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Abstract. Systems and Networks on Chips (NoCs) are a prime design
focus of many hardware manufacturers. In addition to functional verifica-
tion, which is a difficult necessity, the chip designers are facing extremely
demanding performance prediction challenges, such as the need to esti-
mate the latency of memory accesses over the NoC. This paper attacks
this problem in the setting of designing globally asynchronous, locally
synchronous systems (GALS). We describe foundations and applications
of a combination of compositional modeling, model checking, and Markov
process theory, to arrive at a viable approach to compute performance
quantities directly on industrial, functionally verified GALS models.

1 Introduction and motivation

Systems and networks on chip (NoC) are becoming more complex. Because
mono-clocked designs are reaching their limits, globally asynchronous, locally
synchronous (GALS) designs with multiple locally synchronous clock domains
are prevalent in many hardware design labs. Due to high masking and pro-
duction costs, their functional verification is a major concern, and concurrency
phenomena pose additional challenges for the designers.

A complex NoC may be functionally verified but still not compliant with
its targeted performances. Similar observations are well-known in the networked
distributed systems community [12], but three difficulties characterize the NoC
domain: (i) functionality and performance are much more deeply intertwined,
(ii) prototype costs are prohibitive in the hardware domain, and (iii) isolated
components are not available for physical experimentation or post-design tuning.

Therefore it is imperative to carry out performance evaluation as early as
possible, i.e., on system models before having first prototypes, and even be-
fore having precise descriptions of the architecture. Until now, industrial perfor-
mance evaluation of architectural specifications have been very approximative
and based on back-of-the-envelope (or spreadsheet) calculations and sometimes
rough simulations. This notoriously results in over-dimensioned communication
networks. Therefore, STMicroelectronics is investigating a sound methodology



to integrate performance evaluation and functional verification, which fits into
their established design flow. This paper is a result of these activities.

Of specific interest are performance results concerning system utilization,
latency, and throughput. For instance, one may want to study the utilization of
a FIFO queue, the latency between entry and exit of a shared resource part, or
the throughput of an operation. In this paper, we focus on the study of latencies.
Notice that throughput problems can be seen as latency problems: the average
throughput corresponds to the inverse of the average latency.
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Fig. 1. Example delay

In a GALS design, hardware delays local to a single
synchronous clock domain are discrete and can be pre-
cisely expressed as a number of clock steps. Generalizing
the expression of a delay to a discrete probability dis-
tribution allows one to incorporate cumulative effects
of system parts that are outside the scope of — but
interfering with — the current model (e.g., arbitration
strategies, memory latencies). In this way probabilities
enter the modeling as an abstraction aid, possibly also
to represent drifts between different clock domains. Figure 1 shows an example
distribution, where a delay takes either one, two, or three steps. Modeling delays
in this way, performance measures can be obtained by analyzing the underlying
stochastic process, often a Markov chain (MC).

Due to the inherent complexity of asynchronous designs, existing functional
verification approaches (mostly based on simulation) require long execution
times to ensure sufficient coverage. Therefore formal methods are being applied
to ensure functional correctness and detect errors. STMicroelectronics currently
invests in the use of LOTOS [6] to formally model and validate their designs.

Performance evaluation studies for the same system usually require the devel-
opment of another model. To avoid the cost of two different formal models, and
to allow for joint considerations, we are working on a compositional approach
allowing designers to enrich the available functional models with probabilistic
time information. After first experiments with interactive Markov chains [4] the
architects urged us to develop a synchronous variant with similar properties,
and the result is presented in this paper. In our analysis so far, we are focusing
on studying latencies of network components. As a matter of fact, though the
notion of latency is often used in practical investigations, it turned out to be
difficult to make that notion precise in a probabilistic timed setting. We define
it as a Cesáro limit over the distribution of time elapsing between pairs of events.

In summary, the genuine contributions of this paper are: (i) the formaliza-
tion of latency distributions on Markov chains, (ii) a compositional approach
using a single model for functional verification and performance evaluation in a
probabilistic discrete time setting, and (iii) the illustration of this approach on
an industrial case study.

