
Automatic Distr ibuted Code Generation
from Formal Models of Asynchronous Processes

Interacting by Multiway Rendezvous

Hugues Evrard, Frédéric Lang

Inria
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France

A bst ract

Formal processlanguages inherit ing the concurrency and communicat ion fea-
tures of processalgebras are convenient formalisms to model distr ibuted ap-
plicat ions, especially when they are equipped with formal veri� cat ion tools
(e.g., model checkers) t o help hunt ing for bugs early in the development pro-
cess. However, even start ing from a fully veri� ed formal model, bugsarelikely
to be intr oduced while tr anslat ing (generally by hand) t he concurrent model
� which relies on high-level and expressive communicat ion primit ives� into
the distr ibuted implementat ion � which often relies on low-level communi-
cat ion primit ives. In this paper, we present DLC, a compiler t hat enables
distr ibuted code to begenerated from models writt en in a formal processlan-
guage called LNT, which is equipped with a rich veri� cat ion toolbox named
CADP, and where processes interact by value-passing mult iway rendezvous.
The generated code uses an elaborate protocol to implement r endezvous,
and can be either executed in an autonomous way (i.e., without r equiring
addit ional code to be de�n ed by the user), or connected to external soft -
ware through user-modi� able C funct ions. The protocol i tself is modeled in
LNT and veri� ed using CADP. We present several experiments assessing the
performance of DLC, including the Raft consensus algorithm.

Keywords: Mult iway Rendezvous, Compilat ion, ProcessAlgebras,
Distr ibuted Systems

Email addresses: Hugues.Evrard@inria.fr (Hugues Evrard),
Frederic.Lang@inria.fr (Frédéric Lang)

1. I nt roduct ion

Distr ibuted systems often consist of several concurrent processes, which
interact t o achieve a global goal. Programming concurrent and interact ing
processes is recognized as complex and error-prone. One way to detect bugs
early is to (a) producea model of the system in a language with well -de�n ed
semant ics, and to (b) use formal veri� cat ion methods (e.g., model checking)
to hunt for bugs in themodel. However, formal modelsof distr ibuted systems
must eventually be tr anslated into a distr ibuted implementat ion. If this
tr anslat ion is done by hand then semant ic discrepancies may appear between
the model and the �n al implementat ion, possibly leading to bugs. In order
to avoid such discrepancies, an automat ic tr anslator, i.e., a compiler, can be
used.

Such a compiler t akes a formal model as input and generates a runnable
program, which behaves according to the model semant ics. In the case of
distr ibuted systems, we want t o produce several programs, which can be
executed on dist inct machines, from a single model of a distr ibuted system.
We ident i� ed several challenges related to this kind of compilat ion.

First , formal modelsgenerally rely on concurrency theory operators to ex-
press complex interact ions between processes, whereas implementat ion lan-
guages often o� er only low-level communicat ion primit ives. Hence, the com-
plex interact ions have to be implemented by non-tr ivial protocols buil t upon
the low-level primit ives, which may be hard to master by (even experienced)
programmers. As a brief example, the synchronizat ion of n distr ibuted pro-
cesses may be expressed by a single rendezvous primit ive (high-level), while
it r equires a protocol between the n processes when only message passing
primit ives (low-level) are available. For any process interact ion speci� ed in
the high-level model, the compiler must be able to automat ically instant iate
such protocols in the generated code.

Second, the generated programs should be able to interact with their en-
vironment. Such interact ions areoften abstr acted away in the formal models,
while a real interact ion is required in the �n al implementat ion. For instance,
consider a distr ibuted system where some processdeals with a database. In
the formal model, the database may be abstr acted away by read and write
operat ions. However, we want t he implementat ion of these processes to actu-
ally connect t o an external database which is developed independent ly from

2

the distr ibuted system under study. The compiler should provide a mecha-
nism to de�n e interact ions with the external environment and embed them
in the �n al implementat ion.

Third, the generated implementat ion must t ake bene� t of the distr ibuted
nature of the system to achieve reasonable performances for rapid prototyp-
ing. Performancenot only depends on the speed of each process, but also on
how process interact ion is implemented. Naive implementat ions can lead to
very ine� cient executables, due to unforeseen bott lenecks. For instance, a
compiler implement ing a naive protocol that consists in acquiring a unique
global lock to proceed on process interact ion would be extr emely ine� cient
as processes would most ly waste t ime wait ing for t he lock while they often
could safely execute concurrent ly. An e� cient and decentr alized protocol is
therefore required to enable decent execut ion t imes. Even though the aim
is not t o compete with hand-crafted opt imized implementat ions, a too im-
port ant performance penalty would make the rapid prototyping approach
irrelevant .

In this paper, we consider models writt en in LNT [12], a process lan-
guage with formal semant ics. LNT combines a user-friendly syntax, close
to mainstr eam imperat ive languages, together with communicat ion and con-
currency features inherited from processalgebras, in part icular t he languages
LOTOS [31] and E-LOTOS [32]. Its semant ics are formally de�n ed in terms
of an LTS (Labeled Transition System): the observable events of an LNT
processare actions (possibly parametr ized with data) on gates (which repre-
sent port s of interact ion between processes, and also with the environment) ,
which label the tr ansit ions between states of the process.

LNT models can be formally veri� ed using software tools available in the
CADP1 (Construction and Analysis of Distributed Processes) [26] tool box,
which provides simulat ion, model checking, and test generat ion tools, among
others.

LNT enables a high-level descript ion of nondeterminist ic concurrent pro-
cesses that r un asynchronously (i.e., at independent speeds, as opposed to
synchronous processes driven by a global clock), and that interact by value-
passing rendezvous (or synchronization) on act ions. The value-passing ren-
dezvous mechanism of LNT is expressive and general:

� A rendezvous may involve any number of processes (multiway ren-

1http://cadp.inria.fr

3

dezvous), i.e., it is not r estr icted to binary synchronizat ions. LNT
even features n-among-m synchronizat ion [27], in which a rendezvous
may involve any subset of n processes out of a larger set of m.

� Due to nondeterminism (select statement) , every processmay be ready
for several act ions at t he same t ime. Di� erent r endezvous may thus
involve one or more common processes, in which case we say that t he
rendezvous are con� icting. Therefore, for a rendezvous between pro-
cesses to occur actually, it is not enough that all processes are ready;
they must also all simultaneously agreeto take that r endezvous instead
of con� ict ing ones.

� Processes may exchangedata during therendezvous (value-passing ren-
dezvous). Each data exchange may involve an arbitr ary number of
senders and receivers, and a given process may simultaneously send
and receive di� erent pieces of data during the same rendezvous.

The research problem we tackle here is how to automat ically generate a
distr ibuted implementat ion from an LNT model of a distr ibuted system. To
our knowledge, there does not exist an automat ic distr ibuted code genera-
t ion tool for a formal language that not only features such a general ren-
dezvous mechanism, but is also equipped with powerful veri� cat ion tools.
We intr oduce DLC2 (Distributed LNT Compiler), a new tool that achieves
automat ic generat ion of a distr ibuted implementat ion in C from an LNT
model. We focus on LNT since we think its roots in process algebra o� er
a well -grounded basis for formal study of concurrent systems [22], and be-
cause it is already equipped with the numerous veri� cat ion features of our
team's toolbox CADP, which however st ill l acks distr ibuted rapid prototyp-
ing. Nonetheless, our approach should be relevant t o any language whose
inter-processcommunicat ion and synchronizat ion primit ive is value-passing
mult iway rendezvous. DLC meets the three challenges stated earlier:

� DLC tr ansforms each concurrent process of the distr ibuted system
model into a sequent ial program, and instant iates an elaborate pro-
tocol to handle value-passing mult iway rendezvous. We designed a

2http://hevrard.org/DLC

4

rendezvous protocol that combines ideas from the li terature into an ef-
� cient solut ion, that we formally veri� ed. The generated programs can
run on several dist inct machines.

� Interact ions with the external environment are made possible through
calls to user-de�n ed external procedures. With DLC, the user can
de�n e hook functions that are integrated in the �n al implementat ion
and called upon act ions in the system. Hook funct ions are writt en in
C, and they provide a convenient way to interact with other systems.

� DLC generates programs with reasonable performances, which quali fy
for rapid prototyping. Although generated programs execut ion speed
may not be on par with an implementat ion in a classic programming
language, DLC makes it possible to easily produce a validated proto-
type, which can be deployed and run on a cluster, from a distr ibuted
system modeled and veri� ed using LNT and CADP.

We provide a formal model, writt en in LNT, of the mult iway rendezvous
protocol used by DLC. This model has been veri� ed using CADP, follow-
ing the approach depicted in [20]. The protocol model and its veri� cat ion
approach were developed before the compiler. To obtain the protocol even-
tually used by DLC, we start ed from the protocol proposed by Parrow and
Sjödin [53], and we iterat ively brought several enhancements to make it more
general, in order t o handle LNT synchronizat ions, and also more e� cient , for
bett er performances. At each step of this iterat ion, we relied on our veri� ca-
t ion approach to check that t he protocol remained correct . Hencefort h, we
have a high con�d ence on the protocol correctness.

This paper is str uctured as follows: Sect ion 2 explores related work. Sec-
t ion 3 ill ustr ates how we can model a distr ibuted system in LNT. Sect ion 4
details the mult iway rendezvous protocol, and Sect ion 5 covers how hook
funct ions enable interact ions with the external environment. Sect ion 6 ex-
poses how a distr ibuted implementat ion is automat ically generated. Sec-
t ion 7 presents experimental results, including a non-tr ivial applicat ion, the
Raft [51] consensus algorithm. Sect ion 8 concludes and suggests future work.

2. Relat ed Work

Several programming languages o� er useful primit ives or libraries for in-
teract ion between distant processes, i.e., processes on separate machines con-
nected by a network. The most common mechanisms are: message passing,

5

where processes can send messages to each other, e.g., POSIX sockets in
C, or Erlang buil t -in messaging; and RPC (Remote Procedure Call), where a
processcan invoke a procedure executed by another distant process, e.g, Java
RMI (Remote Method Invocation), or t he � net / rpc� package of the Golang3

standard library. However, we are not aware of a library for popular pro-
gramming languages that would implement LNT-like value-passing mult iway
rendezvous.

Modeling Languages Equipped with both Formal Veri� cation and Code Gen-
eration Tools

The formal study of concurrent processes is a rich � eld of research, and
several formalisms exist t o model such systems. For synchronous models,
where all processes share a unique clock, a good ill ustr at ion is the Esterel
language, which comes with a suite of veri� cat ion tools and compilers [7].

As regards asynchronous systems, i.e., the domain in which lies the lan-
guage LNT, the Topo [42] tool set for LOTOS features code generat ion in
either C or Ada, and enables environment interact ions via LOTOS annota-
t ions. However, the generated implementat ion is sequent ial, and Topo is not
maintained anymore. LOTOSisalso thehistorical formal languageof CADP,
which provides the EXEC/ CÆSAR [28] tool to generate C code with inter-
facefunct ions that must be user-de�n ed. Onceagain, this code is sequent ial,
and our DLC tool builds upon EXEC/ CÆSAR (which also accepts LNT as
input) for generat ing the code corresponding to sequent ial processes. UP-
PAAL [4] provides a framework to operate on networks of t imed automata,
including formal veri� cat ion tools. The associated Times tool [1] generates
C code from UPPAAL models, but t he �n al program is sequent ial.

In the framework of SPIN [30], Promela is a modeling language which
uses channels rather t han mult iway rendezvous for process interact ions. A
Promela to distr ibuted C compiler hasbeen proposed [41], relying on a client-
server approach, st ill the user must explicit ly specify by hand which process
is server or client . More recent ly, a re�n ement calculus to obtain C from
Promela has been presented [59], but t his t ime the generated code is not
distr ibuted.

The Chor [11] language enables programming of distr ibuted systems as
choreographies, and hasveri� cat ion featuresbased on behavorial types. Chor

3Golang is a programming language made public in 2009, seehttps://golang.org

6

adopts a � correct-by-constr uct ion� a pproach, by checking for instance dead-
lock freedom at t he choreography level, and providing automated generat ion
of distr ibuted implementat ions. The Chor authors also study composit ion of
choreographies [46], which is a desirable feature in � correct-by-constr uct ion�
approaches. Another choreographic language with tool support is Scribble4,
which has recent ly been extended to parametr ized protocols in Pabble [48]
and relies on parametr ized session types for veri� cat ion features. St ill, nei-
ther Chor nor Pabble o� er value-passing mult iway rendezvous as a primit ive,
since in these languages, processes interact t hrough message passing.

The BIP framework describes a system in threelayers: Behaviors, Inter-
act ions and Priorit ies. Interact ions between behaviors correspond to value-
passing mult iway synchronizat ions. In addit ion, priorit ies may di� erent iate
interact ions: when several interact ions are possible, the one with highest
priority must occur, preempt ing others (when interact ion have the same pri-
ority, any of them may occur). To our knowledge, BIP veri� cat ion features
are now limited to a deadlock detect ion tool [5], while CADP o� ers several
model checkers [43, 44, 45], equivalence checkers [6], tools for composit ional
veri� cat ion [23, 38, 25], test casegenerat ion [33], performance evaluat ion [14],
and even more5. Nonetheless, a distr ibuted code generat ion tool is available
for BIP [9]; it instant iates a mult iway rendezvous protocol to handle inter-
act ion in a distr ibuted way� the protocol presented in this paper improves
over t he one used in BIP. BIP priorit ies, which is not a buil t -in concept in
LNT, is handled in the rendezvous protocol by requiring a centr alized knowl-
edge to resolves them, thus limit ing the parallel execut ion of the generated
implementat ion.

A recent paper [17] estabishes a formal relat ion between BI(P) (i.e., BIP
without t hepriority layer) and theReo [2] coordinat ion language, thuspaving
the way to interoperabili ty between their t ools. Besides, the Dreams [56]
framework provides a methodology to generate, from Reo programs, dis-
tr ibuted applicat ions running on Java Virt ual Machines.

Both BIP and Reo distr ibuted code generators create a program for each
processpresent in the formal speci� cat ion, and also extr a programs required
to implement interact ionsbetween thespeci� cat ion processes. When running
on a cluster of machines, one must decide how to partition, i.e., dispatch, all

4htt p:// www.scribble.org/
5For an overview of CADP tools, seehttp://cadp.inria.fr/tools.html

7

these programs on the available nodes. This seems to be a non-tr ivial prob-
lem: the BIP distr ibuted code generator requires the end user t o explicitely
provide this part it ion, while speci� c techniques [34] are needed in Reo. The
parallel composit ion operator of LNT provides a, if not opt imal, at least r el-
evant part it ion of the generated programs, such that t he end user does not
have to think about part it ioning.

Distributed Implementation of Multiway Rendezvous
Sincetheprocessinteract ion mechanism isa key challenge in a distr ibuted

system, we also brie� y review protocols that implement t he mult iway ren-
dezvous in a distr ibuted manner. As soon as 1983, works on the distr ibuted
implementat ion of Petr i nets lead to proposit ions [64, 63]. Each tr ansit ion of
a Petr i net can be considered as a rendezvous between its preceding places,
and tr ansit ions are in con� ict when they share common preceding places. To
ensure the mutual exclusion of tr ansit ions in con� ict , a tr ansit ion must lock
a token in each preceding place. There are several approaches to avoid dead-
locks during this locking phase: either elect a winner among tr ansit ions that
lock thesametokens [64], or always lock the tokens in thesameorder [29, 63].

Mult iway rendezvous can be considered as a variat ion of the committ ee
coordinat ion problem, stated by Chandy and Misra [13], where professors
(processes) must schedule committ eemeet ings (rendezvous), with every pro-
fessor being a member of several committ ees. Bagrodia [3] lists classical
solut ions to this problem and presents the event manager algorithm, based
on a token ring approach, which is also explored by Kumar [36].

At t he same period, various studies on the distr ibuted implementat ion
of LOTOS led to several protocol proposals [8, 61, 62, 53], and a protocol
based on ordered broadcast was later designed [65]. In a previous study [20],
we used LNT and CADP to model and verify threeprotocols, and we spot-
ted previously undetected deadlocks, under asynchronous communicat ion hy-
pothesis, in the one designed by Parrow and Sjödin [53]. The current work
is based on a corrected version we suggested and on which we veri� ed the
absence of deadlocks.

Out of the LOTOS context , Pérez et al. [54] presented the � � -core� pro-
tocol, but t he original speci� cat ion contains a bug documented by Katz and
Peled [35]. More recent ly, work on the hardware implementat ion of CSP
programs required the design of a protocol [49], which however imposes a
restr ict ion on the number of processes that can send data during an inter-
act ion. Theoret ical studies on the encoding of interact ions in the � -calculus

8

also refer t o rendezvous implementat ion techniques [47, 55]. All the works
presented in [8, 61, 62, 53, 65, 54] focus on the protocol rather t han on the
compiler implementat ion.

