INRIA

RRORNE- AL T

Bulk

Performance Evaluation of MP| Benchmarks on
CC-DSM Multiprocessor Architectures

Meriem ZIDOUNI Ghassan CHEHAIBAR Radu MATEESCU
meriem.zidouni@bull.net ghassan.chehaibar@bull.net radu.mateescu@inria.fr

2-3 April 2008 Model35 INRIA-Paris Rocquencourt

Qgenda

Introduction

Modeling language: LOTOS
The CADP toolbox

MPI| benchmark: ping-pong
LOTOS model of:

Send & receive primitives
Interconnection topology
Cache coherence protocol

Functional verification
Performance evaluation
Conclusion & perspectives

A INRIA

: ZINRIA
Introduction W

BULL builds supercomputers for high-performance scientific
computing
Supercomputer =

Hardware architecture + Software interface

(CC-DSM: Cache Coherent- (MPI: Message Passing
Distributed Shared Memory) Interface)

High performance supercomputer —

BULL has to optimize MPI implementation for its servers hardware
architecture

We need a model to evaluate performance and analyze
experimental measures taking into account:

Cache coherence protocol and architecture topology
MPI software algorithm

Bulk

Introduction: modeling method & = e

CC-DSM architecture

Bull MESI
architecture protocol

“‘/l//

Model of Interconnection
topology

74

W

Model of Cache
coherence protocol

\\’A

Q

0

|

Latency

Software interface

Send and receive ping-pong

.
s

0//

"N
!

Model of MPI
benchmarks

Performance

(<send;receive>) [
l Bulk

Modeling language: LOTOS WiN{gp{,ﬂ
(Language Of Temporal Ordering Specification)

ISO Standard [ISO-8807:1989]
A Formal Description Technique for the specification of
protocols and distributed systems

Two orthogonal sub-languages:
Data: abstract data types (ActOne)
sorts and operations
algebraic equations
Processes: process algebras (~CCS, CSP, Circal)
parallel processes (interleaving semantics)

message-passing communication
Interaction point, gate

/

DATA

\ Process = black box able to interact with
other processes (its environment)
and / or perform internal actions

Bulk

The CADP toolbox W INRIA

(Construction and Analysis of Distributed Processes)

Developed at INRIA Rhone-Alpes by the VASY team
(http://www.inrialpes.fr/ivasy/cadp)

Toolbox for protocol and distributed systems

engineering

CADP tools useful for hardware design:
Compilers, translators and model generators

Functional verification:

Model checking (modal mu-calculus), equivalence checking
(bisimulations)

Co-simulation (RTL — LOTOS)

Performance evaluation:

Functional models enriched with quantitative information (delays).
Performance evaluation based on IMC theory.

Bulk

@ inriA

MPI| benchmark: ping-pong

Benchmark ping-pong (definition):
Alternated transmission of messages between processes
using send and receive primitives
ping-pong(P; ,P;) = <send(P, — P); receive(P, «<- P)>" || <receive(P« P,); send(P, > P)>"

--» Send (P)X —» Receive (P)* —» Send (P)*! —p Receive (P)** --

R SR NN

--%» Receive (P) ¥ Send (P) ¥ —» Receive (P)*! —» Send (P)**! --»
msg
| - A N »
P1> ! e
: P,)

2 processes; k=0 k=n
i t=0 N o t=T

One message exchanged at a time. 2 sends and 2 receives in each iteration

Performance (ping-pong) = latency of message transfer from P; to P; (P; to P;)
=T/2n [/ n: number of iterations
= latency (< send ; receive >)

Bulk

@ inriA

MPI library: send & receive primitives

The data structures:

The exchanged message consists of a packet containing the identifier of
the sender processes

The packets are distributed in 3 types of linked lists:
list of available packets
list of incoming packets
list of free packets

3 types of variables: pointer, lock and packet

Send and receive primitives:
Send Receive

Packet
Packet eceived
available V receive Wait for a
Free packet certain delay
packets /]\ Packet :
N eceived
Wait for available
packets \
Free
Send packet pa\likets
Release
processor B,)