The remainder of this paper is organized as follows: Section 2 formally defines
latency distributions of MC. Section 3 introduces the model of interactive prob-
abilistic chains (IPCs). Section 4 describes how to extract latency distributions



from an IPC via transformation to a MC. Section 5 reports on an industrial case
study. Section 6 presents related work. Finally, Section 7 presents our conclu-
sions.

2 Latency Distribution of Markov Chains

This section discusses latency distributions for time-homogeneous discrete time
Markov chains (MC). After recalling the definition of an MC, we define the
latency as a random variable denoting the number of time steps to reach a set of
states from another set. Finally, we present how to compute latency distributions.

2.1 Markov Chains and Latencies

Definition 1. A Markov chain is a tuple 〈C, P, ĉ〉 where C is a countable set
of states, P : C × C → [0, 1] is a matrix of transition probabilities that satisfies∑

c′∈C P (c, c′) = 1 for all c ∈ C, and ĉ ∈ C is a unique initial state.

For a given MC M = 〈C, P, ĉ〉, Paths(c) denotes the set of infinite paths starting
in c ∈ C where an infinite path is an infinite sequence σ = c0, c1, c2, . . . satisfying
P (ct, ct+1) > 0 for all t ∈ N. A prefix c0, . . . , cn of an infinite path σ is called
finite path, and in this case we write σ = c0, . . . , cn · ⋆.

For each state c ∈ C, a unique probability measure Prc is induced via the
sigma-algebra generated from the finite prefixes of the paths in Paths(c), by the
cylinder set construction:

Prc{σ ∈ Paths(c) | σ = c0, . . . , ct · ⋆} =
∏

0≤i<t

P (ci, ci+1)

Applying this construction to the initial state ĉ leads to the usual discrete-
time stochastic process X = 〈Xt, t ∈ N〉 associated with M , where the random
variable Xt denotes the state occupied at time t. We write Pr instead of Prĉ,
and use Xc for the stochastic process induced by 〈C, P, c〉, i.e., the MC where
the initial state is c instead of ĉ.

In this work we focus on evaluating the latency of a NoC. To make this notion
precise we identify two sets of states α and ω. The latency then corresponds to
the number of time-steps required to reach a state in ω from a state in α. This
is a time dependent quantity, since it may differ for different start times.

We include the case where α and ω are not disjoint: For a state c ∈ α ∩ ω,
one may imagine two possibilities to define the latency: either as zero or as the
number of steps to reach ω after at least one step. We chose the latter approach,
since the former seems irrelevant in practice: studying latencies is interesting
only for operations incurring a non-zero delay, and it will become apparent in
Sect. 4 that the case α ∩ ω is indeed a relevant one.

The time-dependent latency between states in α and ω will be defined in two
steps: first, we introduce a notion of observation corresponding to the number
time steps required to reach (from the current state) a state in ω. In a second
step, we incorporate the set α. We fix a chain M = 〈C, P, ĉ〉 in the sequel.



Definition 2. Let Ot0(ω) be the random variable describing the number of steps,
starting from time point t0, before the first observation of a state in ω, defined
as Ot0(ω) = min{t | t > 0 ∧ Xt0+t ∈ ω}.

The minimum over an empty set is defined to be ∞, which corresponds to the
situation where a state of ω is never reached from Xt0 . If we consider the above
definition for a different initial state c and thus Xc, we write Oc

t0
(ω).

For each time point t0, we now define the latency to be Ot0(ω) under the
assumption that the chain currently resides in a state of α. In other words, the
latency is defined as the number of time-steps between a state of α (start state)
and a state of ω (stop state).

Definition 3. The time-dependent latency Lt0(α, ω) from α to ω at time point
t0 is Lt0(α, ω) = Ot0(ω) if Xt0 ∈ α and 0 otherwise.

When designing a system it is natural to look for the long-run behavior of the
system, such as to take out the influence of initialization effects. One is thus
usually interested not only in the time-dependent latency, but also in the latency
perceived in the steady state equilibrium, thus the steady-state latency. We use
the Cesáro limit construction to avoid periodicity considerations.

Definition 4. The latency L(α, ω) from α to ω is

L(α, ω) = lim
t→∞

1

t

t∑

t0=0

Lt0(α, ω)

The Cesáro limit always exists for time-homogeneous MCs. The standard steady
state limit limt→∞ Lt(α, ω) may not exist, but agrees with the Cesáro limit if it
does.