At last , this paper comes after a series of other papers that are direct ly
related with DLC. A � rst paper [20], already ment ioned above, deals with
formal veri� cat ion of rendezvous protocols using CADP. A second paper [21],
of which the current paper is an extended version, presents the implemen-
tat ion of the protocol into the DLC tool. The extension mainly consists of
a new sect ion that provides details about t he mult iway rendezvous protocol,
and an appendix containing the LNT formal model of the protocol. More-
over, the related work sect ion has been enriched, and we present addit ional
experiments to assessperformanceof the generated code. A third paper [19]
demonstr ates the usage of DLC on a pedagogical toy example. Finally, the
PhD thesis of the � rst author [18] (in French) presents a comprehensive de-
script ion of the protocol, i ts veri� cat ion, the DLC tool, and case studies
achieved using DLC.

3. M odeli ng D ist r ibu t ed Syst ems in LN T

LNT provides several levels of abstr act ion and str ucturat ion, namely
modules, types, funct ions, and processes. We consider distr ibuted systems to
be composed of several tasks, which interact with each others. The behaviour
of each task is de�n ed by an LNT processand the interact ions between tasks
are described by parallel composit ion of the corresponding processes, syn-
chronized by value-passing mult iway rendezvous on gates.

We give an informal intr oduct ion to LNT using an example; for a for-
mal and full de�n it ion of LNT syntax and semant ics, see [12]. We model
a simpli � ed version of the leader elect ion phase of the Raft [51] consensus
algorithm, which consists of a set of servers that have to elect a leader among
them. The servers either run correct ly or t hey crash and terminate (as op-
posed to errat ic � Byzant ine� behaviors). Since the leader can crash, several
elect ions may happen as t ime goes by. Time is divided in terms, each server
maintaining a term index, which increases monotonically. A term represents
a logical period of t ime during which at most one leader may emerge from
the group of servers, and it is also possible that no leader is elected during a
term before the next is start ed.

In each term, servers may be in either follower, candidate or leader state.
All servers start as followers, then someof them eventually become candidate

9

after a t imeout. A candidate increases its term index, votes for itself and
asks other servers for t heir vote. A server grants its vote only if its term is
equal to the candidate one and if it has not voted for someone else earlier
in the current t erm. When a candidate has received a majority of votes,
it becomes the leader for t his term. Whenever servers communicate, they
provide their current t erm, and when a server receives a term higher t han
its own, it updates its own term and resigns to the follower state. Moreover,
servers may crash and stop. In the context of Raft , the leader elect ion is
more elaborate, e.g., the leader prevents t imeouts of other servers with a
heart beat mechanism; we do not model these features here for t he sake of
brevity.

Figure 1 ill ustr ates the LNT model of a server. LNT syntax is close
to mainstr eam implementat ion languages, and most code should be under-
standable for someone with a programming background. After init ializat ion,
a server enters its main loop where the nondeterminist ic choice operator
select , reminiscent of D¼kstr a [16], is used to enumerate several possible
behaviors, separated by � [] � . The server will execute one branch of the se-
lect operator, depending on its current state and the possible act ions in the
system.

The observable events of an LNT processare act ions on gates; gates are
declared between the square brackets in the processheader. For instance, a
server indicates that it performs a t imeout or a crash, or announces its lead-
ership with an act ion on either gates TIMEOUT, CRASHor LEADER, respect ively.
Act ions on these threegates are used to make the related events observable
from the environment, they are not used to synchronize servers (any server
can make an act ion on one of these three gates on its own). Servers deal
votes through an abstr acted RPC mechanism: a request for vote is queried
by an act ion on RVOTE(lines 43 and 61), followed by an answer on AVOTE
(lines 54 and 62). Act ions on these two gates will synchronize two servers to
enable communicat ion between them.

A processcan send or receive data using data o� ers on an act ion. Each
data o� er may have one of two forms: either a value-expression (opt ionally
preceded by the symbol � ! �), corresponding to the emission of the corre-
sponding data value; or a variable preceded by the symbol � ?� , correspond-
ing to the recept ion of a data value, which is stored in the variable. For
instance, a server sends its ident i� er and its current t erm when it announces
its leadership on LEADER(line 72) and when a server is requested for vote on
RVOTE, the caller ident i� er is stored in the rpcId variable (line 43) t hat is

10

1 �� Data types
2 type state is follower , candidate, leader end type
3 type abool is array [0 .. 2] of bool end type
4
5 �� Global parameters (constants declared as funct ions)
6 funct ion majority : nat is return 2 end funct ion
7 funct ion maxId : nat is return 3 end funct ion
8 funct ion maxTerm : nat is return 2 end funct ion
9

10 funct ion resign (out state : state , out votedId : abool ,
11 out voteCount : nat , out voted: bool) is
12 state := follower ;
13 votedId := abool(false); (� set all array to false �)
14 voteCount := 0;
15 voted := false
16 end funct ion
17
18 process SERVER [LEADER,CRASH,TIMEOUT,RVOTE,AVOTE: any]
19 (selfId : nat) is
20 var state : state ,
21 selfTerm, voteCount , rpcId , rpcTerm: nat ,
22 votedId : abool ,
23 voted, voteGranted: bool
24 in
25 (� init ializat ion �)
26 selfTerm := 0;
27 eval resign (?state , ?votedId, ?voteCount , ?voted);
28 (� main loop �)
29 while selfTerm < maxTerm loop
30 select (� possible behaviors delimited by " [] " �)
31 (� t imeout , become candidate �)
32 case state in
33 follower | candidate � >
34 TIMEOUT(selfId, selfTerm);
35 selfTerm := selfTerm + 1;
36 votedId [selfId] := true;
37 state := candidate;
38 voteCount := 1;
39 voted := true
40 | leader � > stop (� leader cannot become candidate �)
41 end case
42 [] (� receive vote request �)

43 RVOTE(?rpcId, selfId, ?rpcTerm);
44 if rpcTerm > selfTerm then
45 selfTerm := rpcTerm;
46 eval resign (?state , ?votedId, ?voteCount , ?voted)
47 end if ;
48 if (selfTerm == rpcTerm) and (not (voted)) then
49 voteGranted := true;
50 voted := true
51 else
52 voteGranted := false
53 end if ;
54 AVOTE(selfId, rpcId, selfTerm, voteGranted)
55 [] (� send vote request �)
56 case state in
57 candidate � >
58 rpcId := any nat where rpcId < maxId;
59 (� Don' t send request if rpcId already voted �)
60 if (votedId [rpcId]) then stop end if ;
61 RVOTE(selfId, rpcId, selfTerm);
62 AVOTE(rpcId, selfId , ?rpcTerm, ?voteGranted);
63 if rpcTerm > selfTerm then
64 selfTerm := rpcTerm;
65 eval resign (?state , ?votedId , ?voteCount , ?voted)
66 else
67 votedId [rpcId] := true;
68 if voteGranted then
69 voteCount := voteCount + 1;
70 if voteCount >= majority then
71 state := leader ;
72 LEADER(selfId, selfTerm)
73 end if
74 end if
75 end if
76 | follower | leader � > stop (� do not request vote �)
77 end case
78 [] (� fail stop �)
79 CRASH(selfId, selfTerm); stop (� server halts �)
80 end select
81 end loop
82 end var
83 end process

Figure 1: LNT speci� cat ion of a server for the leader elect ion algorithm.

used later in the answer act ion on AVOTE(line 54). Note that both emission
and recept ion data o� ers may occur mixed on the same gate (see e.g., act ion
AVOTEat line 62), and that a rendezvous may involve an arbitr ary number
of senders and receivers. LNT follows the value-matching semant ics adopted
by process algebras such as LOTOS and CSP, in which a condit ion for a
rendezvous to take place is that t he values taken by the data o� ers match
(similarly to patt ern-matching) during rendezvous.

Figure 2 ill ustr ates a parallel composit ion of servers. The par operator
de�n es which processes must synchronize on which gates. Here for example,
we use n-among-m synchronizat ion to indicate that processes must synchro-
nize by pair (n = 2) on gates RVOTEand AVOTE. Thus, an act ion on one of
these two gates consists of a binary rendezvous of two processes with data

11

par RVOTE # 2, AVOTE # 2 in
SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (0 of nat)

| | SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (1 of nat)
| | SERVER [LEADER, CRASH, TIMEOUT, RVOTE, AVOTE] (2 of nat)
end par

Figure 2: Parallel composit ion of server processes. � #2� indicates that act ions on gates
RVOTEand AVOTEmust involve two processes among the three servers (n-among-m syn-
chronizat ion, where n = 2 and m = 3).

exchange. By default , act ions on other gates only involve one process, i.e.,
they are not synchronized. Although not ill ustr ated here, it is also possible
to indicate, for each process, the list of gates it must synchronize on. To-
gether with n-among-m synchronizat ion and the possibili ty of nest ing par
operators, we can model complex interact ions between an arbitr ary number
of processes. The possible interact ions de�n ed by a parallel composit ion can
be represented internally with synchronization vectors [38] that denote, for
each gate, which tuples of processes must synchronize their act ion. For in-
stance, if we denote by S0, S1 and S2 the threeservers, the synchronizat ion
vectors for gate LEADER(and also CRASHand TIMEOUT) are f S0g, f S1g and
f S2g; the ones for gate RVOTE(and also AVOTE) are f S0; S1g, f S0; S2g and
f S1; S2g. We say that t wo synchronizat ion vectors (and the corresponding
tr ansit ions in a given state) are con� icting if the intersect ion between their
synchronizat ion vectors is not empty (i.e., they have at least one task in
common).

In this example of distr ibuted system, servers represent t ask processes
and possible interact ions between tasks are set by the parallel composit ion.
Before we dig into how we generate a distr ibuted implementat ion from such
a model, we brie� y ill ustr ate how formal veri� cat ions can be applied to it .

LNT semant ics are de�n ed formally in terms of an LTS (Labeled Transi-
tion System). Formally, an LTS is de�n ed as a tuple (S; A; T; s0) where S is
the set of states, s0 the init ial state, A the set of observable events, called
actions, and T � S � A � S the tr ansit ion relat ion between process states,
labeled by act ions. Non-observable (a.k.a. hidden) events can be modeled
using a part icular act ion writt en � . To any LNT processcorresponds an LTS
whose observable act ions consist of the gatename, followed by the exchanged
data values (if any). When building the LTS, each state is buil t from the
vector of variable values and contr ol state of the LNT process. However,
the state contents are dropped once the LTS constr uct ion is complete, and

12

we consider LTSs modulo the str ong bisimulat ion equivalence6 [52], which
allows to merge LTS states which have the same future (e.g., all deadlock
states may be merged into a unique deadlock state). For instance, here is
a small LNT process and its corresponding LTS, where the init ial state is
marked by a black disc:

process foo [A,B,C,D: any] is
var b : bool in

A ;
select

B(?b)
[] C ; b := true ; A
end select ;
D (b)

end var
end process

A

D !tr ue

C

A

B !false

D !false

B !tr ue

The LTS represents the LNT model state space, i.e., all i ts possible ex-
ecut ion paths. Since it may be huge, models are often parametr ized and
parameters are assigned at low values to contr ol the state space explosion.
For instance, the elect ion algorithm is approximated to a smaller state space
by bounding server t erms with a prede�n ed maxTerm.7

The CADP tools can be used to perform formal veri� cat ions, e.g., model
checking, on the LTS representat ion, either on-the-� y or after complete state
spacegenerat ion. For instance, EVALUATOR4 [45] can be used to check the
safety property � there are not t wo leaders in the same term� expressed as
the following MCL (Model Checking Language) [45] formula:

[t rue� . { LEADER ?id1:Nat ?t1:Nat } .
t rue� . { LEADER ?id2:Nat ?t2:Nat where t1 = t2 }] false

This formula states that t heremust not be consecut ive leader announcements
(gate LEADER) for t he same term. Similarly, we can verify other propert ies
such as � if less than a majority of servers have crashed or reach the maxi-
mum term, then a leader can be elected� . The interested reader may take a

6In an LTS (S; A; T; s0), two states s; t 2 S are strongly bisimilar if there exists a
symmetric relat ion R on S � S such that R(s; t) and for each s0; t0 such that R(s0; t0), if
there exists a transit ion (s0; a; s00) 2 T , then there exists a transit ion (t0; a; t00) 2 T such
that R(s00; t00) (t he converse also holds by the symmetry condit ion).

7In Raft , terms are unbounded and over� ow is not addressed; with a t imeout of 150
ms, terms stored on 32 (resp. 64) bits take, in the worst case, more than 20 (resp. 80
billi on) years to over� ow.

13

look at [26] to know more about formal veri� cat ion using CADP, which also
features equivalence checking, simulat ion, and many other t ools.

4. M ult iway Rendezvous Prot ocol

Mult iway rendezvous requires a protocol in order t o be implemented in
a distr ibuted way. This protocol de�n es how tasks, and possibly other aux-
ili ary processes, communicate in order t o decide which act ions are realized
by the system with respect t o the possible rendezvous de�n ed by the parallel
composit ion of tasks. We make the assumpt ion that processes communicate
using asynchronous messages over a reliable network (no message loss), and
that , from a processto another, messages are received in the order t hey are
sent .

Among the protocols of the li terature (see Sect ion 2), we selected the
one designed by Parrow and Sjödin [53] as a basis, since it is extensible
to the general synchronizat ions of LNT, and it r equires few messages to
achieve a rendezvous. In the sequel, we brie� y present t his protocol and
our formal veri� cat ion approach. We then ident ify the o� set synchronization
phenomenon, enhance the protocol in various ways to simpli fy it and make
it more e� cient , and add the autolock opt imizat ion. In order t o keep the
protocol correct in the presenceof both autolock and o� set synchronizat ions,
we also present t he purge mechanism that we have designed.

4.1. Parrow and Sjödin Protocol

Theprotocol designed by Parrow and Sjödin de�n es two kindsof auxili ary
processes: managers conduct r endezvous negot iat ions for t asks, and gates
represent t he gates of the system.8 Each task is associated with a manager,
and each gate is represented by a gate process. Table 1 lists the di� erent
types of messages exchanged between tasks, managers and gates.

We can dist inguish threephases in the protocol:

A nnounce phase When a task is ready on one or more act ions, it sends
these act ions to its manager t hrough a request message. Then, the
manager dispatches these ready announces to all relevant gates, with
ready messages.

8In the original paper [53], managers and gates are called mediators and ports, respec-
t ively.

14

Type Descript ion
request A task sends its possible act ions to its manager
ready A manager forwards possible act ions of its task to a gate
query A gate start s a negot iat ion by sending a lock request t o

the � rst manager of the synchronizat ion vector
lock A manager forwards the lock request t o another manager
yes A manager alert s a gate that t he negot iat ion is successful

commit A manager alert s a manager t hat t he negot iat ion is successful
no A manager alert s a gate that t he negot iat ion has failed

abort A manager alert s a manager t hat t he negot iat ion has failed
con� rm A manager sends to its task which act ion must be realized

Table 1: The nine types of messages in Parrow and Sjödin protocol.

Locking phase When a gate detects that all tasks of its synchronizat ion
vector are ready, it start s a negot iat ion with task managers. A ne-
got iat ion consists in tr ying to lock all managers of the tasks involved
in the synchronizat ion in order t o ensure the exclusion with other po-
tent ially con� ict ing rendezvous. Managers are then similar t o shared
resources between gates, and the protocol uses the classic ordered lock-
ing technique [29] to avoid deadlocks. To enable this technique, all
gates consider t he same order de�n ed on managers. A gate start s a ne-
got iat ion by sending a lock request , using a query message, to the � rst
manager of the synchronizat ion vector. A manager accepts at most
one lock at a t ime, and when it does so, it forwards the lock request
to the next manager of the synchronizat ion vector by sending a lock
message. Managers involved in a synchronizat ion thus form an ordered
chain that is called a lock chain.

Result phase If the last manager of the synchronizat ion vector receives
and accepts the lock request , then the negot iat ion is a success. This
manager sends a yes message to the gate that start ed the negot iat ion,
and a commit message that is forwarded along managers of the syn-
chronizat ion vector, in reverse order of the lock chain. Moreover, each
concerned manager sends a con� rm message to its task, which realizes
the selected act ion accordingly and cont inues its execut ion.

When a negot iat ion succeeds, each manager in the lock chain discards
each of its pending lock requests (if any) by sending a no message to

15

the relevant gate, and an abort message to the manager t hat sent t he
lock request . Like a commit message, an abort message is forwarded
back along locked managersof thefailed negot iat ion, which arereleased
from their lock. A locked manager t hat is released by an abort message
can accept a new or a pending lock request , and can thus part icipate
to another negot iat ion.

We ill ustr ate this protocol on the following example, where the parallel
composit ion imposes that act ions on gates A or B must be synchronized
between tasks T1 and T2, while act ions on gate C can be realized by task
T2 alone. Therefore, the synchronizat ion vector for both A and B is f T1,
T2g, and the synchronizat ion vector for C is f T2g.

process T1 [A, B: any] is
select

A
[] B
end select

end process

process T2 [A, B, C: any] is
select

A
[] B
[] C; B
end select

end process

�� composit ion
par A, B in

T1 [A, B]
| | T2 [A, B, C]
end par

Figure 3 ill ustr ates a possible execut ion of the protocol, where managers
of tasks T1 and T2 are labeled M1 and M2, respect ively. At t he start , task
readinessis signaled with request and ready messages. When gate A detects
that enough tasks are ready for an act ion, it start s a negot iat ion with a
query message. So do gates B and C. The � rst query to reach manager
M1 is the one from gate A; the manager t hen forwards the lock query to
manager M2. Manager M1 also receives a query from gate B, and stores it as
a pending lock request . Meanwhile, manager M2 has successfully negot iated
an act ion on gate C for its task, which is now ready for an act ion on gate B,
solely. Therefore, manager M2 refuses the lock request for gate A received
from manager M1, and sends an abort and a no message accordingly. Upon
recept ion of the abort message, manager M1 releases itself, then accepts and
forwards the pending lock request r elated to gate B. Manager M2 accepts
this lock request and replies to gate B and manager M1 with yes and commit
messages, respect ively. Both managers also send con� rm messages to their
tasks.