LOTOS model of send and receive primitives: W INRIA
data structures

The data structures :

Pointers, locks and packets are defined in memory data structure
Memory structure is managed by LOTOS process (TRANSFER)

type Address is Natural, ID_Processor
sorts Address (*! implementedby ADT ADDRESS *)

opns
Local_Available_Pkt_Ptr (*! Implementedby Memory
ADT_LOCAL_AVAILABLE_PKT_PTR constructor external *),
Available Pkt Ptr ¢t ., pointer ”
H £ | *
Available_ Pkt Ptr_Lock (*! .. *), lock ,
Free Pkt Head Ptr cr ., .
Free Pkt Tail Ptr cr ., !
Incoming_Pkt_Hegd_Ptr cr o), packet—>
Incoming_Pkt_Tail_Ptr (I . *),
Incoming Pkt Ptr Lock (*! .. *),
Pkt _Ptr (*1 .. *) - ID_Processor -> Address
endtype
ACTION

REQUEST_LOCK

TRANSFER

10

LOTOS model of send and receive primitives: 4l INRIA
control structures

Two types of data access: load and store

Control structures:
Assignment: a := b = < load(b) ; store(a,val_of b) >
Test: if (a == b) = < load(a); load(b) >

Loop: while (a!= 0) = process Loop_While [ACTION] : exit :
ACTION ! a ? val_a ;

([val_a <> 0]-> Loop While [ACTION]
[1
[val_a == 0]-> exit)
endproc

Wait: no access to variables

_ WAITING
Receive (P)) Receive (P))
REQUEST_LOCK
>>
Send (P) Send (P) ACTION
10Op
1'ld_proc

I adr

Ping-pong 12121 val TRANSFER EL_L&

CC-DSM architecture W INRIA
(Cache Coherent-Distributed Shared Memory)

(Pocy]

A

@
Load / Store @

Load / Store
v
Load / Store

/
/ 4 . .
! '/ Distributed < :
' \
" Shared Load / Store
\\ Memory

\

\

\

\\ \

Load / Store
Load / Store @

G Load / Store
(P .
> Bulk

~
———— —

12

Bull architecture

A INRIA

Architecture with 3 levels of distance between

Processors.

Intra-node: same node, same module

Inter-node: different nodes, same module

Inter-module: different nodes, different modules

Module

P

Inter-Node

Node

Intra-Node
<“—>

Controller,

PP

0 0O

Controller,

Inter-Module

P
<

LOTOS model of Bull architecture W" VR

Module
Inter_Module
0 0 alage
Inter-Node
Node Controllerg Controller;
Inter_Module o ede

a ﬁ— _ﬂ A

Py P, P, P
P, - Intra_Node Inter_Node | Inter_Module
P, |Intra_Node - Inter Node | Inter_Module
Topology [Nb_Proc][Nb_Proc] =
P2 Inter_Node Inter_Node - Inter_Module
P, | Inter_Module | Inter_Module | Inter_Module -

Bulk

ZINRIA
MESI cache coherence protocol HinwiA

States of caches: Modified (M), Exclusive (E), Shared (S) and
Invalid (I)
Transfer type: Memory, Cache, Internal

Load protocol Store protocol
Current state Next state
Current state Next state
- jl= - jl=
Req Creq | Cplt=r Req Creq Cp Jt=r Req Crq | Cjil=r Req Cq C, jl=r
[E [
IS [M |
[S S S
IS SIE M |
[E S S
[M M |
[M E [
E/M/ M
E/MIS * E/M/S
[Internal] [Internal] [Internal]
[Memory] [Internal]
[Memory / Cache]

LOTOS model of cache coherence protocol WWM’&

P, P, P, | P,
adry | | | M |
adr, | S | S S
Caches [Size_Memory][Nb_Proc] =
adr, | E | | |
adry || | | |
type Cache is Address, ID_Action, ID_Processor
sorts
Cache (*! implementedby ADT_CACHE external *)
opns
Jnit-Cache-.._. (*! implementedby ADT_INIT_CACHE constructor external *):-> Cache