2.2 Computing latencies

We now discuss how to calculate the above measures for a given MC 〈C, P, ĉ〉.

Lemma 1. For t ∈ N>0 the distribution of Ot0(ω) is given by

Pr
(
Ot0(ω) = t

)
=

∑

c∈ω

Pr
(
Xt0+t = c ∧ (∀i ∈ {1, . . . , t − 1}) Xt0+i 6∈ ω

)

The probability distribution of the latency Lt0(α, ω) can be derived from the
probability distribution of Ot0(ω). We only consider nonzero time points.

Lemma 2. For all t > 0, the distribution of Lt0(α, ω) is given by:

Pr
(
Lt0(α, ω) = t

)
=

∑

cb∈α

Pr
(
Xt0 = cb | Xt0 ∈ α

)
Pr

(
Ot0(ω) = t | Xt0 = cb

)

=
∑

cb∈α

Pr
(
Xt0 = cb | Xt0 ∈ α

)
Pr

(
Ocb

0 (ω) = t)
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Fig. 2. Example of an MC and extracted sub-chains

The last equality is justified by the fact that in a time-homogeneous MC, each
time point is a renewal point, and thus the probability of Ot0(ω) is independent
from the time t0, if we fix a start state cb. Therefore, we can compute it as
Pr(Ocb

0 (ω) = t). This, in turn, can be computed by considering the sub-chain
consisting of all paths in Paths(cb).

Lemma 3. For each state c ∈ α, we have:

Pr
(
Oc

0(ω) = t
)

=
∑

σ∈Paths(c)

Prc
{

σ

∣∣∣∣
σ = c0, . . . , ct · ⋆ ∧ ct ∈ ω ∧(
∀i ∈ {1, . . . , t − 1}

)
ci 6∈ ω

}

The function associating Pr(Ocb

0 (ω) = t) to each value of t is the distribution of
the time to reach a state in ω given that the initial state is cb ∈ α. For our MC
M , let M c(ω) be the sub-chain spanning of all finite paths of M starting in c
and ending at the first occurrence of a state c′ ∈ ω. By Lemma 3, the probability
to reach an absorbing state of M c(ω) in t time steps equals Pr(Oc

0(ω) = t).

Example 1. For the MC of Fig. 2(a) and sets α = {c0, c2} (depicted as filled
states) and ω = {c0} (depicted with a dashed border), the two sub-chains M c0(ω)
and M c2(ω) are shown in Fig. 2(b).

Now consider L
(
{cb}, ω

)
, the latency if starting in cb ∈ α. Since {cb} is a

singleton, we have by Lemma 2 that Pr
(
L({cb}, ω) = t

)
= Pr(Ocb

0 (ω) = t).
Hence, this latency is time-independent and can be computed by reachability
analysis of the absorbing states of M cb(ω). On the other hand, the probability
of residing in a state cb ∈ α under the assumption that M is in some state in α
is a time-dependent quantity.

Lemma 4. For each state cb ∈ α, we have:

Pr(Xt0 = cb | Xt0 ∈ α) =
Pr(Xt0 = cb)∑
c∈α Pr(Xt0 = c)



The probability distribution of the steady-state latency L(α, ω) (Def. 4) can now
be computed using long-run averages of the states in M (steady-state may not
exist, but if it does, it agrees with long-run average if existing). Let π(c) denote
the long run fraction of time spent in state c ∈ C. In vector-matrix notation,
vector π is the unique probability distribution satisfying πP = π (which always
exists).

Lemma 5.

Pr
(
L(α, ω) = t

)
=

∑

cb∈α

π(cb)∑
c∈α π(c)

Pr
(
L({cb}, ω) = t

)

The factor π(cb)/
∑

c∈α π(c) is a normalization of the steady state probability of
cb over the set of states α. Consequently, the distribution of the latency L(α, ω)
is the sum of the normalized steady state probabilities of states of α, weighted
by the distributions of the latencies starting in the states of α.