A not iceable feature of this protocol is that t he locking scheme requires
only one message per t ask to be locked. For a comparison, the � -core pro-
tocol [54] also relies on an ordered locking of tasks, but gates centr alize lock

16

T 1 M 1 A B C M 2 T 2

request(A ,B) request(A ,B,C)

ready ready

ready ready

readyquery

queryquer y

yes

con� rm(C)

lock(A)

abort

no

request(B)

ready

lock (B)

commit

yescon� rm(B)

con� rm(B)

B B

Figure 3: Illust rat ion of Parrow and Sjödin protocol, the locking phase of an o� set syn-
chronizat ion is bolded. The synchronizat ion vector for both A and B is f T1, T2g and the
synchronizat ion vector for C is f T2g.

requests, hence the locking phase requires two messages per t ask. As ill us-
tr ated in Figure 4, Parrow and Sjödin locking approach is more e� cient .

The ordered locking technique may lead to overload of lower managers,
which are likely to receive more lock requests than others. However, when
a manager receives several lock requests while it is wait ing on a negot ia-
t ion answer, these lock requests correspond to negot iat ions for con� ict ing
rendezvous. Lower managers act as � lters for negot iat ions of con� ict ing ren-
dezvous, by forwarding only one negot iat ion at a t ime to upper managers.
Sinceonly one of these negot iat ions will eventually succeed anyway, the ear-

17

manager manager managertask

gategate

1
2

3
5

64

2 3

41

� -core

task task

Parrow-Sjödin

Figure 4: Parrow and Sjödin locking scheme requires lessmessages than the � -core one.

lier it is selected, thebett er. Therefore, theordered locking technique enables
the early select ion of a negot iat ion among con� ict ing ones, while st ill allow-
ing non-con� ict ing negot iat ions to occur in parallel since they lock di� erent
sets of managers.

O� set Synchronization
This protocol enables a part icular phenomenon that we named o� set syn-

chronization. We expose this phenomenon since it appears in discussions on
the correctnessof the protocol.

In most protocols, when a rendezvous succeeds, then all negot iat ionsdeal-
ing with con� ict ing rendezvous are abort ed because the tasks that part ici-
pated to the successful rendezvous have moved to a new state, whose set of
ready act ions may have changed. However, in Parrow and Sjödin protocol, a
negot iat ion on a con� ict ing rendezvous may st ill succeed if the set of ready
act ions in the new states st ill contain the act ion concerned by the negot ia-
t ion. The synchronizat ion (which is valid) result ing from this negot iat ion is
named o� set synchronization, because there is an o� set of some task state
between the start of the negot iat ion and its ending. An o� set synchroniza-
t ion can be seen as the result of a � short -cutt ing� negot iat ion, in the sense
that t hesuccessful negot iat ion spans over a stateupdateof at least oneof the
involved tasks, whereas in most protocols such state updates systemat ically
invalidate ongoing negot iat ions.

This phenomenon is ill ustr ated in Figure 3, where the bold path from
messages query to lock(B) denotes such a negot iat ion. Gate B start s a nego-
t iat ion by sending a query message to manager M1, in order t o synchronize
both tasks T1 and T2. Meanwhile, manager M2 concludes a negot iat ion for
task T2, which realizes an act ion on gate C (message con� rm(C) sent by
M2 to T2) and reaches a new state � in which it is ready on gate B, again
(message request(B) sent by T2 to M2). Therefore, when the negot iat ion
start ed by gate B reaches manager M2 (message lock(B) sent by M1 to M2),

18

this manager can accept it . Thus, task T2 has updated its state while the
negot iat ion start ed by gateB was ongoing, and thenegot iat ion st ill succeeds:
the result ing rendezvous is an o� set synchronizat ion.

4.2. Protocol Correctness: Systematic Validation Approach

In order t o gain con�d ence in the protocol correctness, we use the formal
approach set up in our previous work [20]. In a nutshell, from the speci� -
cat ion of a distr ibuted system, we automat ically generate the formal model
of the system implementat ion, which includes the rendezvous protocol. In
other words, from an LNT composit ion of tasks interact ing by mult iway ren-
dezvous, we generate an LNT model of the implementat ion, which contains a
model of tasks, managers, gates, and bu� ers for asynchronous message pass-
ing between processes, as ill ustr ated in Appendix A.5. Using CADP, we then
perform threeformal veri� cat ions:

L ivelock det ect ion. We check in the implementat ion model that t he pro-
tocol cannot conduct negot iat ions forever without r eaching a result ,
i.e., there is no in�n ite loop of protocol messages without announces of
a successful act ion.

D eadlock det ect ion. We check in the implementat ion model that t he pro-
tocol cannot get into a sink state before reaching an act ion, if any
act ion is possible with respect t o the speci� cat ion.

Equivalence between speci� cat ion and implement at ion. We check that
the implementat ion model is behaviorally equivalent t o the original
system speci� cat ion, with respect t o an equivalence relat ion that ab-
str acts away the act ions of the protocol. To do so, we use safety equiv-
alence9 [10], the abstr act ion consist ing in turning every act ion of the
protocol into the invisible act ion � . This guarantees that every act ion
sequence of the model can be mimicked by the implementat ion.

9Two LTSs (S1; A1; T1; s(1;0)) and (S2; A2; T2; s(2;0)) are safety equivalent if their exists
a � � :a preorder v on (S1 � S2) [(S2 � S1) such that s(0;1) v s(0;2) and s(0;2) v s(0;1) . A
� � :a preorder is any relat ion that sat is� es the following constraint : if s v t and s is the
source of a (arbit rarily long, possibly null) sequence of t ransit ions labeled by � followed
by a transit ion labeled by a visible act ion a and leading to a state s0, then t is the source
of a similar sequence(of possibly di� erent length, but ended by the same visible act ion a)
that leads to a state t0 such that s0 v t0.

19

We performed these formal veri� cat ions on a test suite made of 1571
systems. Taking into account our knowledge of synchronizat ion protocols,
we wrote 63 tests by hand. These systems aim at pushing the protocol in
its corners, and include intr icate mult iway synchronizat ions of threeor more
tasks. Nevert heless, we have a subject ive vision of possible corner cases for
the protocols, therefore we also generated other t ests in an att empt t o cover
all basic cases. The remaining 1508tests are automat ically generated and
represent parallel composit ion of tasks with two tr ansit ions.

Our veri� cat ion approach may not beas complete as a formal proof of the
protocol, but we underline that our approach led to the detect ion of possible
deadlocks in Parrow and Sjödin protocol, despite that t he correctnessof this
protocol had been proven manually [53]. Later, using the same approach, we
also con� rmed possible deadlocks (already ident i� ed by Katz and Peled [35])
in � -core, which had also been proven manually [54].

Moreover, since our veri� cat ion approach is automated, it allowed us to
perform a systemat ic validat ion of several protocol enhancements. Each t ime
we modi� ed the protocol, we could quickly verify whether t he modi� cat ion
tr iggered bugs in any system of our t est suite. Start ing from the Parrow and
Sjödin protocol model, we thus iterated to obtain the protocol eventually
used in DLC, even before implement ing the compiler.

In the sequel, we informally present our iterat ions from the Parrow and
Sjödin protocol. In Appendix A, we give the LNT formal speci� cat ion of
the result ing protocol, which is the one used in DLC. This LNT speci� cat ion
is also available in the DLC distr ibut ion, since it is the one actually used
for t he protocol formal veri� cat ion with CADP. The LNT speci� cat ion was
validated using our systemat ic validat ion approach. On our t est suite, it
never leads to a livelock or t o a deadlock, and safety equivalence is preserved
between the original system speci� cat ion and the automat ically generated
implementat ion model. We thereby have a good con�d ence in the protocol
correctness.

4.3. Protocol Enhancement

In order t o improve the implementat ions generated by DLC, we enhanced
the protocol. The enhancements are tagged with respect t o their goal: cor-
rectness, simpli � cat ion, expressiveness, or performance. For t he reader inter-
ested in more formal details, we regularly make an explicit r eference to lines
of the LNT model given in Appendix A.

20

Supporting Asynchronous Communications (correctness). In one of our pre-
vious works [20], we showed that t he Parrow and Sjödin protocol can lead to
deadlocks when processes communicate asynchronously. To summarize, the
issue may arise when a gate receives a yes message and removes all ready
announces it has received so far � the idea being that since the negot iat ion
succeeded, ready announces are not valid anymore. However, a task involved
in the negot iat ion may have received a commit message, realized the act ion
and tr ansferred a new ready messagebefore theyes message reaches thegate.
In such a case, the gate erases the task from the set of ready tasks, possibly
leading to a deadlock.

Our solut ion to � x this problem is to separate the ready announces that
are received during a negot iat ion from those that were already there before
the negot iat ion. When the gate receives the negot iat ion result , it updates
the set of ready tasks. If the negot iat ion is successful (message commit), the
gate removes the concerned tasks from the ready set , and then updates the
ready set with ready announces received during the negot iat ion (lines 365�
376). Otherwise, the gate removes the task that sent t he abort message from
the ready set , and st ill update the ready set with ready announces received
during the negot iat ion (lines 378�387).

Merging Task and Manager (simpli� cation). A task and its associated man-
ager are merged into one process, where both task and manager behave as
corout ines. Oncea task has listed its possible act ions, it yields the execut ion
to its manager. The manager conducts negot iat ions, and yields back the ex-
ecut ion to the task oncea negot iat ion succeeded. This modi� cat ion removes
the need for request and con� rm message types.

Reducing Message Types (simpli� cation). Since query and lock messages
have resembling semant ics (i.e., a lock request) , we unite these two types
of messages into a single lock type. Similarly for t he result messages, we
unite yes and commit into a single commit message type, and no and abort
into a single abort message type. Consequent ly, out of the original nine mes-
sage types only four remain, namely ready for announces, lock for locking,
and commit and abort for results (lines 73�80).

Broadcasting Results (performance). To avoid deadlocks, the locking phase
respects the manager order. However, ordered tr ansmission is not r equired
for t he result messages. Therefore, the manager t hat init iates a commit or
abort chain might as well broadcast t his message to all concerned managers

21

(for instance, see lines 510�515 for t he broadcast of commit messages by a
manager). This modi� cat ion does not r educe the total number of messages,
but it avoids a sequence of messages by broadcast ing results in parallel.

Supporting Multiple Synchronization Vectors per Gate (expressiveness). The
Parrow and Sjödin protocol is speci� ed for only one synchronizat ion vector
per gate. We extended the protocol to support several ones, such that all
constr uct ions using the LNT parallel composit ion, in part icular n-among-
m synchronizat ion, can be handled. Prior t o start ing a negot iat ion, a gate
selects any of its synchronizat ion vectors for which all tasks are ready (lines
332�338). In addit ion, thesynchronizat ion vector is included in lock requests,
such that each task knows which other t asks must be locked.

Supporting Internal Actions (expressiveness). A task can perform internal
act ions (tr adit ionally noted � in processalgebras, or i in LNT), on which no
rendezvous can be performed. Internal act ions are decided at t he task level,
with respect t o ongoing negot iat ions: a task can realize an internal act ion
only if it is not current ly locked by a negot iat ion for another act ion on a gate
(lines 550�555). In pract ice, i.e. in the C implementat ion of the protocol, we
let a task� ready for both internal act ions and gate act ions� wait for lock
requests for some t ime, and then proceed to an internal act ion if no lock
request has been received.

Adding Optional Gate Con� rmation (expressiveness). The last t ask of the
lock chain is the one that , if it accepts the lock, makes the synchronizat ion
happen. However, as we will see in Sect ion 5, we somet imes need to decide
at t he gate level whether an act ion happens or not . We add the possibili ty
for a gate to require the negot iat ion con� rmat ion. When the gate wants to
con� rm a negot iat ion, it adds a con� rm � ag to the lock request (lines 355�
356). When the last t ask of the lock chain accepts a lock request with a
con� rm � ag, it forwards the lock message to the gate (lines 502�504), which
must decide whether t o con� rm the negot iat ion or not and then accordingly
broadcast a commit or abort message back to all i nvolved tasks (lines 389�
413). This protocol modi� cat ion lets a gate know when all tasks are locked
but st ill does not consider t he negot iat ion as a successyet .

Supporting Data O� ers (expressiveness). Although data o� ers may seem to
be ort hogonal with the synchronizat ion problem, we actually discovered that

22

a naive handling of o� ers can tr igger deadlocks. Consider t he following sys-
tem:

process T [A: nat] is
select

A (1 of nat)
[] i ; A (2 of nat)
end select

end process

Figure 5 ill ustr ates a possible protocol execut ion. We skip the detailed
descript ion of thestart , in order t o focuson thegatebehavior when it r eceives
theabort message. In theParrow and Sjödin protocol, when thegate receives
an abort message from a task, it considers this task as not r eady anymore
since it has just r efused a lock request . Here however, task T is st ill ready
on gate A, only with an o� er incompat ible with the one proposed for t he
lock request . If gate A had to consider t ask T as unready, the system would
deadlock. Therefore, gate A must st ill consider t ask T as ready, even though
the gate has just r eceived an abort message from the task. To summarize,
when a gate receives an abort message, it should consider t he sending task to
be st ill ready if the task has signaled itself as ready during the negot iat ion.

These possible deadlocks were not discovered by our formal veri� cat ion
approach, but by classical test ing of implementat ionsgenerated by DLC. This
is due to the fact t hat when we generate themodel of the implementat ion, we
cannot t akedata o� ersof theoriginal system into account. However, this lim-
itat ion only concerns the generat ion of the implementat ion model, whereas
the actual implementat ions generated by DLC can handle data o� ers. The
correct ion was taken into account in the formal model (lines 381�382).

4.4. Autolock Optimization

The autolock opt imizat ion is a performance enhancement t hat aims at
reducing the length of negot iat ions.

The locking phase ensures that no task commits to more than one act ion
at a t ime. However, when a task is ready on only one gate, there is no
necessity to lock this task since it will not accept locks from any other gate.
Based on this observat ion, the � -core protocol [54] avoids unnecessary lock
messages (seethe participate message type of � -core).

We intr oduce a similar opt imizat ion that we name autolock: a task that
is ready on only one gate automat ically locks itself and signals it t o the
gate by a ready(locked) message (lines 363�370). The locking phase of a

23

T A

ready(1 of nat)

i
lock(A ,{ T } ,1 of nat)

ready(2 of nat)

abort

Even though it received abor t, gate A considers task T as ready with o� er �2 o f nat �

lock(A ,{ T } ,2 of nat)

commit

A !2

Figure 5: Data o� er handling requires to modify the gate behavior.

subsequent negot iat ion from this gate can safely bypassthe autolocked task,
and therefore requires lessmessages.

We ill ustr ate the autolock opt imizat ion on the following example, where
gate A has a single synchronizat ion vector f T1, T2g as speci� ed by the
parallel composit ion (on the right below):

process T1 [A: any] is
select

A
[] i ; A
end select

end process

process T2 [A: any] is
select

A ; A
[] i ; A
end select

end process

par A in
T1 [A]

| | T2 [A]
end par

Figure 6 ill ustr ates a possible execut ion of the protocol. Init ially, both
tasks are ready on gate A and on the internal act ion i. Task T1 executes
the internal act ion, becomes ready only on gate A and announces it with a
ready(locked) message. At t his point , gate A considers both tasks as ready
and T1 as autolocked. The dott ed arrows indicate the locking phase that

24

would be required in absence of autolock: the lock chain must passthrough
both tasks. Thanks to the autolock, this locking phase is reduced to only
one lock request for T2.

T 1 A T 2

ready ready

i

ready(locked)

lock(A ,{ T 1,T 2})

lock(A ,{ T 1,T 2})

lock(A ,{ T 2})

commit

commit

A A

Figure 6: When T1 is ready only on gate A, it locks itself, and the subsequent locking
phase is reduced.

4.5. Purge Mechanism

As soon as we added the autolock opt imizat ion to the protocol, our sys-
temat ic validat ion approach allowed us to ident ify an error caused by the
combinat ion of autolock and o� set synchronizat ion. We � rst ill ustr ate this
problem, and then present t he purge mechanism that allows to use the au-
tolock opt imizat ion while preserving the protocol correctness.

