LOTOS NT

TFTP Wrappers
•  Simple TFTP Wrapper
– No real TFTP messages, straightforward asynchronous

connection of outputs of one entity to the inputs of the
other (and vice versa)

– Rapid implementation

–  Followed Airbus recommendations (head-to-tail)

– Enabled us to find 11 errors

•  Accurate TFTP Wrapper
–  Implementation of the TFTP protocol which uses the

Mealy function to dictate its behaviour
– Enabled us to find 8 more errors

VASY 18

Generation issues
•  Direct generation (compiling the entire

specification) is not giving good results
because the specification is too complex

•  Compositional generation

•  We tried different strategies for
compositional generation

VASY 19

TFTP A

MEDIUM A->B

MEDIUM B->A

TFTP B

SEND_A RECV_B

RECV_A SEND_B

A

B

RECV_B
RECV_A FINAL

Verification results
•  In total, we found 19 errors
•  These errors do not prevent transfers from

finishing (probably why they had remained
undetected)

•  All these errors were acknowledged as real
errors from Airbus

VASY 20

• Do they affect runtime performances?
➪ Simulation

Simulation
•  TFTP has an error recovery mechanism which depends on

waiting for timeouts and resending messages

•  The errors in the TFTP automaton cause transfer to abort
and restart without having to wait for timeouts

•  Is an error-free TFTP automaton more efficient? With
varying timeout values?

•  Technical details:
–  We used Executor from CADP

–  Weights were given to transitions (1/10000 for internal errors,
1/100 for medium errors, 1 for other actions)

–  We considered a medium of 1 MB/s and data fragments of 32 KB

–  We made timeout values (length of waiting period) vary from
50 ms to 1 s

VASY 21

Simulation results (full duplex)

VASY 22

VASY 23

Results & Conclusion
• Results:

– 19 errors found in the Airbus TFTP variant

– Errors acknowledged by Airbus

– Not critical errors but greatly affect transfer
speeds (close to 0 in some cases)

• Conclusion:
– Approach works and is efficient:

 Allows to reuse existing « synchronous » tools for the
standalone verification of synchronous components

 Enables mixing different synchronous languages

– Led to an on-going collaboration with Airbus

VASY 24

Formal verification of BPEL Web
Services

Web Services
•  Remote applications accessed through the

Internet, and complying to a set of W3C
standards:
– Application interfaces exposed with WSDL

(functions, data types of arguments)
– Arguments (messages) encoded with SOAP

– Data (function calls) transferred with HTTP

•  Increasingly popular (W3C support)

•  Used in critical systems (online payment
systems for example)

VASY 25

VASY 26

Overview of BPEL
• Business Process Execution Language
• Defines an application using a Business Logic

oriented language (with XML syntax)
• Exposes the application as a Web Service

• BPEL fits in MDE paradigm (Eclipse BPEL and BPMN
notation)

• Inspired by two languages:
– WSFL (IBM, workflow theory)

– XLANG (Microsoft, process algebras, pi-calculus)

•  Industrial support (Microsoft, IBM, Oracle…)

More details
•  Structured-programming constructs (if, while, for,
sequence…)

•  Concurrency: flow operator and concurrent access to
variables

•  Communications: receive, reply, invoke

•  Error management: fault, compensation, termination
handlers

•  Relation to other standards:
– WSDL: communication links and messages definitions

–  SOAP: encoding of messages (not considered for verification)

–  XML Schema: data types definitions

–  XPath: data expressions

VASY 27

VASY 28

Related work in verification
• Workflow community (WSFL):

– Data not considered
– Workflow analysis (reachable or unreachable

activities)

• Process algebra community (XLANG):
– Data not considered or poorly handled

– Not all BPEL constructs processed and no
explanations

– Translation of BPEL processes in a process
algebra to enable model checking

Comparison (data)

VASY 29

Approach Types Expressions Variables Constants

Salaün et al. --! --! --! --!

Koshkina & Breugel --! --! --! --!

Yeung --! --! --! --!

Ouyang et al. --! --! --! --!

Qian et al. --! --! --! --!

Mateescu & Rampacek --! --! --! --!

Foster et al. -! --! +! --!

Fu et al. -! +! +! --!

Humbolt-Universität --! --! -! --!

Fisteus et al. -! --! -! --!

Nakajima --! --! -! --!

Bianculli -! --! -! --!

Moser et al. --! -! -! --!

Our approach ++! +! +! +!

Comparison (behaviours)

VASY 30

Approach SA exit FH EH At CL Time Env

Salaün et al. +! --! --! --! --! --! --! yes!

Koshkina & Breugel +! --! --! --! --! -! --! no!

Yeung +! -! --! -! --! --! --! no!

Ouyang et al. ++! ++! ++! +! --! ++! --! no!

Qian et al. +! --! -! --! --! -! -! yes!

Mateescu & Rampacek ++! --! -! --! --! --! ++! yes!

Foster et al. ++! --! --! -! --! --! --! yes!

Fu et al. ++! --! -! --! --! -! --! yes!

Humbolt-Universität ++! ++! ++! +! --! ++! --! no!

Fisteus et al. ++! --! --! --! --! --! --! no!

Nakajima ++! --! --! --! --! -! --! no!

