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Abstract

We present an efficient algorithm for bisimulation equivalence. Generally, bisimula-
tion equivalence can be tested in O(mn) for a labeled transition system with m transitions
and n states. In order to come up with a more efficient algorithm, we establish a rela-
tionship between bisimulation equivalence and the relational coarsest partition problem,
solved by Paige & Tarjan in O(m log n) time. Given an initial partition and a binary
relation, the problem is to find the coarsest partition compatible with them. Computing
bisimulation equivalence can be viewed both as an instance and as a generalization of this
problem: an instance, because only the universal partition is considered as an initial par-
tition and a generalization since we want to find a partition compatible with a family of
binary relations instead of one single binary relation. We describe how we have adapted
the Paige & Tarjan algorithm of complexity O(m log n) to minimize labeled transition
systems modulo bisimulation equivalence. This algorithm has been implemented in C
and is used in Aldébaran, a tool for the verification of concurrent systems.

1 Introduction

Bisimulation equivalence plays a central role in the verification of concurrent systems based
on equivalence relations between labeled transition systems [12]. Many theories of equiva-
lence for concurrent systems have been proposed in the literature. All these equivalences are
stronger than trace equivalence and weaker than strong bisimulation equivalence, or shortly,
bisimulation equivalence. For example, observational [12], acceptance [8], failure [13] and
testing equivalences [9], [10] belong to this class of equivalences. Usually, the problem of
deciding these equivalences for two labeled transition systems can be reduced to the one of
computing bisimulation equivalence between canonical forms of these systems [5]. Indeed,
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the computation of bisimulation can be used for reducing to a canonical form with respect to
the number of states and for comparing canonical forms. Thus, an efficient algorithm com-
puting bisimulation equivalence reveals itself quite useful for deciding the other equivalence
relations [2], [3], [10], [11].
Kanellakis and Smolka [10] studied the connection between the relational coarsest partition
problem and the bisimulation equivalence. They proposed an algorithm running in O(mn)
time. For the case in which the image set sizes are bounded by a constant c, they gave
an algorithm running in O(c2n log n) time by generalization of the Hopcroft algorithm com-
puting the minimum state deterministic finite automaton. In [11], the connection between
the relational coarsest partition problem and parametrized bisimulations is stated. More
recently, Paige and Tarjan proposed an algorithm to solve the relational coarsest partition
problem in O(m log n) time. We present an adapted version of this last algorithm computing
the coarsest partition problem with respect to the family of binary relations (Ta)a∈A instead
of one binary relation.
In section 2 we recall properties of bisimulation relations. The greatest bisimulation can be
obtained as a maximal fixpoint of a monotonic operator on the binary relations on Q [12].
This maximal fixpoint is an equivalence relation on Q. In section 3, we describe the many re-
lational coarsest partition problem and the relationship between the solution and the greatest
bisimulation. We give a formal specification of the many relational coarsest partition prob-
lem from a characteristic property of the compatibility of a partition with a family of binary
relations. This allows us to derive an algorithm which is correct by construction. This algo-
rithm is described in section 4. In addition, we present measures performed on Aldébaran,
a tool for the verification of concurrent systems [5], using this algorithm.

2 Bisimulations

A labeled transition system is a quadruple S = (Q,A, T, q0), where Q is a set of states,
A is a finite set of actions, T ⊆ Q × A × Q is the transition relation and q0 is the initial
state. For each a ∈ A, the transition relation Ta is considered to be either a binary re-
lation on Q: Ta = {(p, q) | (p, a, q) ∈ T} or a function Q → 2Q: Ta[p] = {q | (p, a, q) ∈ T}.
We also use the notations: p

a
−→ q for (p, a, q) ∈ T , T−1

a [q] = {p | (p, a, q) ∈ T} and
T−1

a [B] = ∪{T−1
a [q] | q ∈ B} for B ⊆ Q. | X | denotes the number of elements of the set X.

T is image-finite if ∀a ∈ A . ∀q ∈ Q . T−1
a [q] is finite. By convention, n denotes the number

of elements of Q, m denotes the number of elements of T and c the maximum for a ∈ A and
q ∈ Q of the image set sizes | Ta[q] |.
In order to compare or to minimize labeled transition systems, we recall the notion of bisim-
ulation. Intuitively, two states p and q are bisimilar if for each state p′ reachable from p by
execution of an action a there is a state q ′, reachable from q by execution of the same action
a such that p′ and q′ are bisimilar and symmetrically.

Definition 2.1 Given a labeled transition system S = (Q, A, T, q0), a binary relation
ρ ⊆ Q × Q is a bisimulation if and only if:
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∀(p1, p2) ∈ ρ . ∀a ∈ A .