Figure 7 ill ustr ates the issue on the previous example, with a di� erent
protocol execut ion. Both tasks T1 and T2 send a ready message to gate A,
which start s a negot iat ion by sending a lock message to task T1. Before the
recept ion of this lock message, task T1 realizes an internal act ion, becomes
ready only for an act ion on gate A and sends a ready(locked) message to
gate A. Then, task T1 receives the lock request from gate A, accepts it and
forwards it t o task T2, which accepts the lock request and informs both

25

gate A and task T1 of the negot iat ion success with a commit message: a
� rst r endezvous on gate A between tasks T1 and T2 is achieved. At t his
point , gate A considers task T1 autolocked, since gate A has received the
ready(locked) message after it has sent t he lock request t o task T1. Task T2
becomes ready for only an act ion on gate A, and signals itself as autolocked
to gate A. GateA now considers both tasks autolocked, and concludes that a
second rendezvous on gate A is achieved. However, the speci� cat ion of task
T1 authorizes only one act ion on gate A, therefore this second rendezvous is
invalid for t ask T1.

T 1 A T 2

ready ready

i
lock

ready(locked)

lock

commit

commit

A Aready(locked)

commitcommit

A A

Figure 7: Autolock and o� set synchronizat ion lead to an invalid act ion.

The invalid act ion comes from the fact t hat gate A considers task T1 to
be autolocked although it is not . To avoid such situat ions, we designed the
purge mechanism that enables a task to purge, i.e., to cancel, an autolock
message already sent t o a gate. We describe this mechanism on the previous
example. Figure 8 ill ustr ates an execut ion of the protocol where the purge
is implemented.

The beginning of the execut ion is similar t o before. When task T1 is au-
tolocked but r eceives a lock request from gateA, it knows that gateA start ed

26

T 1 A T 2

ready ready

i
lock(A ,{ T 1,T 2})

ready(locked)

lock(A ,{ T 1,T 2} ,{ T 1})

commit({ T 1})

commit

A Aready(locked)

lock(A ,{ T 1})

abort

Figure 8: The purge mechanism avoids the invalid act ion.

the negot iat ion before receiving the ready(locked) message. In this case, task
T1 adds itself to the new purge � eld of the lock message (lines 495�498),
writt en in bold on Figure 8. This purge � eld is tr ansmitt ed to gate A by
the commit message from task T2. When gate A receives this message, it
purges the ready(locked) message from T1: gate A now considers task T1 as
ready, but not autolocked (see the call to funct ion � update_ purge� a t line
374). Then, task T2 declares itself autolocked to gate A, which start s a new
negot iat ion. Since gate A does not consider T1 as autolocked anymore, the
negot iat ion start s with a lock request t o task T1, which refuses it . Hence-
fort h, the invalid act ion cannot occur, and the execut ion remainscorrect with
respect t o the system speci� cat ion.

4.6. Protocol Complexity
We comparethe complexity of theParrow and Sjödin protocol, � -coreand

the one used in DLC. Table 2 summarizes the number of messages required
to achieve a synchronizat ion between n tasks including k autolocked tasks.
Since the broadcast of messages is generally not much more cost ly in t ime
that t he tr ansmission of a single message, we also give the length of the

27

longest chain of messages sent in sequence during a successful negot iat ion.
As explained below, numbers between brackets represent opt ional messages.

Protocol Total messages Longest sequence

Parrow-Sjödin [53] 5n 2n + 2

� -core [54] 4n � 2k + 2
nX

i = 1

(pi � 1)
if n = k : 2

if n > k : 4 + 2(n � k)

DLC 3n � k [+ 2] 2 + n � k [+ 1]

Table 2: Summary of protocol complexity: total number of messages and length of the
longest sequenceof messages required to synchronizen tasks including k autolocked tasks.
pi represents the number of gates on which task i is ready (pi > 0). For DLC, expressions
between brackets indicate the message overhead when gate con� rmat ion is required.

We brie� y comment on how we computed these message counts:

Parr ow-Sjödin. Each task sends a request message to its manager, which
then sends a ready message to the gate. The lock chain consumes n
messages to reach the last manager, which sends 1 yes message to the
gateand start sa chain of n� 1 commit messages. All i nvolved managers
also send a con� rm message to their t ask. Therefore, 5n messages are
required in total.

The request, ready and con� rm messages can be tr ansferred in parallel,
whereas there exists an order due to causali ty in the tr ansmission of
lock and commit messages. Therefore, the longest sequence consists in
1 request message, 1 ready message, followed by n lock messages and
n� 1 commit messages, plus 1 con� rm message. Theyes message is not
taken into account since it is sent in parallel with a commit message.
Hence, the longest sequence is made of 2n + 2 messages.

� -core. First , each task signals that it is ready to the gate, which then locks
tasks in order. As ill ustr ated in Figure 4, the locking scheme consumes
2 messages per t ask. Autolocked tasks need not t o be locked, so the
locking phase requires 2(n � k) messages, followed by n con� rmat ion
messages broadcasted by the gate to all tasks. At t his point , each task
that was also ready on other gates signals these other gates that it is
not r eady anymore, and waits for t he acknowledgment of these gates:
this disallows o� set synchronizat ions, and requires extr a messages. We

28

denote by pi the number of gates on which task i is ready, and here we
assume pi > 0 since when pi = 0 the task i is not r eady on any gates
and therefore no negot iat ion occurs. When a task realizes an act ion on
a gate, the protocol requires 2 messages for each other gate, for a total
of 2

P n
i = 1(pi � 1) extr a messages. Hence, the � -core protocol needs

4n � 2k + 2
P n

i = 1(pi � 1) messages in total.

When all tasks are autolocked, i.e. n = k, only readinessand con� rma-
t ion messages are exchanged, both in parallel, so the longest sequenceis
made of 2 messages. Otherwise, lock requests areneeded, and each non
autolocked task also consumes extr a messages, sent in parallel, to warn
other gates that it is not r eady anymore. The longest sequence then
amounts to the 2 readiness and con� rmat ion messages, plus 2(n � k)
locks and 2 extr a messages, for a total of 4 + 2(n � k) messages.

D LC. Each task sendsa ready message, followed by (n� k) lock requests, and
then by n commit messages, for a total of 3n � k messages. Moreover,
when the gate requires the con� rmat ion, the extr a lock and commit
messages add 2 messages.

The longest sequence is made of 1 ready message followed by (n � k)
lock requests, and then by 1 commit message, for a total of 2 + n � k
messages. In caseof gate con� rmat ion, 1 extr a lock message is required.

To summarize, our protocol combines the locking phase of Parrow and
Sjödin protocol with the autolock opt imizat ion. The � -core protocol has a
similar opt imizat ion, but includes extr a messages that disable o� set synchro-
nizat ions. Thanks to thepurgemechanism, which isembedded in thepayload
of exist ing messages and does not r equire addit ional messages, our protocol
can use the autolock opt imizat ion in presence of o� set synchronizat ions.

5. I nt eract ion wit h t he Environment

DLC generates standalone programs, which do not r equire user-de�n ed
external code to run. However, the programs generated by DLC are of lim-
ited usage if they cannot perform side e� ect interact ions with their external
environment, such as writ ing data to a � le, or prompt ing a user. Moreover,
the end user may also want t o in�u encewhich act ionsareselected at r unt ime,
for instance to contr ol the server crash rate in the leader elect ion example
of Sect ion 3. To cover t hese cases, we designed a mechanism that permits

29

user-de�n ed external procedures writt en in C, named hook functions, to be
integrated into the �n al implementat ion. Our goal is to make interact ion
with the external environment and contr ol of act ions as easy to program as
possible, while keeping decent performance.

Hook funct ions are tr iggered upon act ions, which are the observable
events of an LNT distr ibuted system. Three kinds of hook funct ions are
intr oduced:

� When gate g is about t o start a negot iat ion, it � rst executes a hook
funct ion named g_pre_negotiation_hook , which returns a boolean
value indicat ing whether t he negot iat ion is wort h being start ed. The
role of this hook is to prevent uselessnegot iat ions for act ions that t he
user would not allow anyway. If the hook replies posit ively, the gate
start s a negot iat ion for which it r equires the con� rmat ion, as discussed
in Sect ion 4.3.

� When a negot iat ion succeeds on a gate g, the gate executes a hook
funct ion named g_post_negotiation_hook , which returns a boolean
value indicat ing whether t he act ion can actually occur. Addit ionally,
this funct ion can be used to feed the system with data taken from the
environment, as we will detail l ater.

� When an act ion occurs, i.e., when the gate program announces a com-
mit t o this act ion, each involved task t executes a local hook funct ion
named t_hook, which can be used for local monitoring.

When a pre-negot iat ion or a post-negot iat ion hook replies false, the gate
program reacts similarly to a negot iat ion failure: it checks whether some
new task messages arr ived, then searches a possible act ion with respect t o
synchronizat ion vectors, and, if one is detected, it calls the pre-negot iat ion
hook and, accordingly, either start s the negot iat ion or not. Thus, a gate
program loops on tr ying to perform an act ion, each t ime randomly selected
among the current ly possible ones.

The threeof the hook funct ions take as argument a str ucture containing
informat ion about t he act ion, including the gate, the merged data o� ers, and
the involved tasks. A gateprogram executes its post-negot iat ion hook before
it checks that all data o� er variables are set . Therefore, the user can use the
post-negot iat ion hook to detect unset variables, assign to them a value from

30

the external environment, and � ag them as set . This enables feeding data
values from the external environment into the system at r unt ime.

We ill ustr ate the usage of hook funct ions on a system with a unique task
logger, which loops on gett ing the data associated to a key in a database and
logging this data, unt il i t r eceives an interrupt ion. The task is speci� ed as
follows:

process logger [GET, LOG, INTERRUPT: any] (key: nat) is
var val : nat in

loop (� get and log data, unt il interrupt ion �)
select

GET(key, ?val) ; LOG(val)
[] INTERRUPT ; stop
end select

end loop
end var
end process

Figures 9, 10, and 11 ill ustr ate various usages of hooks. Figure 9 de-
�n es a hook funct ion logger_hook for t ask logger. This funct ion writes the
data passed on LOG act ions onto the local storage of the machine where
the task program runs. Figure 10 de�n es pre- and post-negot iat ion hook
funct ions for gate GET. There is no mot ivat ion to prevent act ions on gate
GET, so its pre-negot iat ion hook GET_pre_negotiation_hook always re-
turns tr ue. The GET post-negot iat ion hook GET_post_negotiation_hook
retr ieves the key from data o� ers, connects to an external database to fetch
the corresponding value, and then provides this value to the logger t ask
by sett ing the second data o� er variable. At last , Figure 11 de�n es pre-
and post-negot iat ion hooks for gate INTERRUPT. The pre-negot iat ion hook
INTERRUPT_pre_negotiation_hookprevents uselessnegot iat ions if no inter-
rupt ion is detected. The post-negot iat ion hook INTERRUPT_post_negotia-
tion_hook is executed only if thepre-negot iat ion hook gave its authorizat ion
earlier, so it blindly replies tr ue. The gate INTERRUPT ill ustr ates the pur-
pose of pre-negot iat ion hooks: the user knows that an interrupt ion is a rare
event , so he checks it early in the pre-negot iat ion hook to prevent unneces-
sary negot iat ions for INTERRUPT, and thus does not hamper negot iat ions
for GET.

With hooks, theuser can prevent someact ions, but cannot achieveact ions
that would not have been previously allowed by the protocol. Hence, since
hooks can only restr ict t he system behavior, the execut ion path eventually
walked is st ill within the original LNT model semant ics. Nevert heless, users
have to use hook funct ions carefully as prevent ing act ions can obviously

31

void logger_hook(struct action *a) {
switch(a->gate) {
case GATE_GET: break;// no local side effect
case GATE_INTERRUPT: break;// no local side effect
case GATE_LOG:

uint val = a->offers[0].value;
WriteLog(val); // write on task machine local storage
break; }

}

Figure 9: Example of local hook funct ion for task logger .

bool GET_pre_negotiation_hook(struct action *a) {
return True; // no reason to prevent a GET action

}

// post-negotiation hook can feed data into the system
bool GET_post_negotiation_hook(struct action *a) {

uint key = a->offers[0].value; // get key from offer
uint val = DataBase_read(key); // external database call
a->offers[1].value = val; // set the value
a->offers[1].set = True; // mark the value as set
return True; // always allow the action

}

Figure 10: Example of pre-negot iat ion and post-negot iat ion hooks for gate GET.

intr oduce deadlocks.
The possibili ty that t he system deadlocks does not quest ion the safety

propert ies (nothing bad will happen) checked on the model. As regards the
livenesspropert ies (something good will happen), as usual they assume that
the environment will i nteract with the system in a way that t he good things
will e� ect ively happen. For instance, it can be checked that a telecommuni-
cat ion protocol will tr ansfer arr iving data (which is a livenessproperty), but
nothing guarantees that t he environment will enable some data to arr ive. In
this respect , oneshould view thehook condit ions, which are exact ly at t he in-
terfacebetween the system and the environment, as part of the environment
rather t han part of the system. For t he veri� cat ion of hooks themselves, we
invite users to use tr adit ional veri� cat ion methods such as test ing.

32

bool interruption = False; // record interruption detection

// Prevent useless negotiations
bool INTERRUPT_pre_negotiation_hook(struct action *a) {

if (!interruption) { // may be previously detected
interruption = detect_interrupt(); // rarely true

}
return interruption;

}

bool INTERRUPT_post_negotiation_hook(struct action *a) {
interruption = False; // reset interruption flag
return True;

}

Figure 11: Example of pre-negot iat ion and post-negot iat ion hooks for gate INTERRUPT.

6. A ut omat ic Generat ion of D ist r ibu t ed I mplement at ion

Figure 12 gives an overview of DLC architecture. The DLC tool takes
a system speci� cat ion given as an LNT parallel composit ion of tasks as in-
put , opt ionally together with C hook funct ions, and produces a distr ibuted
implementat ion in C.

starterLNT
specification

configinterface

extract info
...||

||

hooks

EXEC/CAESAR

hook.c implem.

DLC
user input

generic lib.

generated lib.

protocol

task

task

task

gate
specinfo

gate

starter

manager

Figure 12: DLC architecture overview.

DLC � rst extr acts informat ion about t he input speci� cat ion and collects
them into a C library named � specinfo� , which is thus automatically gen-
erated for each system compiled by DLC. This library contains for instance
the number of tasks and gates, the synchronizat ion vectors, and the like.

DLC uses the EXEC/ CÆSAR tool of CADP to obtain a sequent ial im-
plementat ion, in C, for each task. A program generated by EXEC/ CÆSAR
is able to list possible act ions from the current state of the task, but cannot
decide which act ion is realized. DLC injects an interfaceinto the C code pro-
duced by EXEC/ CÆSAR in order t o bind the task with the manager logic

33

of the rendezvous protocol, which is responsible of conduct ing negot iat ions
to determine which act ion should be realized. Moreover, each task is linked
with the specinfo library in order t o have access to the system informat ion,
such as synchronizat ion vectors.

DLC produces a gate processfor each gate of the system. The gate logic
is implemented in a generic module, whose behavior is con� gured to match
a gate of the current system thanks to informat ion of the specinfo library.

Moreover, both tasks and gates use the � network� library of CADP (not
represented in Figure12) for communicat ion between distant processes. This
library is buil t upon TCP sockets, and thus sat is� es the reliable and ordered
communicat ion hypothesis required for t he protocol (as was shown in [40]).
In addit ion, the network library provides a integrated deployment service
through a � start er� program that is able to automat ically distr ibute and
start other programs on a cluster of machines. The start er program is con-
� gured with a simple text � le (named � con� g� on Figure 12) t hat lists the
names of machines available for deployement. The con� gurat ion � le can be
writt en by hand or generated by other scripts, thus making automat ic clus-
ter deployment easy. By default , DLC produces a con� gurat ion � le where
all tasks and gates run on the local host .

The user can de�n e hook funct ions for t asks and gates in C source � les,
named task .taskhook.c and gate .gatehook.c . DLC automat ically de-
tects the presence of these � les and embeds them into the generated imple-
mentat ion. DLC also provides a hook template creator, which can be used to
obtain hook funct ions with empty bodies for any task or gate of the system.

In terms of program size, the code generator part of DLC is made of
more than 1600 lines of C, and the runt ime of generated implementat ions
(i.e., mainly the protocol logic) represents more than 2000lines of C. The
amount of C code generated depends on the system given as input . For
instance, on the Raft example of Sect ion 7.3, DLC generates 2302lines of C
code for each server, and 84 lines of C code for t he synchronizat ion vector
library.

Nondeterminism and Fairness in the Generated Implementation
If the input speci� cat ion is nondeterminist ic, then the distr ibuted imple-

mentat ion generated by DLC is also nondeterminist ic. The main source of
nondeterminism is the variable delay of messages exchanged between pro-
grams. When several negot iat ions are concurrent ly start ed for con� ict ing
rendezvous, the � rst negot iat ion that locks all tasks will succeed: this de-

34

pends on the communicat ion delay to tr ansfer lock messages to tasks. If
such delays are variable, then any of the start ed negot iat ions has a chance
to succeed.