Example 2. For the MC chain shown in Fig. 2(a), with α = {c0, c2} (depicted
as filled states) and ω = {c0} (depicted with a
dashed border), the latency distributions com-
puted from the two extracted sub-chains start-
ing in c0 and c2 shown in Fig. 2(b) are shown in
Fig. 3. The distribution of L(α, ω) (hashed bars
on Fig. 3) is the sum of the normalized steady
state probabilities of c0 (9/10) and c2 (1/10)
weighted by those distributions.
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Fig. 3. Latency distributions

3 Compositional Modeling Approach

In this section, we introduce a compositional modeling approach merging func-
tional and timed aspects, using probabilistic discrete-time distributions.

3.1 Interactive Probabilistic Chain

Our aim is to enable performance evaluation by enriching an existing formal
model with timing information, following an approach similar to interactive
Markov chains [4]. For the purpose of this paper, we use a probabilistic process
calculus using the set of actions A (including the internal action τ). We assume
that actions are taken instantaneously, and that every probabilistic choice takes
exactly one time step.

A behavior is described using the following grammar (with A ⊂ A \ {τ}):

B ::= δ | a ; B | •
∑

ipi :: Bi | B1 [ ] B2 | B1 |[ A ]| B2 | hide A in B | B̃

The operators will be referred to as: termination (δ), sequential composition
(;), probabilistic choice ( •

∑
, with the constraint

∑
i pi = 1), non-deterministic

choice ([ ]), LOTOS-style parallel composition with synchronization set (|[ A ]|),
hiding of actions (hide A in · · · ), and process calls. A possibly recursive process

is defined by a rule of the form B̃ = B. We write B to denote the set of all B.



δ
1

=⇒δ a;B
a

−→B a;B
1

=⇒a;B •
P

ipi::Bi

pi=⇒Bi

B1

a
−→B′

1

B1[ ]B2

a
−→B′

1

B2

a
−→B′

2

B1[ ]B2

a
−→B′

2

B1

p1=⇒B′

1
B2

p2=⇒B′

2

B1[ ]B2

p1 p2=⇒ B′

1
[ ]B′

2

B1

a
−→B′

1
a6∈A

B1|[A ]|B2

a
−→B′

1
|[A ]|B2

B2

a
−→B′

2
a6∈A

B1|[A ]|B2

a
−→B1|[A ]|B′

2

B1

a
−→B′

1
B2

a
−→B′

2
a∈A

B1|[A ]|B2

a
−→B′

1
|[A ]|B′

2

B1

p1=⇒B′

1
B2

p2=⇒B′

2

B1|[A ]|B2

p1 p2=⇒ B′

1
|[A ]|B′

2

eB=B B
a

−→B′

eB a
−→B′

eB=B B
p

=⇒B′

eB p
=⇒B′

Fig. 4. Operational semantics of the modeling language

Example 3. Consider the four processes B̃1, B̃2, B̃3, and B̃4, defined over the
set of actions A = {a1, a2, τ} by:

B̃1 = a1 ;B̃2 B̃2 = •
∑0.5 :: B̃3

0.5 :: B̃4
B̃3 = a2 ;B̃1 B̃4 = •

∑0.8 :: B̃3

0.2 ::
(
a1 ; •

∑
1 :: B̃2

)

The semantics of this language is defined in a structured operational semantics
style as a probabilistic extension of a labeled transition system, called Interactive
Probabilistic Chain (IPC).

Definition 5. An IPC is a quintuple D = 〈S,A,−→, =⇒, ŝ〉 where S is a finite
set of states, A is a finite set of actions including the internal action τ , −→⊂
S×A×S is a set of interactive transitions, =⇒⊂ S×]0, 1]×S → N is a multi-set
of probabilistic transitions, and ŝ ∈ S is the initial state.

We write D to denote the set of all IPCs over A.

Definition 6. The operational semantics of a behavior B0 over the set of ac-
tions A is defined as the IPC D = 〈B,A,−→, =⇒, B0〉 where −→ and =⇒ are
defined by the inference rules of Fig. 4.

The third rule expresses the arbitrary waiting property: a process may be
blocked waiting for a synchronization that is arbitrarily long (even infinitely)
while still letting time advance. All these rules are partly inspired by Hansson [3],
and as a whole enforce that time advances synchronously and that it may always
advance.