{_Update_Cache > (*! implementedby ADT_UPDATE CACHE external *):
i Cache, ID_Action,Address, ID_Processor -> Cache

endtype

Load protocol — Update_Cache (Caches,LOAD,adr,ID_Processor)
Store protocol — Update_Cache (Caches,STORE,adr, ID_Processor)

‘Bult

16

Ping-pong model W’N@;ﬂf,ﬂ

CC-DSM architecture Software interface
Bull architecture MESI protocol Send and receive ping-pong
N N N\
N\ N N\
N AN AN
LOTOS model LOTOS model LOTOS model
WAITING
Send (P)) Memory
REQUEST_LOCK
— ACTION Cache
Receive (P;)
Topology
Ping-pong
ACTION ! ... e T S~y -7
C O—WAITING ! .. N ©
: _ S @ 159,029 states
Plng_pong'bcg — ACTION! ... C > i \ Q .o
O 2,719,74 transitions
AcTion!.. > D .

B,
REQUEST_LOCK ! ... E,[___L&

Functional verification: ping-pong behavior

ZiNRIA

AMONE-ALFES

Begin send

Send(P,) Receive(P)

Send(P;)

Expected behavior

Begin receive \/

Receive(P,)

Packet
eceived

""ping_pong_behaviour.bcg"” =
branching reduction of
hide all but SEND,RECEIVE
in "ping_pong.bcg"

free : Yo
packets receive Waiting for
v packet certain delay
Waiting for 4 Packet
available packets %
Send packet N4
Free
" BCG_EDIT jusers/meriem/meriem/|[8|E3| packets
File EJdil Dplivns Help | \l/
£ Release
J processor

D’/(dEC
P R 'F[1]
g |

R
SENDFE[]

Im0]

- |

Obtained behavior

‘Bult

18

Functional verification: WJN&M
cache coherence protocol & mutual exclusion

CaChe COherent prOtOCOI ACTION ! Op ! ID_pro ! Adr ! Val

update of cache state %
transfer types

VERIF ! Op ! ID_pro ! Adr! Val!

tranSfer |eve|S | State_after ! State before
I tranfer_type
transfer latency | ransfer_level
I'latency
library "macros.mcl™ end_library
[true*.
(Action_State Before ("LOAD®,"0","1","1") and
not Action_State After("LOAD","0","1","1","E","1","MEMORY"))
] false

Mutual exclusion

library "macros.mcl"™ end_library
macro MUTEX (id_proc_1,id _proc_2,adr)=
[true*.
Take Lock (id_proc_1,adr).(not Release Lock (id_proc_2,adr))*.
Take Lock (id_proc_2,adr)
] false

d b
ena macro E@&

19

Performance evaluation:

Load protocol

Store protocol

[Internal] [Internal]

Os

[Memory]

[Internal]

[Memory / Cache]

@ inriA

access latencies

Module

......
Inter-Node
Node
Intra-Node
<+

...... _m
HHHH
Inter-Module o~
>

Contrg Contr,

Transfer level —— | |ntra Node Inter Node Inter_Module
Internal | A1 | A2 | A3
Latencies for load
Cache C M C A2 C A3 and store access
Memory \V M A2 M A3

T

Transfer type

Bult

20

Performance evaluation: UJINRIA
Interactive Markov Chains (IMC)

Defined in H. Hermanns' PhD thesis (LNCS 2428)

It adds stochastic features to process algebra,
still providing:

sufficient stochastic expressivity

compatibility with process algebra theory

useful compositionality results

LTS CTMC IMC
A 0.13 A 0.13
B * 0.65 N ‘q O
D I ° 0.65
o, o, O
C 0.22 C 0.22
labels = typed data labels = real numbers both types of labels
(messages exchanged) A M,V

Bult

21

Performance evaluation: insertion of Markovian WIN@&M
delays in ping-pong specification

BEGIN ACTION BEGIN_ACTION
PROC(i) LATENCY_VAL LATENCY()
END_ACTION LATENCY_VAL
BEGIN_ACTION
END_ACTION

TRANSFER(M,C,T)