However, this is not enough to give a chanceto all possible act ions: when
a gate receives enough ready messages to enable several synchronizat ion vec-
tors, if the gate always chooses to start a negot iat ion for t he same synchro-
nizat ion vector among the enabled ones, then act ions corresponding to other
enabled synchronizat ion vectors have no chanceto happen. In order t o avoid
such a restr ict ion of nondeterminism, a gate randomly chooses a synchroniza-
t ion vector (t o start a negot iat ion for) among the enabled ones. Thus, when
a gate detects several synchronizat ion vectors enabled at t he same t ime, a
negot iat ion may be start ed for any of the enabled synchronizat ion vectors.

Since a negot iat ion may be start ed for any enabled synchronizat ion vec-
tor, and that all start ed negot iat ions have a chance to succeed, all possible
act ions of the system may be realized. Hence, the generated implementat ion
keeps the same level of nondeterminism as the original speci� cat ion. This
is actually checked in the protocol veri� cat ion method (discussed in Sec-
t ion 4.2): since the model of the implementat ion is at least safety-equivalent
with theoriginal speci� cat ion, all act ionspossible in theoriginal speci� cat ion
are reachable by the implementat ion.

A slight ly more involved quest ion is whether all con� ict ing rendezvous
have the same probabili ty of being executed by the implementat ion. We
believe that it is not t he case. Indeed, if ready messages are sent by a task
to the ready gates always in the same order, then it is likely that t he gate
that is contacted � rst will achieve its rendezvous slight ly more often than
the next gates, because of the high probabili ty that it will receive the ready
message before its con� ict ing gates and will be the � rst t o lock all tasks in
its lock chain. This can easily be solved by choosing randomly the order
in which gates are contacted by a task, but t he complexity of the locking
mechanism let us think that several other parameters can have an impact
on the distr ibut ion of execut ion probabili t ies between con� ict ing rendezvous,
such as the length of the respect ive lock chains, the order of tasks in lock
chains, and the relat ive posit ions in the lock chains of those tasks that are
in the intersect ion of the con� ict ing synchronizat ion vectors. In the future,
it would be interest ing to study formally this aspect , for instance using the
quant itat ive analysis tools available in CADP [14] after adding quant itat ive
annotat ions in the LNT model. Such a study requires to have a realist ic
quant itat ive model of communicat ion delays, which itself may depend on

35

several parameters, but we believe that r easonable asumpt ions can be made,
which would help to improve the fairnessof the implementat ions generated
by DLC.

Bootstrapping and Rendezvous Protocol Implementation
We do not have an LNT formal model of the whole DLC compiler, but it

is in itself a collect ion of code generat ion procedures, which are sequent ial.
We focused our e� ort on the formal speci� cat ion and veri� cat ion of the ren-
dezvous protocol, which is at t he heart of each distr ibuted implementat ion
generated by DLC.

Given that DLC is able to generate the LNT model of an implementat ion
for veri� cat ion purposes (see Sect ion 4.2), we can think of a bootstr apping
approach that consists in using EXEC/ CÆSAR on this LNT model to even-
tually obtain a C implementat ion. However, this is current ly impract ical, es-
sent ially because the veri� cat ion branch of DLC is limited to systems where
rendezvous have no data exchange (whereas the implementat ion branch of
DLC does support value-passing rendezvous). Therefore, weimplemented the
protocol by hand, str ict ly following the LNT speci� cat ion for t he synchro-
nizat ion logic. The hand-writ ing approach allowed us to direct ly integrate
data o� ers and hook funct ions support , with minimal performanceoverhead.

The protocol implementat ion consists of two modules for t he protocol
logic of tasks and gates. These modules are writt en onceand for all, and are
subsequent ly reused in generated implementat ions, where their behavior is
tailored to the current system through informat ion from the specinfo library.
The isolat ion of theprotocol core logic in generic modules eases itsdebugging
and maintenance, and raises the level of tr ust we have in its correctness.

As a comparison, the approach used to generate a distr ibuted implemen-
tat ion in BIP is closer t o the bootstr apping approach ment ioned earlier: the
protocol logic is insert ed at t heBIP level, to obtain a BIP speci� cat ion where
processes interact only by sending and receiving messages. Then, this model
is compiled to a plat form that provides message-passing primit ives. This is a
valid correct-by-constr uct ion approach when the equivalence of BIP models
before and after protocol insert ion can be demonstr ated; however, the proof
does not concern the protocol actually used in the implementat ion (namely
� -core), but simpli � ed protocols, which do not enforce progress, i.e., do not
guaranteethat possible rendezvous will eventually happen (seethediscussion
on � interoperabili ty of reservat ion protocols� in Sect ion 6 of [57]). Progress
is checked in our approach using livelock and deadlock detect ion.

36

Current Limitations
We brie� y list t he main current limitat ions of DLC:

� DLC can handle data o� ers in rendezvous for simple types which val-
ues can � t on a 32-bit C integer, but it cannot handle data o� ers for
more complex types such as arrays and lists. Complex types can be
used in the speci� cat ion, but t hey must not appear in rendezvous data
o� ers, otherwise DLC emits an error during compilat ion. The support
of complex types needs serializat ion and deserializat ion primit ives for
any user-de�n ed type. We consider t hat such primit ives should be gen-
erated by CADP tools which have the contr ol on the C implementat ion
of these types; we thus left complex type support for future work.

� DLC considers that t he number of tasks is a constant de�n ed by the
(stat ic) parallel composit ion of the input systems. In part icular, a
task cannot dynamically create other t asks at r unt ime. Although the
dynamic creat ion of tasks is an interest ing feature, it r equires substan-
t ial modi� cat ions of the EXEC/ CÆSAR tool, such that t he generated
C implementat ion of a task could fork itself into several tasks, which
could be deployed at r unt ime. Moreover, the protocol would also need
to modify the synchronizat ion vectors at r unt ime, to take new tasks
into account. For t he moment, dynamic creat ion of tasks can be sim-
ulated in the speci� cat ion by declaring a stat ic pool of tasks, and by
act ivat ing some tasks among thispool using speci� c act ionsat r unt ime.

� LNT allows guarded actions, i.e., act ions which are authorized only if
a condit ion, which may depend on a value received during the act ion,
is veri� ed. For instance, the following LNT code speci� es an act ion on
gate A that can be realized only if the value received in variable x is
greater t han the value stored in variable y:

A (?x) where x > y

DLC doesnot handleguarded act ionsyet becauseEXEC/ CÆSAR does
not give accessto the guard condit ion. To support guarded act ions, we
need to modify EXEC/ CÆSAR; this is left for future work.

7. Exper iment al Result s

We conducted several experiments to evaluate the implementat ions gen-
erated by DLC. The � rst t wo experiments focus on the evalutat ion of the

37

mult iway rendezvous protocol. The last experiment is a case study on the
Raft consensus algorithm. These experiments are performed on clusters pro-
vided by thedistr ibuted comput ing testbed Grid'500010. Measures may have
been impacted by other experiments of other researchers running at t hesame
t ime.

7.1. Distributed Synchronization Barr ier
This experiment evaluates the rendezvous protocol on a system with non-

con� ict ing mult iway rendezvous between a various number of tasks. The
system is a classical distr ibuted synchronizat ion barr ier between several de-
terminist ic processes. We measure the t ime required for distant processes to
synchronize themselves several t imes on a barr ier.

Implement ing adistr ibuted barr ier in LNT isdirect ly achieved by a mult i-
way rendezvous between all workers on a singlegate, asdepicted in Figure13.
In order t o compare the performances of the implementat ion generated by
DLC with other possible solut ions, we also implemented this system in C,
Java and Erlang, using respect ively sockets, Java RMI (Remote Method In-
vocation) and Erlang's buil t -in message passing as communicat ion primit ive
between processes. Since these languages do not o� er mult iway rendezvous,
we fall back on the classical implementat ion of a distr ibuted barr ier. For
instance, Figure 14 ill ustr ates the Java implementat ion: a dist inct barr ier
process blocks workers unt il they have all i nvoked the SYNC method, and
then let t hem cont inue. C and Erlang implementat ions follow the same idea,
using message passing between workers and the barr ier process.

1 process WORKER [SYNC: none] is
2 var n : nat in
3 for n := 0 while n < 1000 by n := n + 1 loop
4 SYNC
5 end loop
6 end var
7 end process
8

9 �� Parallel composit ion: 5 workers
10 par SYNC in
11 WORKER [SYNC]
12 | | WORKER [SYNC]
13 | | WORKER [SYNC]
14 | | WORKER [SYNC]
15 | | WORKER [SYNC]
16 end par

Figure 13: Implementat ion of a synchronizat ion barr ier in LNT: all worker processes
synchronizes with a mult iway rendezvous on gate SYNC.

Figure 15 ill ustr ates the t ime required to perform a thousand synchro-
nizat ions between several processes which are deployed on dist inct machines.
We observe that t he implementat ions generated by DLC are slower t han the

10http://www.grid5000.fr

38

1 public class Barrier implements BarrierInterface {
2 private stat ic int c = 0;
3 private � nal stat ic Object lock = new Object() ;
4 private stat ic int nb_ worker = 5;
5
6 public void SYNC() {
7 synchronized (lock) {
8 c++ ;
9 if (c == nb_ worker) {

10 c = 0;
11 lock . not ifyAll () ;
12 } else {
13 lock . wait () ;
14 }
15 }
16 }

17 // main method: create RMI regist ry , register method SYNC
18 }
19
20 public class Worker {
21 public stat ic void main(String [] args) {
22 // Retrieve RMI regist ry from host given as argument
23 Registry regist ry = LocateRegistry. getRegistry (args [0]);
24 // Get barrier stub
25 BarrierInterface stub = (BarrierInterface) regist ry . lookup("SYNC");
26 // Synchronize 1000 t imes
27 for (int i = 0; i < 1000; i++) {
28 stub.SYNC() ;
29 }
30 }
31 }

Figure 14: Implementat ion of a synchronizat ion barr ier in Java: each Worker invokes
(t hrough Remote Method Invocat ion) t he SYNC method of the Barr ier process, which
makes workers wait unt il they have all i nvoked the method.

C programs, but faster t hat t he Erlang and Java ones. All programs seem
to scale linearly with the number of processes.

 0

 100

 200

 300

 400

 500

 600

5 10 15 20

T
im

e
(m

s)
 fo

r
10

00
 s

yn
ch

ro
.

Number of distant processes

C
LNT
Java
Erlang

Figure 15: Dist ributed synchronizat ion barr ier: thanks to the autolock opt imizat ion, the
code generated by DLC reaches the speed of regular programming languages.

The synchronizat ion protocol appears to be as fast as nat ive implementa-
t ions in the situat ion of a distr ibuted barr ier, which can be explained by the
autolock opt imizat ion. In the LNT implementat ion, task processes are al-
ways ready on only one gate (which corresponds to the barr ier) , therefore the
autolock opt imizat ion is act ivated. With autolock, protocol negot iat ions are
reduced to aready and a commit message per t ask: this matches the classical
implementat ion of a distr ibuted barr ier used in other implementat ions.

There are constant performance gaps between the implementat ions. On
the one hand, we think that DLC generated implementat ions are slower t han

39

the nat ive C ones because DLC generates C code that contains all the logic
of the protocol, and that uses a library for message passing on top of sockets.
On theother hand, wesupposethat Java and Erlang solut ionsareslower t han
the DLC ones because of the overhead imposed by their respect ive virt ual
machines. This experiment shows that , in the absence of con� icts, the DLC
protocol performance is similar t o nat ive implementat ions.

7.2. Dining Philosophers
The aim of this experiment is to evaluate the e� ciency of the rendezvous

protocol on a system containing many con� ict ing mult iway rendezvous. We
consider t he dining philosophers problem [15], which is a classical problem
of mutual exclusion when accessing shared resources. This example has the
advantage of being simple and well -understood, so we consider it as an ap-
propriate benchmark to evaluate DLC. It consists of several philosophers
sitt ing at a round table to eat meals. In order t o eat , a philosopher must
take its two surrounding forks, which are shared with its neighbors. Forks
correspond to resources that are shared between philosophers, and the prob-
lem is to guaranteethe mutual exclusion of philosophers who want t o access
the same forks, without intr oducing deadlocks.

Most solut ions are based on the hypothesis that a philosopher can only
interact with one fork at a t ime. Thus, the solut ion is a protocol to ensure
that both forks can be picked without leading the system into a deadlock.
Werevisit t heproblem in LNT, now equipped with themult iway rendezvous:
a philosopher t akes its both surrounding forks in one rendezvous where the
threeprocesses (t he philosopher and the two forks) synchronize. An excerpt
of the LNT code is given in Figure 16. Rendezvous on eat ing act ions are
con� ict ing for neighboring philosophers. These con� icts are resolved in the
DLC-generated implementat ions by the synchronizat ion protocol, which en-
sures the mutual exclusion of con� ict ing rendezvous.

For comparison, we wrote a distr ibuted philosopher solut ion in Java, us-
ing RMI for process interact ions. An excerpt of the Java code is given in
Figure17. Forksareobjects with � take� a nd � release� methods, and philoso-
phersareobjects that call fork methods through RMI. In order t o avoid dead-
locks, we use the simple solut ion that consists in imposing a global order on
fork picking.

In pract ice, wemeasure theamount of t imerequired by a group of philoso-
phers to eat a cert ain amount of meals each. Note that both LNT and Java
implementat ions do not prevent t he possible starvat ion of a philosopher.

40

However, in the context of this experiment, we do not focus on a starvat ion-
free solut ion to the dining philosophers. We merely want t o produce im-
plementat ions with many interact ions between distant processes. Moreover,
since we bound the number of meals that each philosopher must eat , all
philosophers eventually have the opport unity to �n ish all their meals. The
execut ion t imes for both the LNT/ DLC and Java versions of the dining
philosophers example are presented in Figures 18 and 19 respect ively. They
show that both DLC and Java provide solut ions with similar performance.

1 process PHILO [EAT: none] (nbmeals : nat) is
2 while nbmeals > 0 loop
3 EAT;
4 nbmeals := nbmeals � 1
5 end loop
6 end process
7
8 process FORK [EAT_ LEFT, EAT_ RIGHT: none] (nbmeals : nat) is
9 nbmeals := nbmeals � 2; �� a fork is used by 2 philo

10 while nbmeals > 0 loop
11 select
12 EAT_ LEFT
13 [] EAT_ RIGHT
14 end select ;

15 nbmeals := nbmeals � 1
16 end loop
17 end process
18
19 �� 3 philo and 3 forks, 1000 meals per philo
20 par
21 EAT_ 0 � > PHILO [EAT_ 0] (1000)
22 | | EAT_ 0, EAT_ 1 � > FORK [EAT_ 0, EAT_ 1] (1000)
23 | | EAT_ 1 � > PHILO [EAT_ 1] (1000)
24 | | EAT_ 1, EAT_ 2 � > FORK [EAT_ 1, EAT_ 2] (1000)
25 | | EAT_ 2 � > PHILO [EAT_ 2] (1000)
26 | | EAT_ 2, EAT_ 0 � > FORK [EAT_ 2, EAT_ 0] (1000)
27 end par

Figure 16: LNT code for the dining philosophers example.

1 public class Fork implements ForkInterface {
2 private stat ic Lock l = new ReentrantLock(t rue);
3
4 public void take() { l . lock () ; }
5 public void release () { l .unlock () ; }
6
7 // main method: create RMI regist ry , register Fork
8 }
9

10 public class Philo {
11 public stat ic void main(String [] args) {
12 // args: forkid1 , host1, forkid2 , host2, nbmeals
13 int forkid1 = Integer . parseInt (args [0]);
14 Registry r1 = LocateRegistry. getRegistry (args [1]);
15 int forkid2 = Integer . parseInt (args [2]);
16 Registry r2 = LocateRegistry. getRegistry (args [3]);

17 int nbmeals = Integer. parseInt (args [4]);
18 // Get Forks stub
19 ForkInterface s1 = (ForkInterface) r1. lookup("Fork");
20 ForkInterface s2 = (ForkInterface) r2. lookup("Fork");
21 // sort t o take forks in order
22 if (forkid1 > forkid2) {
23 ForkInterface tmp = s1; s1 = s2; s2 = tmp;
24 }
25 for (int i = 0; i < nbmeals; i++) {
26 s1. take() ;
27 s2. take() ;
28 s1. release () ;
29 s2. release () ;
30 }
31 }
32 }

Figure 17: Java code for the dining philosophers example.

7.3. Case Study: Raft Consensus
We modeled Raft [51] in LNT in order t o demonstr ate DLC on a non-

tr ivial system. Raft , like the bett er known Paxos [37], is a consensus al-
gorithm: it maintains a consistent log of entr ies replicated among a set of
servers, while surviving the failure of some servers. It t hus enables fault t ol-
erant services to be buil t using the replicated state machine technique [58].

41

10000�

r of philosophers

mealsper philosopher

Figure18: Execut ion t ime for the dining philosophersexample using LNT and DLC. Vary-
ing parameters are the number of phiosophers and the number of meals per philosopher.