We also require the property of minimal delay or maximal progress [9]: a
process cannot delay an internal transition. In other words, if we have a proba-
bilistic transition in competition with a τ -transition, the probabilistic transition
incurs a time-step, while the τ -transition is possible immediately and will not
be delayed. So a τ -transition has precedence over any probabilistic transition.
However, this is not integrated into the semantics, but is taken care of by the
bisimulation equivalences we are defining below.

Example 4. The IPC corresponding to Example 3 is shown in Fig. 5(a).
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Fig. 5. Example of an IPC and its associated MC

3.2 Probabilistic Bisimulations

For a regular expression e over A, let s0
e
−→ sn denote that there exists a sequence

of transitions s0
a1−→ . . .

an−→ sn where a1 . . . an is a word in the language over A
defined by e. We define a predicate γ0(s, a, S′) which holds if and only if there is

an s′ ∈ S′ such that s
a

−→ s′. Moreover, we define a function γP : S×2S 7→ [0, 1],
that cumulates the probability of reaching a set of states S′ from a single state
s, by γP (s, S′) =

∑
(n,p)∈M(s,S′) n p, where M(s, S′) is the largest set satisfying

(n′, p′) ∈ M(s, S′) if and only if |{s
p′

=⇒ s′ | s′ ∈ S′}| = n′. We use s 6
τ

−→ to
abbreviate ¬γ0(s, τ,D). Finally, we write D/E to denote the set of equivalence
classes of D with respect to relation E. These ingredients are needed to define
bisimulations along the lines of [8, 5].

Definition 7. Strong probabilistic bisimulation equivalence (∼) is the coarsest
equivalence relation on D such that s1∼s2 implies for all a ∈ A and all C ∈ D/∼:

– γ0(s1, a, C) ⇒ γ0(s2, a, C),

– s1 6
τ

−→ ⇒ ( s2 6
τ

−→ ∧ γP (s1, C) = γP (s2, C) ).

When relating MCs and IPCs, we need to abstract from internal computation.
Thus, we use a weaker notion of equivalence, branching bisimulation, here lifted
to IPC [14, 5].

Definition 8. Branching probabilistic bisimulation equivalence (≈) is the coars-
est equivalence relation on D such that s1 ≈ s2 implies for all a ∈ A and all
C ∈ D/≈:

– γ0(s1, a, C) ⇒
(
(∃s′2) s2

τ∗

−→ s′2 ∧ s1≈s′2 ∧ γ0(s
′
2, a, C)

)
∨ (a, s2) ∈ {τ}×C,

– s1 6
τ

−→ ⇒
(
(∃s′2 6

τ
−→) s2

τ∗

−→ s′2 ∧ s1 ≈ s′2 ∧ γP (s1, C) = γP (s′2, C)
)
.

Strong and branching bisimulation equivalence enjoy all the usual properties of
bisimulation-style relations. In particular, branching probabilistic bisimulation



is a congruence with respect to the parallel composition operator. This is ex-
ploited in our model construction process, where we replace components of a
large system by equivalent, but smaller ones. In addition, strong and branching
bisimulation equivalence preserve the probabilistic behavior, in the sense that
whenever two IPCs s1, s2 are equivalent, then for each resolution of the nonde-
terminism in s1 there is a resolution of the nondeterminism in s2 (and vice versa)
such that the resulting MCs have the same transient and steady-state behavior,
if one only looks at probabilities of the equivalence classes. The relation between
determinized IPC and MC is the topic of the following section.

4 Performance Analysis of a deterministic IPC

In general, an IPC is a non-deterministic object, and non-determinism is an es-
sential aid in building interacting systems from components. The resulting sys-
tem however often shows deterministic behavior modulo branching bisimulation
equivalence. Indeed, abstracting from all functional information (i.e., renaming
them into τ) and minimizing with respect to branching bisimulation equivalence,
always yields a deterministic system, though a very simple one, namely a single
state with a probabilistic transition with probability 1. This is a trivial MC, and,
of course, not very a insightful one. We will describe below how we keep precisely
the information needed. Though this is only a partial solution, we focus in the
analysis on deterministic non-zeno IPCs (dIPCs), and discuss the general case
towards the end of this section.

