
1

Performance Evaluation of MPI Benchmarks on
CC-DSM Multiprocessor Architectures

Meriem ZIDOUNI Ghassan CHEHAIBAR Radu MATEESCU
meriem.zidouni@bull.net ghassan.chehaibar@bull.net radu.mateescu@inria.fr

2-3 April 2008 Model35 INRIA-Paris Rocquencourt

2

Agenda

Introduction
Modeling language: LOTOS
The CADP toolbox
MPI benchmark: ping-pong
LOTOS model of:

– Send & receive primitives
– Interconnection topology
– Cache coherence protocol

Functional verification
Performance evaluation
Conclusion & perspectives

3

Introduction

BULL builds supercomputers for high-performance scientific
computing
Supercomputer =

Hardware architecture + Software interface

High performance supercomputer ⇒
– BULL has to optimize MPI implementation for its servers hardware

architecture
We need a model to evaluate performance and analyze
experimental measures taking into account:

– Cache coherence protocol and architecture topology
– MPI software algorithm

(CC-DSM: Cache Coherent-
Distributed Shared Memory)

(MPI: Message Passing
Interface)

4

MPI Primitives

Introduction: modeling method

Cache coherence
protocol

Interconnection
topology

CC-DSM architecture

Model of Interconnection
topology

Model of MPI
benchmarks

Model of Cache
coherence protocol

Performance

MESI
protocol

Bull
architecture

Latency
(<send;receive>)

Software interface

Benchmarksping-pongSend and receive

5

Modeling language: LOTOS
(Language Of Temporal Ordering Specification)

ISO Standard [ISO-8807:1989]
A Formal Description Technique for the specification of
protocols and distributed systems
Two orthogonal sub-languages:

– Data: abstract data types (ActOne)
− sorts and operations
− algebraic equations

– Processes: process algebras (~CCS, CSP, Circal)
− parallel processes (interleaving semantics)
− message-passing communication

Process = black box able to interact with
other processes (its environment)
and / or perform internal actions

Interaction point, gate

C A process0
BAprocess1

DATA

6

The CADP toolbox
(Construction and Analysis of Distributed Processes)

Developed at INRIA Rhône-Alpes by the VASY team
(http://www.inrialpes.fr/vasy/cadp)
Toolbox for protocol and distributed systems
engineering
CADP tools useful for hardware design:
– Compilers, translators and model generators
– Functional verification:

− Model checking (modal mu-calculus), equivalence checking
(bisimulations)

− Co-simulation (RTL – LOTOS)
– Performance evaluation:

− Functional models enriched with quantitative information (delays).
Performance evaluation based on IMC theory.

7

2 sends and 2 receives in each iteration

Benchmark ping-pong (definition):
Alternated transmission of messages between processes

using send and receive primitives
ping-pong(Pi ,Pj) = <send(Pi → Pj); receive(Pi ← Pj)>n ||| <receive(Pj← Pi); send(Pj → Pi)> n

MPI benchmark: ping-pong

2 processes;
One message exchanged at a time.

msg

msg

msg

P0

Pi

P1 P2

Pj

Pm

P3

msgmsg

msg

msg

P0

Pi

P1 P2

Pj

Pm

P3

msg

Send (Pj) kReceive (Pj) k Receive (Pj) k-1 Send (Pj) k+1

Send (Pi) k Receive (Pi) k Send (Pi) k+1 Receive (Pi) k+1

Performance (ping-pong) = latency of message transfer from Pi to Pj (Pj to Pi)
= T / 2n // n: number of iterations
= latency (< send ; receive >)

k = n
t = T

k = 0
t = 0

8

MPI library: send & receive primitives

The data structures:
– The exchanged message consists of a packet containing the identifier of

the sender processes
– The packets are distributed in 3 types of linked lists:

1. list of available packets
2. list of incoming packets
3. list of free packets

– 3 types of variables: pointer, lock and packet

Send and receive primitives:

Packet
available

Free
packets

Wait for available
packets

Send packet

Packet
received

Wait for a
certain delay

receive
packet

Free
packets

Release
processor

Packet
received

Send Receive

9

LOTOS model of send and receive primitives:
data structures

The data structures :
– Pointers, locks and packets are defined in memory data structure
– Memory structure is managed by LOTOS process (TRANSFER)

type Address is Natural, ID_Processor
sorts Address (*! implementedby ADT_ADDRESS *)
opns
Local_Available_Pkt_Ptr (*! Implementedby
ADT_LOCAL_AVAILABLE_PKT_PTR constructor external *),

Available_Pkt_Ptr (*! … *),
Available_Pkt_Ptr_Lock (*! … *),
Free_Pkt_Head_Ptr (*! … *),
Free_Pkt_Tail_Ptr (*! … *),
Incoming_Pkt_Head_Ptr (*! … *),
Incoming_Pkt_Tail_Ptr (*! … *),
Incoming_Pkt_Ptr_Lock (*! … *),
Pkt_Ptr (*! … *) : ID_Processor -> Address

endtype

ACTION
Memory

TRANSFER

REQUEST_LOCK

pointer
lock

packet

Memory

10

LOTOS model of send and receive primitives:
control structures

Two types of data access: load and store
Control structures:

– Assignment: a := b ⇒ < load(b) ; store(a,val_of_b) >
– Test: if (a == b) ⇒ < load(a); load(b) >
– Loop: while (a != 0) ⇒ process Loop_While [ACTION] : exit :=

ACTION ! a ? val_a ;

([val_a <> 0]-> Loop_While [ACTION]

[]

[val_a == 0]-> exit)

endproc

– Wait: no access to variables

Ping-pong

WAITING

Send (Pj)
>>

Receive (Pj)
>>

Receive (Pi)

Send (Pi)
|||

ACTION

Memory

TRANSFER

REQUEST_LOCK

! Op
! Id_proc
! adr
!? / ?! val

11

Load / Store

Load / Store

Load / Store

Load / Store

Distributed
Shared
Memory

Load / Store

Load / Store

Load / Store

CC-DSM architecture
(Cache Coherent-Distributed Shared Memory)

C2P2

Pn Cn

P0 C0

P1 C1

P3 C3

P4 C4

Pi Ci

12

Bull architecture

Architecture with 3 levels of distance between
processors:

– Intra-node: same node, same module
– Inter-node: different nodes, same module
– Inter-module: different nodes, different modules

Module

Node Controller1Controller0

Intra-Node

Inter-Node

Inter-Module

13

LOTOS model of Bull architecture

P2P3

P0

P1

Intra_Node Inter_Node

Inter_Module
Inter_Node

Inter_Module

Inter_Module

P0 P1 P2 P3

P0 - Intra_Node Inter_Node Inter_Module

P1 Intra_Node - Inter_Node Inter_Module

P2 Inter_Node Inter_Node - Inter_Module

P3 Inter_Module Inter_Module Inter_Module -

Topology [Nb_Proc][Nb_Proc] =

Module

Node Controller1Controller0

Intra-Node

Inter-Node

Inter-ModuleC1 C0

C2

C3

14

MESI cache coherence protocol

States of caches: Modified (M), Exclusive (E), Shared (S) and
Invalid (I)
Transfer type: Memory, Cache, Internal

Load protocol Store protocol

I

S

[Internal]

E
[Memory / Cache]

M

[Internal][Memory]

[Internal]

I

S

[Internal]

E

[Memory / Cache]

M

[Internal]

[Memory / Cache]

SSSI

*E/M/S*E/M/S

IEMI

SSEI

IEII

Cj, j!=rReq CreqCj, j!=rReq Creq

Next stateCurrent state

IMS/EI/S

*M*E/M/

IMMI

IMII/S

Cj, j!=rReq CreqCj, j!=rReq Creq

Next stateCurrent state

15

Update_Cache (Caches,LOAD,adr,ID_Processor)
Update_Cache (Caches,STORE,adr,ID_Processor)