Raft is used in several industr ial-classfault t olerant key-value stores, such as
Consul.11

A TLA+ formal speci� cat ion of Raft core features (leader elect ion and log
replicat ion) is available, upon which a hand-writt en safety proof is buil t [50].
Our LNT model includes a basic key-value store made fault t olerant using
Raft : every client r equest t o the store is � rst committ ed on a majority of
servers before the answer is sent back to the client . We use hook funct ions
to implement (a) t he t imeout mechanism needed in Raft , (b) t he contr ol of
server crashes, and (c) a socket interface to the key-value store, such that
external client programs can be implemented in any language. We managed
to implement t he core of Raft in approximately 500 lines of LNT plus 300
lines of C for hook funct ions (mainly boilerplate for sockets); for comparison,
the Consul Raft library alone represents approximately 4000lines of Golang.

The generated distr ibuted programs successfully run on a cluster of ma-
chines. We � rst experimented with server crashes to validate that t he key-
value store remains available as long as a majority of servers are running.
Then, for di� erent cluster sizes, we made several runs of a thousand write
requests to the key-value store, with crashes disabled. Figure 20 compares
the performances of DLC with those of Consul.

11Consul: www.consul.io , and its Raft library: github.com/hashicorp/raft

42

10000�

r�of�philosophers�

meals�per�philosopher�

Figure 19: Execut ion t ime for the dining philosophers example using Java.

We measure throughput with requests coming from many clients in par-
allel (see left of Figure 20). In this case, Consul implementat ion is up to
ten t imes faster t han our solut ion, and seems to be only slight ly impacted
by the cluster size. After a discussion with Consul developers, we realized
that Consul uses a Raft -level opt imizat ion: when the leader server receives
a client r equest , it waits 50ms to gather other client r equests in order t o
replicate the group of requests among Raft servers in only one round of log
replicat ion, whereas the LNT implementat ion tr iggers a log replicat ion for
each client r equest . We cannot easily implement t he Consul str ategy since
DLC does not yet handle arrays or lists in rendezvous.

Nonetheless, Consul latency, measured with sequent ial requests from a
single client (seeright of Figure 20), su� ers from the opt imizat ion. Indeed,
the leader server pauses 50ms for each requests, thus the proceeding t ime
for 1000 serial requests reaches 50 seconds. The LNT implementat ion is
not impacted since its leader server tr eats requests sequent ially anyway, and
presents a latency which increased with the size of the Raft cluster, as ex-
pected. For t he 7 servers con� gurat ion, our solut ion proceeds 1000requests
in 5469ms (in average), i.e., a li tt le bit more than 5ms per request r eplicat ion

While DLC does not pretend to generate implementat ions that compete
with hand-crafted programs, we consider t hat t he performance achieved so
far st ill quali fy for rapid prototyping, with all the bene� ts that formal veri� -
cat ions brought on. Moreover, hook funct ions enable to model and prototype

43

 0

 1000

 2000

 3000

 4000

 5000

 6000

3 5 7T
im

e
(m

s)
 fo

r
10

00
 c

on
cu

rr
en

t r
eq

.

Number of raft servers

LNT-Raft
Consul

 0

 10000

 20000

 30000

 40000

 50000

 60000

3 5 7

T
im

e
(m

s)
 fo

r
10

00
 s

er
ia

l r
eq

.

Number of raft servers

LNT-Raft
Consul

Figure 20: Raft consensus: comparison with Consul, throughput (left) and latency (right) .

only a part (e.g., the safety crit ical part) of a larger system while st ill i nter-
act ing with the rest of the system through hook funct ions.

8. Conclusion and Fut ure Work

A distr ibuted system made of asynchronous concurrent processes can be
formally modeled in LNT, using powerful primit ives such as value-passing
mult iway rendezvous. An LNT model can be formally veri� ed thanks to
the numerous and mature tools of CADP. The tool DLC, presented in this
paper, now also enables rapid prototyping by automat ically generat ing a
distr ibuted implementat ion in C. We think the combinat ion of LNT, CADP
and DLC provides a featureful framework for t he formal veri� cat ion and
rapid prototyping of distr ibuted systems.

Wepresented theprotocol used to implement value-passing mult iway ren-
dezvous, which allows o� set synchronizat ions together with the autolock op-
t imizat ion, made correct t hanks to the purge mechanism. We incrementally
developed this protocol thanks to an automat ic veri� cat ion approach which
relies on the formal techniques that our t eam has been working on for years.
We provide the LNT formal speci� cat ion of this protocol in Appendix A.
In order t o let t he end-user have some contr ol on the generated programs
and de�n e interact ions with the external world, we intr oduced hook func-
t ions, which enable user-de�n ed C procedures to be integrated into the �n al
implementat ion. The hook funct ions can only restr ict t he system behavior,
therefore they should not be able to make it behave incorrect ly with respect
to the original speci� cat ion semant ics. We covered how DLC proceeds to

44

generate distr ibuted programs, and we exposed DLC internal architecture.
We presented three experiments made with DLC, including an implementa-
t ion of the non-tr ivial Raft algorithm. The measured performances reveal
that even if DLC generated programs may be current ly slower t han solut ions
writt en in general programming languages, we consider t hat t hey st ill quali fy
for rapid prototyping.

As future work, we plan to make DLC handle complex types, such as lists
and arrays, in data o� ers. We also think the protocol negot iat ions can be
short ened in some special cases (such as binary rendezvous) which could lead
to bett er performances. Moreover, it would be useful to implement t iming
mechanisms (such as t imeouts) as primit ives of LNT, as already suggested
in [60]. Current ly, DLC communicat ion relies on TCP sockets, which is a
uniform communicat ion mean but not necessarily the most e� cient in all
situat ions. A new tr ack of research could be to invest igate how DLC could
generate code specialized to speci� c comput ing architectures (mult i-core or
distr ibuted, communicat ion through a local network or t hrough internet ,
etc.), for instance by adding opt ions in the network con� gurat ion � le, or
DLC-speci� c annotat ions in the LNT model. Finally, a way to raise the
tr ust in the correctnessof DLC could be to bootstr ap the compiler from LNT
sources, for instance using our t eam compiler constr uct ion framework [24].
We can also consider using CADP tools on the sourceLNT model to perform
co-simulat ion of the distr ibuted program execut ion, in a way similar t o what
Garavel et al. [28] and Lantr eibecq et al. [39] have already explored using
EXEC/ CÆSAR.

A cknowledgment s

The authors warmly thank Lucas Cimon for suggest ing Raft as a case
study, and theInria/ CONVECSteam members, in part icular Wendelin Serwe
and Hubert Garavel, for useful discussions. This work was part ly funded by
theFrench Fondsnational pour la Société Numérique (FSN), PôlesMinalogic,
Systemat ic and SCS (project OpenCloudware). Experiments presented in
thispaper were carr ied out using theGrid'5000testbed, support ed by a scien-
t i� c interest group hosted by Inria and including CNRS, RENATER and sev-
eral Universit ies aswell asother organizat ions(seehtt ps:// www.grid5000.fr) .

45

A pp end ix A . LN T M odel of t he M ult iway Rendezvous Prot ocol

This appendix presents the LNT model of the mult iway rendezvous pro-
tocol in � ve part s. Appendix A.1 lists the data types, the funct ions de�n ed
on these types, and the communicat ion channels used in the speci� cat ion.
Some standard funct ions, such as set-related operat ions (member, insert, di� ,
etc), are prede�n ed in LNT, see[12] for more details. Appendix A.2 presents
the generic model of a gate processand Appendix A.3 presents the generic
model of a manager process. Appendix A.4 presents a bu� er process, which
is a bounded FIFO bu� er used to model asynchronous communicat ions be-
tween gates and managers. Finally, Appendix A.5 presents a small system
speci� cat ion and the implementat ion model generated by DLC from this
speci� cat ion, which uses instances of the generic models of gate, manager
and bu� er.

This LNT model is the one actually used for t he formal veri� cat ion of the
protocol with CADP. Therefore, it is also present in the DLC distr ibut ion,
available at http://hevrard.org/DLC .

Appendix A.1. Data Types, Functions and Channels

1 �� TYPES
2
3 type nat_ set is
4 set of nat
5 with " length" , " access" , "member"
6 end type
7
8 type id_ set is
9 sorted set of DLC_ ID

10 with "head" , " length" , " access" , "member" , " di� " , "union" , " remove" , "empty" , " inter "
11 end type
12
13 type id_ list is
14 list of DLC_ ID
15 with "union" , "empty" , "head" , "member" , "delete" , " tail "
16 end type
17
18 type sync_ vect_ list is
19 list of id_ set
20 with "head" , " access" , " length"
21 end type
22
23 type sync_ map_ entry is
24 sync_ map_ entry (gate : DLC_ ID, vect_ list : sync_ vect_ list)
25 with " get "
26 end type
27
28 type sync_ map is
29 list of sync_ map_ entry

46

30 with " access" , " length"
31 end type
32
33 type dlc_ act ion is
34 act ion (gate : DLC_ ID)
35 with " get " , "== "
36 end type
37
38 type act ion_ set is
39 set of dlc_ act ion
40 with " length" , " access" , "member"
41 end type
42
43 type transit ion is
44 nil_ transit ion ,
45 transit ion (act ion : dlc_ act ion , next_ states : nat_ set)
46 with " get " , "== "
47 end type
48
49 type transit ion_ list is
50 list of t ransit ion
51 end type
52
53 type state is
54 nil_ state ,
55 state (id : nat , t ransit ions : transit ion_ list)
56 with " get "
57 end type
58
59 type state_ list is
60 list of state
61 end type
62
63 type lock is
64 lock (act ion : dlc_ act ion , index : nat , path : id_ set , con� rm : bool , purge : id_ list)
65 with " get " , " set "
66 end type
67
68 type lock_ list is
69 list of lock
70 with "empty" , "append" , "head" , " length" , " access" , " tail "
71 end type
72
73 type message is
74 READY (autolocked : bool),
75 LOCK (lock : lock),
76 COMM IT,
77 COMM IT (purge : id_ list),
78 ABORT,
79 ABORT (purge : id_ list)
80 end type
81
82 type message_ list is
83 list of message
84 with "append" , "head" , " tail " , " length" , "empty"
85 end type
86

47

87 type arrival is
88 arrival (act ion : dlc_ act ion , arrival : nat)
89 with " get "
90 end type
91
92 type arrival_ list is
93 list of arrival
94 with " access" , " length"
95 end type
96
97 type gate_ state is
98 idle ,
99 dealing

100 with "== "
101 end type
102
103 type manager_ state is
104 free,
105 locked ,
106 autolock_ free,
107 autolock_ locked
108 with "== " , " != "
109 end type
110
111 �� FUNCTIONS
112
113 funct ion � nd_ state (space : state_ list , id : nat) : state is
114 case space in
115 var i : nat , t ra : t ransit ion_ list , tail : state_ list in
116 {} � > return nil_ state
117 | cons(state (i , t ra), any state_ list) where i == id � >
118 return state (i , t ra)
119 | cons (any state , tail) � >
120 return � nd_ state (tail , id)
121 end case
122 end funct ion
123
124 funct ion � nd_ transit ion (t l : t ransit ion_ list , act : dlc_ act ion) : t ransit ion is
125 case t l in
126 var a : dlc_ act ion , nl : nat_ set , tail : t ransit ion_ list in
127 {} � > return nil_ transit ion
128 | cons (transit ion (a, nl), any transit ion_ list) where a == act � >
129 return transit ion (a, nl)
130 | cons (any transit ion , tail) � >
131 return � nd_ transit ion (tail , act)
132 end case
133 end funct ion
134
135 funct ion get_ next (space : state_ list , id : nat , act ion : dlc_ act ion) : nat_ set is
136 var t : t ransit ion in
137 t := � nd_ transit ion (get_ transit ions (� nd_ state (space, id)) , act ion) ;
138 if t == nil_ transit ion then
139 return {}
140 else
141 return get_ next_ states (t)
142 end if
143 end var

48

144 end funct ion
145
146 funct ion collect_ act ion (t l : t ransit ion_ list , al : act ion_ set) : act ion_ set is
147 case t l in
148 var act : dlc_ act ion , tail : t ransit ion_ list in
149 {} � > return al
150 | cons (transit ion (act , any nat_ set) , tail) � >
151 return collect_ act ion (tail , insert (act , al))
152 | cons (nil_ transit ion , tail) � >
153 �� should never happen, remove compiler warning
154 return collect_ act ion (tail , al)
155 end case
156 end funct ion
157
158 funct ion possible_ act ions (space : state_ list , id : nat) : act ion_ set is
159 return collect_ act ion (get_ transit ions (� nd_ state (space, id)) , {})
160 end funct ion
161
162 funct ion extract_ gate (al : act ion_ set , gl : id_ set) : id_ set is
163 case al in
164 var g : DLC_ ID, tail : act ion_ set in
165 {} � > return gl
166 | cons (act ion (g), tail) � >
167 return extract_ gate (tail , insert (g, gl))
168 end case
169 end funct ion
170
171 funct ion arrival_ state (dl : arrival_ list , act : dlc_ act ion) : nat
172 raises act ion_ not_ found : none
173 is
174 var n : nat in
175 for n := 1 while n <= length (dl) by n := n+ 1 loop
176 if get_ act ion (access (dl , n)) == act then
177 return get_ arrival (access (dl , n))
178 end if
179 end loop;
180 raise act ion_ not_ found
181 end var
182 end funct ion
183
184 funct ion isin (vect , rdytask : id_ set) : bool is
185 var n : nat in
186 for n := 1 while n <= length (vect) by n := n+ 1 loop
187 if not (member (access (vect , n), rdytask)) then
188 return false
189 end if
190 end loop ;
191 return true
192 end var
193 end funct ion
194
195 funct ion possible_ rdv (rdytask : id_ set , vectors : sync_ vect_ list) : bool is
196 var vect : id_ set , n : nat in
197 for n := 1 while n <= length (vectors) by n := n+ 1 loop
198 vect := (access (vectors , n)) ;
199 if isin (vect , rdytask) then
200 return true

49

201 end if
202 end loop ;
203 return false
204 end var
205 end funct ion
206
207 funct ion list_ rdv_ index (rdytask : id_ set , vectors : sync_ vect_ list) : nat_ set is
208 var vect : id_ set , n : nat , result : nat_ set in
209 result := {} ;
210 for n := 1 while n <= length (vectors) by n := n+ 1 loop
211 vect := (access (vectors , n)) ;
212 if isin (vect , rdytask) then
213 result := insert (n, result)
214 end if
215 end loop ;
216 return result
217 end var
218 end funct ion
219
220 funct ion lock_ state (in out manager : manager_ state) raises invalid_ state : none is
221 case manager in
222 free � > manager := locked
223 | autolock_ free � > manager := autolock_ locked
224 | any � > raise invalid_ state
225 end case
226 end funct ion
227
228 funct ion get_ sync_ vect (lock : lock , gsm : sync_ map) : id_ set is
229 var g : DLC_ ID, n, index : nat in
230 g := get_ gate (get_ act ion (lock)) ;
231 index := get_ index (lock);
232 for n := 1 while n <= length (gsm) by n := n+ 1 loop
233 if get_ gate (access (gsm, n)) == g then
234 return access (get_ vect_ list (access (gsm, n)) , index)
235 end if
236 end loop ;
237 return {} of id_ set
238 end var
239 end funct ion
240
241 funct ion next_ task (task : DLC_ ID, vect : id_ set) : DLC_ ID is
242 var n : nat in
243 for n := 1 while n < length (vect) by n := n+ 1 loop
244 if task == access (vect , n) then
245 return access (vect , n+ 1)
246 end if
247 end loop ;
248 return DLC_ NULL_ ID
249 end var
250 end funct ion
251
252 funct ion update_ purge (in out purgel : id_ list , purge : id_ list , in out autolock : id_ set) is
253 var id : DLC_ ID, newpurge : id_ list in
254 purgel := union (purgel , purge);
255 newpurge := {} ;
256 while not (empty (purgel)) loop
257 id := head (purgel);

50

258 if member (id, autolock) then
259 autolock := remove (id, autolock)
260 else
261 newpurge := cons (id, newpurge)
262 end if ;
263 purgel := tail (purgel)
264 end loop;
265 purgel := newpurge
266 end var
267 end funct ion
268
269 �� CHANNELS
270
271 channel com is
272 (DLC_ ID, message)
273 end channel
274
275 channel annonce is
276 (DLC_ ID, id_ set)
277 end channel

Appendix A.2. Generic model of the Gate Process

277 process GATE [SEND, RECV : com, ACTION, HOOK_ REFUSE : annonce]
278 (gate : DLC_ ID, vectors : sync_ vect_ list)
279 is
280 var
281 state : gate_ state,
282 readyset : id_ set , �� ready tasks
283 autolock : id_ set , �� autolocked tasks
284 dealreadyset : id_ set , �� tasks ready during a negot iat ion
285 dealautolock : id_ set , �� tasks autolocked during a negot iat ion
286 dealvect : id_ set , �� current negot iat ion synchro vector
287 dealindex : nat , �� current negot iat ion synchro vector index
288 dealpath : id_ set , �� current negot iat ion lock chain
289 purgelist : id_ list , �� tasks to purge
290 �� temporary variables
291 n : nat ,
292 task : DLC_ ID,
293 lock : lock ,
294 con� rm : bool ,
295 purge : id_ list ,
296 autolocked : bool ,
297 vect indexes : nat_ set
298 in
299 �� init ializat ion
300 state := idle ;
301 readyset := {} ;
302 autolock := {} ;
303 dealreadyset := {} ;
304 dealautolock := {} ;
305 dealvect := {} ;
306 purgelist := {} ;
307 dealpath := {} ;
308
309 �� main loop
310 loop