Definition 9. A deterministic IPC is an IPC 〈S,A,−→, =⇒, ŝ〉 satisfying:

(∀s, s′, s′′ ∈ S, a, a′ ∈ A) (s
a

−→ s′) ∧ (s
a′

−→ s′′) implies (s′ = s′′) ∧ (a = a′)

(∀s, s′ ∈ S, a ∈ A) (s
a

−→ s′) implies (∃s′′, s′′′ ∈ S, w ∈ A∗) s′
w

−→ s′′
p

=⇒ s′′′

The above conditions guarantee that only finite, linear sequences of interactive
transitions appear in a dIPC. When analyzing a complete system, we consider it
closed, not interacting with the environment. Under this assumption, the maxi-
mal progress property generalizes to all actions, and is called urgency [9].

Definition 10. An IPC D = 〈S,A,−→, =⇒, ŝ〉 is said to be urgency-cut iff

(∀s, s′ ∈ S, a ∈ A) s
a

−→ s′ implies (6 ∃s′′ ∈ S) s
p

=⇒ s′′

Example 5. The IPC shown in Fig. 5(a) is deterministic and urgency-cut.

We apply the urgency property by moving from a dIPC to the largest urgency-
cut dIPC contained therein. Transforming the resulting dIPC into an MC must
allow us to keep information about some of the interactive transitions. To this
end, we enrich states of the MC with a word (over A) representing the (possibly
empty) sequence of actions executed since the last time step, i.e., last probabilis-
tic transition. We let ε stand for the empty word, representing two successive
probabilistic transitions.



Definition 11. Let D = 〈S,A,−→, =⇒, ŝ〉 be an urgency-cut dIPC over A.
Let k be the length of the longest sequence of interactive transitions in D. The
associated MC M(D) =

〈
C, P, 〈ŝ, ε〉

〉
is given by:

– C =
{
s ∈ R(D) | (∃s′) s

p
=⇒ s′

}
×A≤k, where R(D) is the set of reachable

states in D, and A≤k = {w |w ∈ A∗ ∧ length(w) ≤ k}.
– P

(
〈s, w〉, 〈s′, w′〉

)
=

∑
{i|(∃s′′)s

pi=⇒s′′
w
′

−→s′}
pi

Notice that the transition probabilities from a state 〈s, w〉 to a state 〈s′, w′〉 are
accumulated from all possibilities to move from IPC state s — after one time
step — to IPC state s′ according to interactive transitions forming the word w′.
The urgency cut ensures that in each state either one can spend time or one can
engage in interactive actions, but not both.

Example 6. Consider the IPC D of Example 4. The associated MC M(D) is
shown in Fig. 5(b) and corresponds to the one of Example 1.

4.1 Computing Latency Distribution for dIPC

For a dIPC D, we define a latency LIPC (start, stop) as the number of time
steps between an action start (beginning of the latency) and stop (end of the
latency). Considering the sets of states where a transition start (respectively
stop) is possible, we can define the latency using the MC M(D) and Def. 4.

Definition 12. Let D = 〈S,A,−→, =⇒, ŝ〉 be a dIPC. The latency between two
actions start, stop ∈ A is defined on the associated MC M(D):

LIPC (start, stop) = L(α, ω)

where α =
{
〈s, w〉 | w = (A′)∗.start.A∗

}
, ω =

{
〈s, w〉 | w = (A′)∗.stop.A∗

}
, and

A′ = A \ {start, stop}.

Notice that, similar to the definitions of Sect. 2, Def. 12 does not consider zero-
latencies, i.e., a start followed by an stop in the same time step. Indeed, for
each state c = 〈s, w〉 of M(D) with w of the form (A′)∗.start.A∗.stop.A∗, we
have c 6∈ ω. However, for each state c′ = 〈s, w〉 of M(D) with w of the form
(A′)∗.stop.A∗.start.A∗, we have c′ ∈ α ∩ ω: this allows to take into account
latencies that follow each other immediately.

Example 7. Consider the dIPC and its associated MC of Fig. 5. We are interested
in the latency between actions a1 and a2. The associated MC with sets α =
{〈s1, a2a1〉, 〈s2, a1〉} and ω = {〈s1, a1a2〉} is identical to the MC of Fig. 2(a)
with sets α and ω respectively depicted as filled states and dashed border states.