∀r1 . (p1
a

−→ r1 ⇒ ∃r2 . (p2
a

−→ r2 ∧ (r1, r2) ∈ ρ)) ∧
∀r2 . (p2

a
−→ r2 ⇒ ∃r1 . (p1

a
−→ r1 ∧ (r1, r2) ∈ ρ))

The set of bisimulations on Q, ordered by inclusion has a maximal element, which may be
obtained as a maximal fixpoint of an operator Ψ [14]:
For each ρ ∈ Q × Q, we can define Ψ(ρ) ⊆ Q × Q as
Ψ(ρ) = {(p1, p2) | ∀a ∈ A .

∀r1 . (p1
a

−→ r1 ⇒ ∃r2 . (p2
a

−→ r2 ∧ (r1, r2) ∈ ρ)) ∧
∀r2 . (p2

a
−→ r2 ⇒ ∃r1 . (p1

a
−→ r1 ∧ (r1, r2) ∈ ρ))}.

ρ is a bisimulation if and only if ρ ⊆ Ψ(ρ). Ψ is a monotonic operator on the complete lattice
of binary relations on Q, under inclusion. If T is image-finite then Ψ is ∩–continuous [11]
(i.e. Ψ(

⋂

i∈I ρi) =
⋂

i∈I Ψ(ρi) for each decreasing sequence {ρi | i ∈ I}) and has a maximal
fixpoint:

ρΨ =
⋂

∞

i=0 Ψi(Q × Q)

which may be obtained by computing the limit of the sequence (ρr)r∈N such that:

ρ0 = Q × Q

ρr+1 = Ψ(ρr)

Proposition 2.1 ρΨ is an equivalence relation on (or a partition of) Q.

Proof. ρ being an equivalence relation, Ψ(ρ) is an equivalence relation. 2

3 Relational Coarsest Partition Problem

In this section, we consider a labeled transition system S = (Q,A, T, q0). We represent an
equivalence relation ρ on Q as a partition ρ = {B1, ..., Bn} where each Bi represents one of
its equivalence classes
(i.e. ∀x, y ∈ Q . (x, y) ∈ ρ if and only if ∃Bi . (x ∈ Bi ∧ y ∈ Bi)).
A partition ρ′ is a refinement of a partition ρ, (or ρ is coarser than ρ′) ρ′ v ρ, if and only if:
∀B′ ∈ ρ′ . ∃B ∈ ρ . (B ′ ⊆ B).
Consider a partition ρI on Q. The set of refinements of ρI , ordered by v, forms a complete
lattice, L(ρI) with

• ρI as the unique maximum element,

• {{p} | p ∈ Q} as the unique minimum element,

• u{ρj | j ∈ J} = {∩j∈JBj | Bj ∈ ρj} as the greatest lower bound of
{ρj | j ∈ J ∧ ρi v ρI},
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• t{ρj | j ∈ J} = u{ρ | ρ v ρI ∧ ∀j ∈ J . ρj v ρ}, as the least upper bound of
{ρj | j ∈ J ∧ ρi v ρI}.

Note that L(ρI) is a sublattice of L({Q}), the complete lattice of partitions of Q.

Definition 3.1 Given an equivalence relation ρ= {Bi | i ∈ J} on Q, ρ is compatible with
Ta if and only if
∀i, j ∈ J . ∀p, q ∈ Bi . (Ta[p] ∩ Bj 6= ∅ ⇔ Ta[q] ∩ Bj 6= ∅).

We say that ρ is compatible with T if and only if ρ is compatible with Ta, for each a ∈ A.

Proposition 3.1 Given an equivalence relation ρ = {Bi | i ∈ J} on Q, ρ is compatible with
T if and only if it is a bisimulation.

Proof Ta[p] ∩ Bj 6= ∅ is logically equivalent to ∃r ∈ Bj . p
a

−→ r. Thus, we can rewrite the
definition of compatibility as follows:
∀i, j ∈ J . ∀p, q ∈ Bi . ∀a ∈ A

∀r1 . (r1 ∈ Bj ∧ p1
a

−→ r1 ⇒ ∃r2 ∈ Bj . p2
a

−→ r2) ∧

∀r2 . (r2 ∈ Bj ∧ p2
a

−→ r2 ⇒ ∃r1 ∈ Bj . p1
a

−→ r1).
By the fact that ρ is a partition, the above property is equivalent to the definition of bisim-
ulation.
2

Let us now consider the relational coarsest partition problem:

Given a partition ρ of a set Q and a family of binary relations (Ta)a∈A over Q,
find the coarsest refinement ρ′ of ρ such that ρ′ is compatible with (Ta) for each
a ∈ A.

Since the space of refinements of a partition is a complete lattice, a unique coarsest partition
exists. The following proposition gives a characteristic property of compatibility.

Proposition 3.2 Given an equivalence relation ρ on Q, ρ is compatible with T if and only
if
∀a ∈ A . ∀B,B ′ ∈ ρ . (B′ ⊆ T−1

a [B] ∨ B′ ∩ T−1
a [B] = ∅).

Proof. The above property is logically equivalent to the following property:
∀a ∈ A . ∀B,B ′ ∈ ρ . (B′ ∩ T−1

a [B] 6= ∅ ⇒ B′ ⊆ T−1
a [B]).