BEGIN_ACTION BEGIN_ACTION

END_ACTION END_ACTION

BEGIN_ACTION

TRANSFER(M,C,T)
LATENCY_VAL IPi
END_ACTION IPi

>< BEGIN_ACTION ! Pj

BEGIN_ACTION ! Pj END_ACTION !Pj

LATENCY_VAL IPj

22

Performance evaluation: W INRIA
generation of MC of ping-pong

"ping_pong.bcg"™ = generation of "ping_pong.lotos";
"model .bcg” = branching reduction of

hide all BEGIN_ACTION, END ACTION, REQUEST LOCK, WAITING
in "ping_pong.bcg";

"markovian_ping_pong.bcg” = branching stochastic reduction of total rename
"DELAY" -> "DELAY; rate 50",
"LATENCY ! Incoming_ Pkt Ptr_Lock[PO] ! M_FSB 1" -> "LOCK; rate 4.46",
"LATENCY ! Incoming_ Pkt Ptr_Lock[PO] ! C _FSB" -> "LOCK; rate 10

in "model._bcg";

- ~

%{bcg_steadﬁ)—thr -append Rate_ Intra Node.csv markovian_ping_pong.bcg

computes the corresponding
equilibrium ("steady-state")
probability distribution on the
long run using the
Gauss/Seidel algorithm

markovian_ping_pong.bcg

Bulk

23

Performance evaluation: results

Send(P))

@ inriA

Send(Pj)

Send(Pj)

Receive(P;) Receive(P;)

Throughput (START): START transition frequency evaluated by BCG_STEADY
Latency = 1/(2 » Throughput(START))

Latency (us)
Primitives SR1 Primitives SR2
Protocol A Protocol B Protocol A | Protocol B
Intra-node 1 2/45 0.65 \ 0.85
Inter-node 3.28 5.71 1.69 \ 255
Inter-module .02 9.64 2.79 \ 4.22
Current state Next state
Req Cieq G, jl=r Res Cieq Cj, jt=r
' | a | 2 variables for each process
| S S S . ,
| . S . Lock-free implementation
with fixed-size buffers
| M Ks Xs
E/M/S * E/M/S * b,
Bulk

Performance evaluation: results

Latency = 1/(2 *Throughput (START))
Throughput (VAR): frequency of transitions corresponding to misses

made on the variable VAR

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Nb_Misses (VAR): number of misses of the variable VAR during the
Latency period

Nb_ Misses (VAR)= Latency *Throughput (VAR)

Number of misses

Primitives SR1

Primitives SR2

Protocol A Protocol B Protocol A Protocol B
packet Vgintg\ ﬁocR packet Vénter /f)ck\ packet f/ointe}\ packet ?@nte\?\
Intra_Node 4 (8 7 \ 6 (14 (15 \ 4 (7) 4 (8 \
Inter_Node 4 \ 9 7 / 6 \ 15 \ 13 / 4 \ 8 / 5 \ 10 /
mermoaie | 4 [\8 JIN7/] & [\B | /] ¢ [\8 /] 5 | 10/

24

: INRIA
Conclusion RIA

CC-DSM architecture Software interface

Bull architecture MESI protocol Send and receive ping-pong

| v
8\
Modeling in ’\’\‘\

;’ v
Model of Interconnection Model of Cache LOTOS model of Model of MPI
topology cohere'fnce protocol ping-pong benchmarks
“‘ \ * /
Functional
A verification
IR
f True / False
\‘\ *
Performance
evaluation

v

Performance .BUE

26

- ZIINRIA
Conclusion AlINRIA

Modeling in LOTOS:
send and receive primitives
cache coherence protocol
interconnection topology

Functional verification of the ping-pong model

Performance evaluation of the ping-pong model:
Consistency of the obtained results

The obtained results are comforted by the experimental
measures

Comparison of latencies of 2 MPI primitives in 3 different
topologies and 2 different cache coherency protocols

Bulk

27

- B INRIA
Perspectives A INRIA

Current work ...
Performance evaluation of barriers primitives

... Ongoing work
Automation of the proposed method

Taking into account the different phases of transfers in the
protocol cache coherence model

Generalization of the method