The restriction to dIPCs is a partial solution. But that does not mean that
we cannot make use of the non-deterministic language constructs (choice, in-
terleaving parallel composition) in our modeling. In practice, we construct an
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IPC using the non-deterministic constructs to let the system components inter-
act as intended. Once the specification is complete, we identify the start and
stop actions, and regard any other action as τ . We then move to the branching
bisimulation quotient. In many cases this quotient is deterministic. The reason
is that, intuitively, the non-deterministic branches are confluent up to branching
bisimulation. In this case we can proceed with the resulting dIPC as suggested
above. Otherwise, we need to (manually) refine the model, in order to resolve
that non-determinism. This approach to handling nondeterminism via a quotient
construction is akin to the one used in IMC modeling via CTMCs [4].

4.2 Implementation considerations

Following these ideas, we implemented the flow depicted in Fig. 6 to compute
the distribution of a latency between two actions start and stop of a system
consisting of several sub-components.

First, functional models of sub-components of our system are enriched with
delays, modeled as discrete-time probabilistic distributions. The sub-components
are then composed according to the semantic rules given in Sect. 3.1 to get an
IPC (the state space of which is minimized wrt branching bisimulation using the
bcg min tool of the CADP toolbox [2]). Before computing performance results,
we ensure the IPC is deterministic. The associated MC is generated from the
dIPC according to Def. 11.

Thus, an implementable way to compute the distribution of the latency
LIPC (start, stop) is provided by Def. 12 and Lemma 5. For each state cb ∈ α
(where α is defined according to Def. 12): on one hand, the distribution of the
latency L

(
{cb}, α

)
can be obtained by extracting the sub-chain M cb(ω) and com-

puting the distribution of the number of time steps needed to reach an absorbing
state; on the other hand, steady state (actually long-run average) analysis yields
π(cb)/

∑
c∈α π(c). The distribution of the latency LIPC (start, stop) is then com-

puted as the weighted sum given by Lemma 5.
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Fig. 7. xSTream architecture and the model of two parallel streams

5 Case study: the xSTream architecture

In the context of the Multival project [1], we investigated the xSTream architec-
ture. xSTream is a multiprocessor data-flow architecture for high-performance
embedded multimedia streaming applications designed at STMicroelectronics.
xSTream supports stream-oriented programming, where an application performs
several computation steps, called filters, on a stream of data. Each filter is
mapped to a processing element (xPE) (i.e., a processor with some local mem-
ory), communicating over a NoC (xSTNoc). Several filters might be mapped to
a single processing element according to its workload. To absorb traffic bursts,
each processing element is linked to the NoC through buffering hardware queues
for input flows (called pop queues) and for output flows (called push queues).
A flow controller (xFC) manages the different push and pop queues for each
processing element. The xSTream architecture is depicted on Fig. 7(a).

Operations on xSTream queues are blocking: a Push operation (insertion of
an element in a queue) is blocked until there is a free place and a Pop operation
(removal of an element from a queue) is blocked until an element is available.
A queue stores its elements either in its dedicated hardware or in a backlog
(LM) (i.e., the memory of the processing element) — the latter being much less
efficient. Due to xSTream specific operations on these hardware queues, they
are significantly more complex than standard FIFO queues: Each of them has
between 1300 and 2400 states, for a capacity of up to three elements.

We focussed on the interaction between pairs of xSTream queues. Therefore,
we developed a LOTOS [6] model of two parallel streams between two process-
ing elements using two shared queues as an abstraction of the NoC, according
to the virtual channel concept as defined in xSTream. This model is depicted
on Fig. 7(b). This application scenario (two consumer-producer pairs) is not
unrealistic, since xSTream is targeted at streaming applications.



Using the CADP toolbox [2], we analyzed the correct functioning of the
model, highlighting some issues. For example, an under-specification concerning
a credit protocol has been found. This protocol aims to avoid deadlocks in the
NoC and was claimed optional by architects. Analysis of our model showed that
it was mandatory. This protocol ensures that a push queue does not send more
elements than there are free places in the corresponding pop queue. It is based on
counters local to queues and a stream from pop queues to push queues (opposite
to data streams, see Fig. 7(b)) used to update the counters according to a defined
threshold. As this protocol adds communication, it may influence performance.

The LOTOS model is composed of several sub-components: queues, a NoC
abstraction, network interfaces between queues and NoC. Performance evalua-
tion of this kind of system depends on applications running on it. We added
producers and consumers for modeling these applications. The sub-components
have been enriched with delays for insertion and removal of elements in queues
and delays modeling the application.