Load protocol →
Store protocol →

LOTOS model of cache coherence protocol

type Cache is Address, ID_Action, ID_Processor
sorts
Cache (*! implementedby ADT_CACHE external *)

opns
Init_Cache (*! implementedby ADT_INIT_CACHE constructor external *):-> Cache
Update_Cache (*! implementedby ADT_UPDATE_CACHE external *):

Cache,ID_Action,Address,ID_Processor -> Cache
endtype

Caches [Size_Memory][Nb_Proc] =

P0 P1 P2 P3

adr2 E I I I

adr3 I I I I

adr1 S I S S

adr0 I I M I

16

Ping-pong model

Software interface

ping-pongSend and receive

CC-DSM architecture

Bull architecture MESI protocol

LOTOS model LOTOS model LOTOS model

Ping-pong TRANSFER

WAITING

Receive (Pi)

>>
Send (Pi)

>>

Receive (Pj)

Send (Pj)

|||
ACTION

REQUEST_LOCK
Memory

Cache

Topology

REQUEST_LOCK ! ...

ACTION ! ...

ACTION ! ...

ACTION ! ...

ACTION ! ...

ACTION ! ...

WAITING ! ...

159,029 states
2,719,74 transitionsPing_pong.bcg =

17

Functional verification: ping-pong behavior

Send(Pi)

Send(Pj)

Receive(Pj)

Receive(Pi)
Expected behavior

Begin send
Begin receive

Obtained behavior

"ping_pong_behaviour.bcg" =
branching reduction of
hide all but SEND,RECEIVE
in "ping_pong.bcg"

Packet
received

Waiting for
certain delay

receive
packet

Free
packets

Release
processor

Packet
received

Packet
available

free
packets

Waiting for
available packets

Send packet

18

Functional verification:
cache coherence protocol & mutual exclusion

Cache coherent protocol
– update of cache state
– transfer types
– transfer levels
– transfer latency

Mutual exclusion

ACTION ! Op ! ID_pro ! Adr ! Val

VERIF ! Op ! ID_pro ! Adr ! Val !
! State_after ! State_before
! tranfer_type
! transfer_level
! latency

library "macros.mcl" end_library
[true*.

(Action_State_Before ('LOAD','0','I','I') and
not Action_State_After('LOAD','0','I','I','E','I','MEMORY'))

] false

library "macros.mcl" end_library
macro MUTEX (id_proc_1,id_proc_2,adr)=

[true*.
Take_Lock (id_proc_1,adr).(not Release_Lock (id_proc_2,adr))*.
Take_Lock (id_proc_2,adr)

] false
end_macro

19

Performance evaluation: access latencies

Module

Node Contr1Contr0

Intra-Node

Inter-Node

Inter-ModuleP0P1

P2 P3

Intra_Node Inter_Node Inter_Module

Internal I_λ1 I_λ2 I_λ3

Cache C_λ1 C_λ2 C_λ3

Memory M_λ1 M_λ2 M_λ3

Latencies for load
and store access

I

S

[Internal]

E

[Memory / Cache]
M

[Internal]

[Memory / Cache]

Load protocol Store protocol

I

S

[Internal]

E
[Memory / Cache]

M

[Internal][Memory]

[Internal]

Transfer type

Transfer level

20

Performance evaluation:
Interactive Markov Chains (IMC)

Defined in H. Hermanns' PhD thesis (LNCS 2428)
It adds stochastic features to process algebra,
still providing:

– sufficient stochastic expressivity
– compatibility with process algebra theory
– useful compositionality results

A

B

C

D
E

0.13

0.22

0.65 B

C

D
E

0.13

0.22

0.65

A

labels = typed data
(messages exchanged)

LTS

labels = real numbers
λ, μ, ν

both types of labels

CTMC IMC

21

Performance evaluation: insertion of Markovian
delays in ping-pong specification

BEGIN_ACTION

END_ACTION

BEGIN_ACTION

LATENCY_VALPROC(i) LATENCY(i)

TRANSFER(M,C,T)

BEGIN_ACTION

END_ACTION

BEGIN_ACTION

LATENCY_VALPROC(i) LATENCY(i)