Bianculli +! -! -! -! --! -! --! no!

Moser et al. ++! --! --! -! --! -! --! no!

Our approach ++! ++! ++! +! +! ++! -! yes!

Legend

SA Simple Activities

FH Fault Handlers

EH Event Handlers

At Atomicity

CL Control Links

Env Environment

VASY 31

Our approach
• Translation from BPEL to LOTOS NT to enable

verification by model checking
• Heavy focus on data and data types

• Collection of 350 examples to identify useful
subsets of each language

• Explanations for every construct left out
(termination handlers, for example)

VASY 32

Overview of the translation
BPEL Process P LOTOS NT Module P

XML Schema declarations

Types: T1…Tt

BPEL Process body

 …
 Expr1
 …
 Expr2
 …

WSDL Definitions
Links: L1…Ll

Operations: O1…Oo

Messages: M1…Mm

XPath

Types T1…Tt

For all i in [1..t]:
 Functions Fi

1…Fi
n

Process

 …
 Expr1
 …
 Expr2
 …
end process

LOTOS NT

Channels: C1…Cl

Types: T1…To

Types: T1…Tm

XML Schema
•  An XML Document is a tree-like structure made of

intermediary nodes with strings as leafs

•  XML Schema express constraints on that structure

VASY 33

<complexType name=“Book”>!
 <sequence>!
 <element name=“title” type=“string” />!
 <element name=“author” type=“string” />!
 <element name=“year” type=“unsignedShort” />!
 </sequence>!
</complexType>!
<element name=“book” type=“Book” />!

<book>!

<title>! <author>!

Ivanhoe 1819!

<year>!

Walter
Scott

<book>!

<title>!

Ivanhoe 1819!

<year>!<author>!

Walter
Scott

Invalid Valid

XML Schema generic solution
•  A first solution would be to encode XML values

with a generic type in LOTOS NT

VASY 34

•  Validation functions would check whether the
tree conforms to an XML Schema Type

•  In terms of efficiency, this solution performs
poorly: execution time + memory consumed

type Node is
 IntermediaryNode (name:String, nodes:NodeList),
 Leaf (content:String)
end type

type NodeList is
 Cons (head:Node, tail:NodeList),
 Nil
end type

XML Schema optimised solution
•  Each XML Schema type is translated by one,

optimised LOTOS NT type

VASY 35

•  More complex translation
•  Yields much more efficient data types

type Book is
 Book (title:String,
 author:String,
 year:unsignedShort)
end type

BPEL exception mechanism
•  Usual operators: <throw>, <catch>,
<recatch>

VASY 36

Execution

throw

1 2 3 •  After branch 2 stops,
where do branch 1 and 3
stop?

•  The BPEL standard is not
explicit enough,
different interpretations
exist

LOTOS NT exceptions mechanism
•  Exceptions can be raised but not caught

(incomplete implementation)
•  Effectively, the raise instruction is an abort

•  disrupt is the only LOTOS NT operator we
can use (but it allows for unwanted cases)

VASY 37

disrupt
 par
 A1;A2 ||
 B
 end par;
 C
by D
end disrupt

throw

0 7 6

4 5

1
2

3
A1

D

D D

D D

D
C,D

B

B B

A1

A2

A2

A2

Use disrupt to simulate throw
• We use stop and synchronisations to
remove unwanted cases

VASY 38

hide F,G:any in
 par F,G in
 disrupt
 par
 A1;F;stop;A2
 ||
 B
 end par;
 C
 by G;D
 end disrupt
 ||
 F;G
 end par
end hide

0

1

2

3 4

A1

A1 B

B i

D

Current state & Conclusion
•  Current state
– Translation algorithm entirely defined and

written down
– Compiler is being implemented

•  Conclusion
– To date, the most complete translation, but

– Not yet tested on a real application

VASY 39

VASY 40

Conclusion (1/2)
• Two contributions to connecting MDE languages to

formal verification toolboxes:
– Generic approach for verifying GALS systems using

process algebras
– An efficient method for verifying BPEL processes (a

compiler is being implemented)

• We tested the limits of MDE-based transformation
tools, which are not suited to complex compilations

Conclusion (1/2)
•  Generic approach for verifying GALS systems

using process algebras:
– any process algebra with parallel composition,

types and functions is suitable
– multiple synchronous languages can be mixed

– illustrated on a complex case-study
•  two different wrappers used

•  two different medium processes used

• had to resort to advanced compositional generation
strategies

• 19 errors found

VASY 41

Conclusion (2/2)
•  Almost complete translation from BPEL to LOTOS NT:
– No other translation covers as many constructs from BPEL

– Translation is formally defined

– Heavy focus on data which are ignored by other
approaches

– Enables formal verification of Web Services with CADP

•  Interesting conclusion regarding MDE
–  From SAM to CADP, transformation chain is fully MDE

–  From BPEL to CADP, MDE tools reached their limit, they do
not scale with the input language complexity

VASY 42

In the future
• Apply our GALS method to other
synchronous languages than SAM (current
collaboration with Airbus)

• Improve some aspects of the BPEL to LOTOS
NT translation (compensation handlers for
example)

• Finish the automated translator from BPEL
to LOTOS

• Find complex BPEL case studies to verify

VASY 43