51

311 select
312 �� Receive READY message
313 RECV (?task, ?READY (autolocked)) ;
314 if member (task, purgelist) and (autolocked) then
315 �� purge : ignore the autolock � eld
316 purgelist := delete (task , purgelist);
317 autolocked := false
318 end if ;
319 if state == dealing then
320 dealreadyset := insert (task , dealreadyset);
321 if autolocked then
322 dealautolock := insert (task , dealautolock)
323 end if
324 else
325 readyset := insert (task , readyset);
326 if autolocked then
327 autolock := insert (task , autolock)
328 end if
329 end if
330 []
331 �� Start a negot iat ion
332 only if (state == idle) and (possible_ rdv (readyset , vectors)) then
333 vect indexes := list_ rdv_ index (readyset , vectors);
334 �� Choose randomly among possible synchronizat ions
335 dealindex := any nat where member (dealindex, vect indexes);
336 dealvect := access (vectors , dealindex);
337 dealpath := di� (dealvect , autolock);
338 if empty (dealpath) then
339 �� All tasks are autolocked
340 select
341 �� Post � negot iat ion hook may refuse the act ion
342 HOOK_ REFUSE (gate, dealvect)
343 []
344 ACTION (gate, dealvect);
345 for n := 1 while n <= length (dealvect) by n := n+ 1 loop
346 SEND (access (dealvect , n), COMM IT)
347 end loop;
348 readyset := di� (readyset , dealvect);
349 autolock := di� (autolock , dealvect)
350 end select
351 else
352 �� Lauch a lock request
353 task := head (dealpath);
354 �� Simulate hook presence: randomly require con� rmat ion
355 con� rm := any bool;
356 SEND (task, LOCK (lock (act ion(gate), dealindex , dealpath ,
357 con� rm, {}))) ;
358 dealreadyset := {} ;
359 dealautolock := {} ;
360 state := dealing
361 end if
362 end if
363 []
364 �� Receive a COMM IT message
365 only if state == dealing then
366 RECV (?task, ?COMM IT (purge) of message);
367 readyset := di� (readyset , dealvect);

52

368 readyset := union (readyset , dealreadyset);
369 readyset := remove (task, readyset);
370 autolock := di� (autolock , dealvect);
371 autolock := union (autolock , dealautolock);
372 autolock := remove (task, autolock);
373 eval update_ purge (!?purgelist , purge, !?autolock);
374 state := idle
375 end if
376 []
377 �� Receive an ABORT message
378 only if state == dealing then
379 RECV (?task, ?ABORT (purge) of message);
380 readyset := remove (task, readyset);
381 readyset := union (readyset , dealreadyset);
382 autolock := remove (task, autolock);
383 autolock := union (autolock , dealautolock);
384 eval update_ purge (!?purgelist , purge, !?autolock);
385 state := idle
386 end if
387 []
388 �� Receive a LOCK message
389 only if state == dealing then
390 RECV (?task, ? LOCK (lock) of message);
391 select
392 HOOK_ REFUSE (gate, dealvect);
393 for n := 1 while n <= length (dealpath) by n := n+ 1 loop
394 SEND (access (dealpath, n), ABORT)
395 end loop;
396 readyset := union (readyset , dealreadyset);
397 autolock := union (autolock , dealautolock)
398 []
399 ACTION (gate, dealvect);
400 for n := 1 while n <= length (dealvect) by n := n+ 1 loop
401 SEND (access (dealvect , n), COMM IT)
402 end loop;
403 readyset := di� (readyset , dealvect);
404 readyset := union (readyset , dealreadyset);
405 readyset := remove (task, readyset);
406 autolock := di� (autolock , dealvect);
407 autolock := union (autolock , dealautolock);
408 autolock := remove (task, autolock)
409 end select ;
410 eval update_ purge (!?purgelist , lock .purge, !?autolock);
411 state := idle
412 end if
413 end select
414 end loop
415 end var
416 end process

Appendix A.3. Generic Model of the Manager Process

416 process MANAGER [SEND, RECV : com, ACTION : annonce]
417 (task : DLC_ ID, statespace : state_ list , map : sync_ map)
418 is
419 var
420 manager : manager_ state,

53

421 act ions : act ion_ set , �� task current ly possible act ions
422 arriv_ list : arrival_ list , �� list of (act ion , state dest inat ion)
423 taskstate : nat , �� current state of task
424 wait lock : lock_ list , �� pending locks
425 lock : lock , �� act ive lock
426 act ion : dlc_ act ion , �� next act ion to realize
427 internal : bool , �� task can do an internal act ion
428 sigpurge : bool , �� must add ourself to the purge
429 �� temporary variables
430 n : nat ,
431 l : lock ,
432 to, gate : DLC_ ID,
433 vect : id_ set
434 in
435 �� init ializat ion
436 taskstate := 0;
437 wait lock := {} ;
438
439 �� main loop
440 loop
441 �� Manager setup w.r.t . task current state
442 manager := free;
443 internal := false ;
444 act ion := act ion (DLC_ NULL_ ID);
445 sigpurge := false ;
446 act ions := possible_ act ions (statespace , taskstate);
447
448 �� For equivalence relat ion reasons, when a task can reach
449 �� di� erent state with the same act ion, the dest inat ion state
450 �� must be decided before the negot iat ion
451 arriv_ list := {} ;
452 for n := 1 while n <= length(act ions) by n := n+ 1 loop
453 var dest_ set : nat_ set , dest : nat , act : dlc_ act ion in
454 act := access (act ions , n);
455 dest_ set := get_ next (statespace, taskstate , act);
456 �� Choose randomly a dest inat ion state
457 dest := any nat where member (dest , dest_ set);
458 arriv_ list := cons (arrival (act , dest), arriv_ list)
459 end var
460 end loop;
461 if (length (act ions) == 1)
462 and ((get_ gate (access (act ions , 1))) != DLC_GATE_ I)
463 then
464 �� autolock
465 act ion := access (act ions , 1);
466 SEND (act ion.gate, READY (true)) ;
467 manager := autolock_ free;
468 sigpurge := true
469 else
470 for n := 1 while n <= length (act ions) by n := n+ 1 loop
471 gate := get_ gate (access (act ions , n)) ;
472 if (gate == DLC_GATE_ I) then
473 internal := true
474 else
475 SEND (gate, READY (false))
476 end if
477 end loop

54

478 end if ;
479
480 loop NEGOTIATION in
481 select
482 �� Receive a LOCK message
483 RECV (? any DLC_ ID, ?LOCK (l) of message);
484 wait lock := append (l , wait lock)
485 []
486 �� Treat oldest pending lock
487 only if not (empty (wait lock))
488 and ((manager == free) or (manager == autolock_ free))
489 then
490 lock := head (wait lock);
491 wait lock := tail (wait lock);
492 if member (lock.act ion, act ions) then
493 if (manager == autolock_ free) and (sigpurge) then
494 lock := lock .{ purge => cons (task, lock .purge)} ;
495 sigpurge := false
496 end if ;
497 act ion := lock . act ion ;
498 if task == access (lock.path, length (lock .path)) then
499 �� We are the last t ask of the lock chain
500 if lock .con� rm then
501 SEND (lock.act ion.gate, LOCK (lock)) ;
502 eval lock_ state (!?manager)
503 else
504 �� Conclude negot iat ion
505 vect := get_ sync_ vect (lock, map);
506 ACTION (lock.act ion.gate, vect);
507 SEND (lock.act ion.gate, COMM IT (lock.purge)) ;
508 for n := 1 while n <= length(vect) by n := n+ 1 loop
509 to := access(vect , n);
510 if to != task then
511 SEND (to, COMM IT)
512 end if
513 end loop;
514 break NEGOTIATION
515 end if
516 else
517 �� Forward lock request
518 to := next_ task (task , lock .path);
519 SEND (to, LOCK (lock)) ;
520 eval lock_ state (! ?manager)
521 end if
522 else
523 �� Reject lock request
524 SEND (lock.act ion.gate, ABORT (lock.purge)) ;
525 for n := 1 while n <= length (lock.path) by n := n+ 1 loop
526 to := access (lock .path, n);
527 if to < task then
528 SEND (to, ABORT)
529 end if
530 end loop
531 end if
532 end if
533 []
534 �� Receive a COMM IT message

55

535 only if manager != free then
536 RECV (? any DLC_ ID, COMM IT);
537 break NEGOTIATION
538 end if
539 []
540 �� Receive an ABORT message
541 only if (manager == locked) or (manager == autolock_ locked) then
542 RECV (? any DLC_ ID, ABORT);
543 if manager == locked then
544 manager := free
545 elsif manager == autolock_ locked then
546 manager := autolock_ free
547 end if
548 end if
549 []
550 �� Realize an internal act ion
551 only if (manager == free) and (internal) then
552 ACTION (DLC_GATE_ I, { task} of id_ set);
553 act ion := act ion (DLC_GATE_ I);
554 break NEGOTIATION
555 end if
556 end select
557 end loop; �� NEGOTIATION
558 �� Reject pending locks
559 while not (empty (wait lock)) loop
560 l := head (wait lock);
561 wait lock := tail (wait lock);
562 SEND (l.act ion.gate, ABORT (l.purge)) ;
563 for n := 1 while n < length (l .path) by n := n+ 1 loop
564 to := access (l .path, n);
565 if to < task then
566 SEND (to, ABORT)
567 end if
568 end loop
569 end loop;
570 �� Task moves to next state
571 taskstate := arrival_ state (arriv_ list , act ion)
572 end loop �� MAIN
573 end var
574 end process

Appendix A.4. Generic Model of a Communication Bu� er

574 �� Bu� er size is a parameter
575 funct ion BUFSIZE : nat is
576 return 3
577 end funct ion
578
579 �� Bu� er acts as a FIFO (models TCP)
580 process BUFFER [GETFROM, SENDTO : com] (from, to : DLC_ ID) is
581 var
582 msg : message,
583 mq : message_ list
584 in
585 mq := {} ;
586 loop
587 select

56

588 only if length (mq) < BUFSIZE then
589 GETFROM (to, ?msg);
590 mq := append (msg, mq)
591 end if
592 []
593 only if not (empty (mq)) then
594 SENDTO (from, head (mq)) ;
595 mq := tail (mq)
596 end if
597 end select
598 end loop
599 end var
600 end process

Appendix A.5. Example of LNT Implementation Model Generated from a
System Instance

Consider t he following system:

process T1 [A,B: any] is
A ;
B

end process

process T2 [A,B: any] is
select

A
[] B
end select

end process

par A in
T1[A,B]

| | T2[A,B]
end par

Our validat ion approach can automat ically generatetheLNT model of the
implementat ion of this system. First , the system characterist ics (ident i� ers,
task state space, and synchronizat ion vectors) are de�n ed:
type DLC_ ID is

DLC_ TASK_ 0_ T1,
DLC_ TASK_ 1_ T2,
DLC_GATE_A ,
DLC_GATE_B ,
DLC_ NULL_ ID
with "== " , " != " , "< "

end type

funct ion task_ T1_ state_ space : state_ list is
return {

state (0, { t ransit ion (act ion(DLC_GATE_A), {1})}),
state (1, { t ransit ion (act ion(DLC_GATE_B), {2})}),
state (2, {} of t ransit ion_ list (� deadlock �))

}
end funct ion

funct ion task_ T2_ state_ space : state_ list is
return {

state (0, { t ransit ion (act ion(DLC_GATE_A), {1}),
t ransit ion (act ion(DLC_GATE_B), {1})}),

state (1, {} of t ransit ion_ list (� deadlock �))
}

57

end funct ion

funct ion gate_A_ sync_ vect : sync_ vect_ list is
return {{ DLC_ TASK_ 0_ T1, DLC_ TASK_ 1_ T2 }}

end funct ion

funct ion gate_B_ sync_ vect : sync_ vect_ list is
return {{ DLC_ TASK_ 0_ T1 } ,

{ DLC_ TASK_ 1_ T2 }}
end funct ion

funct ion global_ sync_ map : sync_ map is
return {
sync_ map_ entry (dlc_ gate_A , gate_A_ sync_ vect),
sync_ map_ entry (dlc_ gate_B , gate_B_ sync_ vect)

}
end funct ion

Then, the implementat ion consists of managers, gates, and FIFO bu� ers
running in parallel. The main processof the implementat ion model is thus:
process MAIN [TASK_ 0_ T1_ SEND, TASK_ 0_ T1_ RECV,

TASK_ 1_ T2_ SEND, TASK_ 1_ T2_ RECV,
GATE_A_ SEND, GATE_A_ RECV,
GATE_B_ SEND, GATE_B_ RECV: com,
ACTION, HOOK_ REFUSE: annonce]

is
par TASK_ 0_ T1_ SEND, TASK_ 0_ T1_ RECV,

TASK_ 1_ T2_ SEND, TASK_ 1_ T2_ RECV,
GATE_A_ SEND, GATE_A_ RECV,
GATE_B_ SEND, GATE_B_ RECV,

in
par

BUFFER [TASK_ 0_ T1_ SEND, TASK_ 1_ T2_ RECV] (DLC_ TASK_ 0_ T1, DLC_ TASK_ 1_ T2)
| | BUFFER [TASK_ 1_ T2_ SEND, TASK_ 0_ T1_ RECV] (DLC_ TASK_ 1_ T2, DLC_ TASK_ 0_ T1)
| | BUFFER [TASK_ 0_ T1_ SEND, GATE_A_ RECV] (DLC_ TASK_ 0_ T1, DLC_GATE_A)
| | BUFFER [GATE_A_ SEND, TASK_ 0_ T1_ RECV] (DLC_GATE_A , DLC_ TASK_ 0_ T1)
| | BUFFER [TASK_ 0_ T1_ SEND, GATE_B_ RECV] (DLC_ TASK_ 0_ T1, DLC_GATE_B)
| | BUFFER [GATE_B_ SEND, TASK_ 0_ T1_ RECV] (DLC_GATE_B , DLC_ TASK_ 0_ T1)
| | BUFFER [TASK_ 1_ T2_ SEND, GATE_A_ RECV] (DLC_ TASK_ 1_ T2, DLC_GATE_A)
| | BUFFER [GATE_A_ SEND, TASK_ 1_ T2_ RECV] (DLC_GATE_A , DLC_ TASK_ 1_ T2)
| | BUFFER [TASK_ 1_ T2_ SEND, GATE_B_ RECV] (DLC_ TASK_ 1_ T2, DLC_GATE_B)
| | BUFFER [GATE_B_ SEND, TASK_ 1_ T2_ RECV] (DLC_GATE_B , DLC_ TASK_ 1_ T2)

end par
| |

par
MANAGER [TASK_ 0_ T1_ SEND, TASK_ 0_ T1_ RECV, ACTION]

(DLC_ TASK_ 0_ T1, task_ T1_ state_ space, global_ sync_ map)
| | MANAGER [TASK_ 1_ T2_ SEND, TASK_ 1_ T2_ RECV, ACTION]

(DLC_ TASK_ 1_ T2, task_ T2_ state_ space, global_ sync_ map)
| | GATE [GATE_A_ SEND, GATE_A_ RECV, ACTION, HOOK_ REFUSE]

(DLC_GATE_A , gate_A_ sync_ vect)
| | GATE [GATE_B_ SEND, GATE_B_ RECV, ACTION, HOOK_ REFUSE]

(DLC_GATE_B , gate_B_ sync_ vect)
end par

end par
end process

58

[1] Amnell, T., Fersman, E., Mokrushin, L., Pett ersson, P., Yi, W., 2004.
TIMES: A tool for schedulabili ty analysis and code generat ion of real-
t ime systems. In: Formal Modeling and Analysis of Timed Systems.
Springer, pp. 60�72.

[2] Arbab, F., 2004. Reo: A channel-based coordinat ion model for compo-
nent composit ion. Mathemat ical Str uctures in Computer Science14 (3),
329�366.

[3] Bagrodia, R., 1989. Process synchronizat ion: Design and performance
evaluat ion of distr ibuted algorithms. IEEE Transact ions on Software
Engineering 15(9), 1053�1065.

[4] Behrmann, G., Larsen, K. G., Moller, O., David, A., Pett ersson, P.,
Yi, W., 2001. Uppaal � present and future. In: Proceedings of the 40th
IEEE Conferenceon Decision and Contr ol. Vol. 3. IEEE, pp. 2881�2886.

[5] Bensalem, S., Griesmayer, A., Legay, A., Nguyen, T., Sifakis, J., Yan,
R., 2011. D-Finder 2: Towards e� cient correctness of incremental de-
sign. In: Proceedings of the 3rd NASA Internat ional Symposium on
Formal Methods (NFM'2011), Pasadena, CA, USA. pp. 453�458.

[6] Bergamini, D., Descoubes, N., Joubert , C., Mateescu, R., Apr. 2005.
Bisimulator: A modular t ool for on-the-� y equivalence checking. In:
Halbwachs, N., Zuck, L. (Eds.), Proceedings of the 11th Internat ional
Conference on Tools and Algorithms for t he Constr uct ion and Analy-
sis of Systems TACAS'2005 (Edinburgh, Scot land, UK). Vol. 3440 of
Lecture Notes in Computer Science. Springer, pp. 581�585.