TRANSFER(M,C,T)

BEGIN_ACTION

END_ACTION

LATENCY_VAL PROC(j)LATENCY(j) |||

BEGIN_ACTION

END_ACTION

LATENCY_VAL

BEGIN_ACTION ! Pi END_ACTION !Pi
LATENCY_VAL !Pi

END_ACTION !Pj

LATENCY_VAL !Pj

BEGIN_ACTION ! Pj

22

"ping_pong.bcg" = generation of "ping_pong.lotos";
"model.bcg” = branching reduction of

hide all BEGIN_ACTION, END_ACTION, REQUEST_LOCK, WAITING
in "ping_pong.bcg";

"markovian_ping_pong.bcg” = branching stochastic reduction of total rename
"DELAY" -> "DELAY; rate 50",
"LATENCY ! Incoming_Pkt_Ptr_Lock[P0] ! M_FSB_1" -> "LOCK; rate 4.46",
"LATENCY ! Incoming_Pkt_Ptr_Lock[P0] ! C_FSB" -> "LOCK; rate 10
...

in "model.bcg";

% bcg_steady -thr -append Rate_Intra_Node.csv markovian_ping_pong.bcg

Performance evaluation:
generation of MC of ping-pong

i

PTR; rate 4.46

LOCK; rate 4.46

PTR; rate 4.46

LOCK; rate 4.46

PKT; rate 4.46

DELAY; rate 50

LOCK; rate 10

markovian_ping_pong.bcg

computes the corresponding
equilibrium ("steady-state")
probability distribution on the
long run using the
Gauss/Seidel algorithm

23

Performance evaluation: results

Throughput (START): START transition frequency evaluated by BCG_STEADY
Latency = 1/(2 * Throughput(START))

Send(Pi)

Send(Pj)

Receive(Pj)

Receive(Pi)

START

Send(Pi)

Send(Pj)

Receive(Pj)

Receive(Pi)

2 variables for each process
Lock-free implementation
with fixed-size buffers

SSSI

*E/M/S*E/M/S

IE MI

SSEI

IEII

Cj, j!=rRes CreqCj, j!=rReq Creq

Next stateCurrent state

SE SMI X X

4.222.799.645.52Inter-module
2.551.695.713.28Inter-node
0.850.652.451Intra-node

Protocol BProtocol AProtocol BProtocol A
Primitives SR2Primitives SR1

Latency (µs)

24

Performance evaluation: results

– Latency = 1/(2 *Throughput (START))
– Throughput (VAR): frequency of transitions corresponding to misses

made on the variable VAR
– Nb_Misses (VAR): number of misses of the variable VAR during the

Latency period

Nb_Misses (VAR)= Latency *Throughput (VAR)

Protocol BProtocol AProtocol BProtocol A

pointerpacketpointerpacketlockpointerpacketlockpointerpacket

847415146784

9

9

7

7

6

6

13

15

15

13

4

4

Primitives SR2

10584

10584

Primitives SR1

Number of misses

Intra_Node

Inter_Module

Inter_Node

25

Conclusion

Performance

Software interface

ping-pongSend and receive

CC-DSM architecture

Bull architecture MESI protocol

Modeling in
LOTOS

Model of Interconnection
topology

Model of MPI
benchmarks

Model of Cache
coherence protocol

LOTOS model of
ping-pong

Functional
verification

Performance
evaluation

True / False

26

Conclusion

Modeling in LOTOS:
– send and receive primitives
– cache coherence protocol
– interconnection topology

Functional verification of the ping-pong model
Performance evaluation of the ping-pong model:

– Consistency of the obtained results
– The obtained results are comforted by the experimental

measures
– Comparison of latencies of 2 MPI primitives in 3 different

topologies and 2 different cache coherency protocols

27

Perspectives

Current work …
– Performance evaluation of barriers primitives

... Ongoing work
– Automation of the proposed method
– Taking into account the different phases of transfers in the

protocol cache coherence model
– Generalization of the method
– ...