We focus on the study of the mean latency of a Pop operation, i.e., the mean
time needed to get an element from the pop queue. The study of the distribution
of the Pop operation latency could give us more information concerning bounds
and borderline behaviors. In this case-study, we only consider mean values which
can be (and have been) confirmed by simulation.

The Pop operation latency has a theoretical lower bound corresponding to
the time physically needed to access the pop queue’s head. In the case of an
empty pop queue, the Pop operation is blocked until an element is available. In
a streaming application, the mean duration of a Pop operation should be close
to its minimum value. Indeed, queues are dedicated to absorb traffic variations,
and to hide communication latencies. A mean duration of a Pop operation that
is much greater than its minimum value indicates that pop queues are often in
a starvation context and do not fulfill their task.

Using our prototypical tool-chain, we performed three experiments varying
the applications (production and consumption rates) and the credit protocol
threshold. The first two experiments use the worst possible threshold (i.e., a
threshold equal to the pop queue size): hence the push queue is often blocked (it
has no more credit left). Experiments (a) and (a′) differ in the delay between the
generation and consumption of two packets: Exp. (a) uses the distribution shown
in Fig. 1, whereas Exp. (a′) uses a similar distribution, but with higher mean
value. Experiment (b) differs from Exp. (a) by using a larger pop queue and a
threshold strictly smaller than the pop queue size. For all three experiments, the
delay to insert an element in the pop queue was abstracted by a probabilistic
distribution: insertion of an element took either one time step (insertion in the
queue) or five time steps (insertion in the backlog). Figure 8(a) gives the sizes of
IPCs and MCs, and Fig. 8(b) shows the mean latency of the three experiments
for different probability values to insert in the backlog.

Experiments (a) and (a′) are similar: the throughput of applications has
indeed no real influence on the Pop operation latency. However, using the worst
case for the threshold impacts the Pop latency (its theoretical lower bound is 1.5
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packets every time step on average). Experiment (b) confirms that using a lower
threshold reduces the latency. Finally, for all experiments, we see that the lower
the probability to insert in the backlog, the better the performance.

The results are showing trends that one would indeed expect for a single
pair of queues. But it is not obvious that these trends are actually observed for
a system consisting of two pairs of queues sharing the same virtual channels.
Thus, the results confirm the architectural choices.

6 Related Work

There is a plethora of probabilistic process calculi around in the literature [7],
none of which served our purposes, because we needed a synchronous time model
as in ATP [10], which incorporates probabilistic branching. The calculus is most
inspired by the alternating model of Hansson [3]. For this model a branching
bisimulation has been studied in [13], which is similar in spirit to ours, but can
amalgamate sequences of probabilistic steps. This is not compatible with our
setting where probabilistic steps are time steps.

Our maximal progress and compositionality considerations are akin to those
in IMC [4]. One might consider IPC as the discrete time analogon of IMC, and
indeed we are re-using for IPC the IMC branching bisimulation minimizer of
CADP.

Looking superficially at the example case one may think of (discrete time)
queueing networks and related models as a possible alternative. However, stan-
dard queueing networks are usually too abstract to incorporate the complex
behavior of the circuit. If one indeed invests in extending the queueing network
setting to incorporate this hardware behavior, there seems to be no obvious
advantage over the approach presented by us.



7 Conclusion

The industrial practitioners are asking for new recipes to study the performance
of SoCs and NoCs. In this paper we introduced interactive probabilistic chains
to enable compositional modeling, functional verification, and performance eval-
uation, the latter via a translation into Markov chains. This is a partial solution
approach, because in general the resulting model is a Markov decision process.
We applied this approach to compute latencies in an industrial case study.

Though the theory is solid and prototype tool support is available, a lot
remains to be achieved before the issue of model-based performance evaluation
can be closed. As a concrete future challenge, we need to improve the efficiency of
our prototypical performance evaluation flow, and we plan to apply it to further
examples and performance measures. We are also thinking of combining it with
simulative approaches. It appears possible to extend our analysis approach to the
general IPC setting, because the principal algorithmic building blocks, working
on Markov decision processes, are known [11].
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