[7] Berry, G., 2007. SCADE: Synchronous design and validat ion of em-
bedded contr ol software. In: Next Generat ion Design and Veri� cat ion
Methodologies for Distr ibuted Embedded Contr ol Systems. Springer,
pp. 19�33.

[8] Bochmann, G., Gao, Q., Wu, C., 1989. On the distr ibuted implementa-
t ion of LOTOS. In: Proceedings of the 2nd Internat ional Conferenceon
Formal Descript ion Techniques (FORTE'89). pp. 133�146.

[9] Bonakdarpour, B., Bozga, M., Quilbeuf, J., 2013. Model-based imple-
mentat ion of distr ibuted systems with priorit ies. Design Autom. for
Emb. Sys. 17 (2), 251�276.

59

[10] Bouajj ani, A., Fernandez, J.-C., Graf, S., Rodríguez, C., Sifakis, J.,
1991. Safety for branching t ime semant ics. In: Proceedings of 18th
ICALP. Springer.

[11] Carbone, M., Montesi, F., 2013. Deadlock-freedom-by-design: Mult i-
party asynchronous global programming. In: Giacobazzi, R., Cousot , R.
(Eds.), Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL'13), Rome,
Italy. ACM, pp. 263�274.

[12] Champelovier, D., Clerc, X., Garavel, H., Guert e, Y., McKinty, C.,
Powazny, V., Lang, F., Serwe, W., Smeding, G., 2015. Reference man-
ual of the LNT to LOTOS tr anslator (version 6.2), INRIA/ VASY and
INRIA/ CONVECS, 130pages.

[13] Chandy, K. M., Misra, J., 1988. Parallel program design: A foundat ion.
Addison-Wesley.

[14] Coste, N., Garavel, H., Hermanns, H., Lang, F., Mateescu, R., Serwe,
W., 2010. Ten years of performance evaluat ion for concurrent systems
using CADP. In: Margaria, T., Ste� en, B. (Eds.), Proceedings of the
4th Internat ional Symposium on Leveraging Applicat ions of Formal
Methods, Veri� cat ion and Validat ion ISoLA 2010 (Amirandes, Hera-
clion, Crete), Part II . Vol. 6416 of Lecture Notes in Computer Science.
Springer, pp. 128�142.

[15] D¼kstr a, E. W., 1965. Solut ion of a problem in concurrent programming
contr ol. Commun. ACM 8 (9), 569�570.

[16] D¼kstr a, E. W., 1975. Guarded commands, non-determinacy and formal
derivat ion of programs. Communicat ion of the ACM 18 (8), 453�457.

[17] Dokter, K., Jongmans, S. T. Q., Arbab, F., Bliudze, S., 2015. Relat ing
BIP and reo. In: Knight , S., Lanese, I., Lluch-Lafuente, A., Vieira, H. T.
(Eds.), Proceedings of the 8th Interact ion and Concurrency Experience
(ICE'2015), Grenoble, France. Vol. 189 of EPTCS. pp. 3�20.

[18] Evrard, H., 2015. Générat ion automat ique d'implémentat ion distr ibuée
à part ir de modèles formels de processus concurrents asynchrones. The-
sis, Université Grenoble Alpes.
URL https://hal.inria.fr/tel-01215634

60

[19] Evrard, H., 2016. DLC: Compili ng a Concurrent System Formal Spec-
i� cat ion to a Distr ibuted Implementat ion. In: Proceedings of the 22nd
Internat ional Conference on Tools and Algorithms for t he Constr uct ion
and Analysis of Systems TACAS'2016. Lecture Notes in Computer Sci-
ence. Springer-Verlag.
URL https://hal.inria.fr/hal-01250925

[20] Evrard, H., Lang, F., 2013. Formal veri� cat ion of distr ibuted branch-
ing mult iway synchronizat ion protocols. In: Beyer, D., Boreale, M.
(Eds.), Proceedings of the IFIP Joint Internat ional Conference on For-
mal Techniques for Distr ibuted Systems (FORTE/ FMOODS'2013), Flo-
rence, Italy. Vol. 7892 of Lecture Notes in Computer Science. IFIP,
Springer, pp. 146�160.

[21] Evrard, H., Lang, F., 2015. Automat ic distr ibuted code generat ion from
formal models of asynchronous concurrent processes. In: Proceedings of
the 23rd Euromicro Internat ional Conference on Parallel, Distr ibuted
and Network-based Processing (PDP'2015), Turku, Finland. IEEE.
URL https://hal.inria.fr/hal-01086522

[22] Garavel, H., 2008. Re� ect ions on the future of concurrency theory in
general and processcalculi i n part icular. In: Palamidessi, C., Valencia,
F. D. (Eds.), Proceedings of theLIX Colloquium on Emerging Trends in
Concurrency Theory (Ecole Polytechnique de Paris, France), November
13�15, 2006. Vol. 209 of Electr onic Notes in Theoret ical Computer Sci-
ence. Elsevier Science Publishers, pp. 149�164, also available as INRIA
Research Report RR-6368.

[23] Garavel, H., Lang, F., Aug. 2001. SVL: a script ing language for com-
posit ional veri� cat ion. In: Kim, M., Chin, B., Kang, S., Lee, D. (Eds.),
Proceedings of the 21st IFIP WG 6.1 Internat ional Conference on For-
mal Techniques for Networked and Distr ibuted Systems FORTE'2001
(Cheju Island, Korea). IFIP, Kluwer Academic Publishers, pp. 377�392,
full version available as INRIA Research Report RR-4223.

[24] Garavel, H., Lang, F., Mateescu, R., 2002. Compiler constr uct ion us-
ing LOTOS NT. In: Horspool, N. (Ed.), Proceedings of the 11th In-
ternat ional Conferenceon Compiler Constr uct ion (CC'2002), Grenoble,
France. Vol. 2304 of Lecture Notes in Computer Science. Springer, pp.
9�13.

61

[25] Garavel, H., Lang, F., Mateescu, R., Apr. 2015. Composit ional Veri� -
cat ion of Asynchronous Concurrent Systems Using CADP. Acta Infor-
mat ica 52(4), 337�392.

[26] Garavel, H., Lang, F., Mateescu, R., Serwe, W., 2013. CADP 2011:
A toolbox for t he constr uct ion and analysis of distr ibuted processes.
Springer Internat ional Journal on Software Tools for Technology Trans-
fer (STTT) 15 (2), 89�107.

[27] Garavel, H., Sighireanu, M., 1999. A graphical parallel composit ion op-
erator for processalgebras. In: Wu, J., Gao, Q., Chanson, S. T. (Eds.),
Proceedingsof theJoint Internat ional Conferenceon Formal Descript ion
Techniques for Distr ibuted Systems and Communicat ion Protocols, and
Protocol Speci� cat ion, Test ing, and Veri� cat ion (FORTE/ PSTV'99),
Be¼ing, China. IFIP, Kluwer Academic Publishers, pp. 185�202.

[28] Garavel, H., Viho, C., Zendri, M., 2001. System design of a CC-Numa
mult iprocessor architecture using formal speci� cat ion, model-checking,
co-simulat ion, and test generat ion. Springer Internat ional Journal on
Software Tools for Technology Transfer 3 (3), 314�331, also available as
INRIA Research Report RR-4041.

[29] Havender, J., 1968. Avoiding deadlock in mult itasking systems. IBM
systems journal 7 (2), 74�84.

[30] Holzmann, G. J., 2004. The SPIN model checker: Primer and reference
manual. Vol. 1003. Addison-Wesley Reading.

[31] ISO/ IEC, 1989. LOTOS � A formal descript ion technique based on
the temporal ordering of observat ional behaviour. Internat ional Stan-
dard 8807, Internat ional Organizat ion for Standardizat ion � Informa-
t ion Processing Systems � Open Systems Interconnect ion, Geneva.

[32] ISO/ IEC, 2001. Enhancements to LOTOS (E-LOTOS). Internat ional
Standard 15437:2001, Internat ional Organizat ion for Standardizat ion �
Informat ion Technology, Geneva.

[33] Jard, C., Jéron, T., Aug. 2005. Tgv: Theory, principles and algorithms
� a tool for t he automat ic synthesis of conformance test cases for non-
determinist ic react ive systems. Springer Internat ional Journal on Soft -
ware Tools for Technology Transfer (STTT) 7 (4), 297�315.

62

[34] Jongmans, S. T. Q., Sant ini, F., Arbab, F., 2014. Part ially-distr ibuted
coordinat ion with Reo. In: Proceedings of the 22nd Euromicro Interna-
t ional Conferenceon Parallel, Distr ibuted, and Network-Based Process-
ing (PDP'2014), Torino, Italy. pp. 697�706.

[35] Katz, G., Peled, D., 2010. Code mutat ion in veri� cat ion and automat ic
code correct ion. In: Proceedings of the Internat ional Conference on
Tools and Algorithms for t he Constr uct ion and Analysis of Systems
(TACAS'2010). Springer, pp. 435�450.

[36] Kumar, D., 1990. An implementat ion of n-party synchronizat ion using
tokens. In: Proceedings of the 10th Internat ional Conference on Dis-
tr ibuted Comput ing Systems (ICDCS'1990), Paris, France. pp. 320�327.

[37] Lamport , L., 2001. Paxos madesimple. ACM Sigact News 32(4), 18�25.

[38] Lang, F., 2005. EXP.OPEN 2.0: A � exible tool integrat ing part ial or-
der, composit ional, and on-the-� y veri� cat ion methods. In: van de Pol,
J., Rom¼n, J., Smith, G. (Eds.), Proceedings of the 5th Internat ional
Conferenceon Integrated Formal Methods (IFM'2005), Eindhoven, The
Netherlands. Vol. 3771 of Lecture Notes in Computer Science. Springer,
pp. 70�88, full version available as INRIA Research Report RR-5673.

[39] Lantr eibecq, E., Serwe, W., 2011. Model checking and co-simulat ion of
a dynamic task dispatcher circuit using CADP. In: Salaün, G., Schätz,
B. (Eds.), Proceedings of the 16th Internat ional Workshop on Formal
Methods for Industr ial Crit ical Systems (FMICS 2011), Trento, Italy.
Vol. 6959 of Lecture Notes in Computer Science. Springer, pp. 180�195.

[40] Lockefeer, L., Willi ams, D. M., Fokkink, W. J., 2016. Formal speci� -
cat ion and veri� cat ion of TCP extended with the window scale opt ion.
Science of Computer Programming 118, 3�23.

[41] Lö� er, S., 1996. From speci� cat ion to implementat ion: A PROMELA
to C compiler. Project Report Ecole Nat ionale Supérieure des Télécom-
municat ions.

[42] Mañas, J. A., de Miguel, T., Salvachúa, J., Azcorra, A., 1993. Tool sup-
port t o implement LOTOS formal speci� cat ions. Computer Networks
and ISDN Systems 25 (7), 815�839.

63

[43] Mateescu, R., Garavel, H., Jul. 1998. Xt l: A meta-language and tool for
temporal logic model-checking. In: Margaria, T. (Ed.), Proceedings of
the Internat ional Workshop on Software Tools for Technology Transfer
STTT '98 (Aalborg, Denmark). BRICS, pp. 33�42.

[44] Mateescu, R., Sighireanu, M., Mar. 2003. E� cient on-the-� y model-
checking for regular alternat ion-freemu-calculus. Sci. Comput. Program-
ming 46(3), 255�281.

[45] Mateescu, R., Thivolle, D., 2008. A model checking language for con-
current value-passing systems. In: Cuellar, J., Maibaum, T., Sere, K.
(Eds.), Proceedings of the 15th Internat ional Symposium on Formal
Methods (FM'08), Turku, Finland. Vol. 5014 of Lecture Notes in Com-
puter Science. Springer, pp. 148�164.

[46] Montesi, F., Yoshida, N., 2013. Composit ional choreographies. In:
D'Argenio, P. R., Melgratt i, H. C. (Eds.), Proceedings of the 24th In-
ternat ional Conference on Concurrency Theory (CONCUR'13) Buenos
Aires, Argent ina. Vol. 8052 of Lecture Notes in Computer Science.
Springer, pp. 425�439.

[47] Nestmann, U., Pierce, B. C., 1996. Decoding choice encodings. In: Mon-
tanari, U., Sassone, V. (Eds.), Proceedings of the7th Internat ional Con-
ferenceon Concurrency Theory (CONCUR'96), Pisa, Italy. Vol. 1119 of
Lecture Notes in Computer Science. Springer, pp. 179�194.

[48] Ng, N., Yoshida, N., 2014. Pabble: Parameterised scribble for parallel
programming. In: 22nd Euromicro Internat ional Conferenceon Parallel,
Distr ibuted, and Network-Based Processing (PDP'2014), Torino, Italy.
IEEE Computer Society, pp. 707�714.

[49] Oliveira, M. V. M., deMedeiros Júnior, I. S., Woodcock, J., 2013. A ver-
i� ed protocol to implement mult i-way synchronisat ion and interleaving
in CSP. In: Hierons, R. M., Merayo, M. G., Bravett i, M. (Eds.), Pro-
ceedings of the 11th Internat ional Conference on Software Engineering
and Formal Methods (SEFM'2013), Madrid, Spain. Vol. 8137 of Lecture
Notes in Computer Science. Springer, pp. 46�60.

[50] Ongaro, D., Ousterhout , J., 2013. Safety proof and formal speci� cat ion
for Raft .
URL http://ramcloud.stanford.edu/~ongaro/raftproof.pdf

64

[51] Ongaro, D., Ousterhout , J., 2014. In search of an understandable
consensus algorithm. In: Proceedings of the USENIX Annual Technical
Conference (USENIX ATC'2014). USENIX Associat ion, Philadelphia,
PA, pp. 305�319.
URL https://www.usenix.org/conference/atc14/
technical-sessi%ons/presentation/ongaro

[52] Park, D., 1981. Concurrency and automata on in�n ite sequences. In:
Deussen, P. (Ed.), Theoret ical Computer Science. Vol. 104 of Lecture
Notes in Computer Science. Springer, pp. 167�183.

[53] Parrow, J., Sjödin, P., 1996. Designing a mult iway synchronizat ion pro-
tocol. Computer communicat ions 19 (14), 1151�1160.

[54] Pérez, J. A., Corchuelo, R., Toro, M., 2004. An order-based algorithm
for implement ing mult iparty synchronizat ion. Concurrency - Pract ice
and Experience 16 (12), 1173�1206.

[55] Peters, K., Nestmann, U., Goltz, U., 2013. On distr ibutabili ty in process
calculi. In: Felleisen, M., Gardner, P. (Eds.), Proceedings of the 22nd
European Symposium on Programming (ESOP'2013), Rome, Italy. Vol.
7792 of Lecture Notes in Computer Science. Springer, pp. 310�329.

[56] Proença, J., Clarke, D., de Vink, E., Arbab, F., 2012. Dreams: A
framework for distr ibuted synchronous coordinat ion. In: Proceedings of
the 27th Internat ional Symposium on Applied Comput ing (SAC'2012),
Trento, Italy. ACM.

[57] Quilbeuf, J., 2013. Distr ibuted implementat ions of component-based
systems with priorit ized mult iparty interact ions. Ph.D. thesis, Univer-
sité de Grenoble.

[58] Schneider, F. B., 1990. Implement ing fault -tolerant services using the
state machine approach: A tutorial. ACM Comput ing Surveys 22 (4),
299�319.

[59] Sharma, A., 2013. A re�n ement calculus for PROMELA. In: Proceed-
ings of the 18th Internat ional Conference on Engineering of Complex
Computer Systems (ICECCS'2013). IEEE, pp. 75�84.

65

[60] Sighireanu, M., 1999. Contr ibut ion à la dé�n it ion et à l'i mplémentat ion
du langage � Extended LOTOS� . Thèse de Doctorat , Université Joseph
Fourier, Grenoble.

[61] Sisto, R., Ciminiera, L., Valenzano, A., 1991. A protocol for mult iren-
dezvous of LOTOS processes. IEEE Transact ions on Computers 40 (4),
437�447.

[62] Sjödin, P., 1991. From LOTOS speci� cat ions to distr ibuted implemen-
tat ions. Ph.D. thesis, Depart ment of Computer Science, University of
Uppsala (Sweden).

[63] Taubner, D., 1987. On the implementat ion of Petr i nets. In: Rozenberg,
G. (Ed.), Proceedings of the 8th European Workshop on Applicat ions
and Theory of Petr i Nets, Zaragoza, Spain. Vol. 340 of Lecture Notes in
Computer Science. Springer, pp. 418�434.

[64] Winkowski, J., 1983. A distr ibuted implementat ion of Petr i nets. Tech.
Rep. 518(1983), Polish Academy of Science, Inst itute of Computer Sci-
ence, Warsaw.

[65] Yasumoto, K., Higashino, T., Taniguchi, K., 2001. A compiler t o im-
plement LOTOS speci� cat ions in distr ibuted environments. Computer
Networks 36 (2), 291�310.

66