Thus, it is easy to prove that this property is equivalent to the definition of compatibility.
2

Proposition 3.2 is used hereafter as a basis for the design of an algorithm computing partitions
which are bisimulations. We define the properties π, πB and πa,B for B ⊆ Q and a ∈ A.

πa,B(ρ) = ∀X ∈ ρ . (X ∩ T−1
a [B] = ∅ ∨ X ⊆ T−1

a [B])

πB(ρ) = ∀a ∈ A . πa,B(ρ)

π(ρ1, ρ2) = ∀B ∈ ρ1 . πB(ρ2)
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The following figure illustrates expression of π(ρ1, ρ2) in terms of πB(ρ2) and πa,B(ρ2).

∀B ∈ ρ1 .

πB(ρ2)
︷ ︸︸ ︷

∀a ∈ A .

πa,B(ρ2)
︷ ︸︸ ︷

∀X ∈ ρ2 . X ∩ T−1
a [B] = ∅ ∨ X ⊆ T−1

a [B]
︸ ︷︷ ︸

π(ρ1,ρ2)

The property πB corresponds to Paige’s and Tarjan’s notion of stability. Note that ρ is
compatible with T if and only if π(ρ, ρ). For computing such relations we define an operator
Φ in the following manner:

• First, for a ∈ A and B ⊆ Q, we define an operator Φa,B that refines the partition
ρ with respect to the class B and the action a. This operator is such that, for any
partition ρ, the property πa,B(Φa,B(ρ)) holds.

• Second, we define an operator ΦB from the operators Φa,B , for a ∈ A. This operator
is such that, for any partition ρ, the property πB(ΦB(ρ)) holds.

• Finally, an operator Φ is obtained from the operator ΦB, for B ∈ ρ. This operator is
such that, π(ρ,Φ(ρ, ρ)) holds.

Definition 3.2 For a ∈ A and B ⊆ Q, we define the operator Φa,B as follows:
Φa,B(ρ) = {X ∩ T−1

a [B] | X ∈ ρ} ∪ {X − T−1
a [B] | X ∈ ρ}.

Proposition 3.3 properties of Φa,B

Let a, a1 and a2 be elements of A, B, Bi, Bj subsets of Q and ρ, ρ1, ρ2 partitions of Q.

(i) Φa,B(ρ) is a partition of Q,

(ii) monotonicity: ρ1 v ρ2 ⇒ Φa,B(ρ1) v Φa,B(ρ2)

(iii) Φa,B(ρ) is a refinement of ρ,

(iv) Φa1,Bi
◦ Φa2,Bj

= Φa2,Bj
◦ Φa1,Bi

,

(v) πa,B(Φa,B(ρ)).

(vi) πa,B(ρ) ⇔ Φa,B(ρ) = ρ.

Proof. (i) and (iii): An element of ρ either is in Φa,B(ρ) or is split into two pieces, each of
them belonging to Φa,B(ρ).
(ii) holds by properties of set operators.
(iv) Let X ∈ (Φa1,Bi

◦ Φa2,Bj
)(ρ), Y ∈ ρ and X ⊆ Y . We must consider four cases :

– X = Y ∩ T−1
a1

[Bi] ∩ T−1
a2

[Bj ] = Y ∩ T−1
a2

[Bj ] ∩ T−1
a1

[Bi],
– X = (Y ∩ T−1

a1
[Bi]) − T−1

a2
[Bj ] = (Y − T−1

a2
[Bj]) ∩ T−1

a1
[Bi],
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– X = (Y − T−1
a1

[Bi]) ∩ T−1
a2

[Bj ] = (Y ∩ T−1
a2

[Bj]) − T−1
a1

[Bi],
– X = (Y − T−1

a1
[Bi]) − T−1

a2
[Bj ] = (Y − T−1

a2
[Bj]) − T−1

a1
[Bi].

In the four cases, X ∈ (Φa2,Bj
◦ Φa1,Bi

)(ρ).Thus,
Φa1,Bi

◦ Φa2,Bj
(ρ) v Φa2,Bj

◦ Φa1,Bi
(ρ). Φa2,Bj

◦ Φa1,Bi
(ρ) v Φa1,Bi

◦ Φa2,Bj
(ρ) follows by

symmetric reasoning.

(v) holds by construction of Φa,B.
(vi) ⇒:From (iii), it is sufficient to prove that πa,B(ρ) ⇒ ρ v Φa,B(ρ) . Let X ∈ ρ. Since
πa,B(ρ), we have ∀a ∈ A . X ⊆ T−1

a [B] ∨ X ∩ T−1
a [B] = ∅ . In the first case, X ∩ T−1

a [B] =
X, and in the second case, X − T−1

a [B] = X. Thus, X ∈ Φa,B(ρ).
⇐: This follows from (v). 2

Given a subset B of Q and a partition ρ, the sequence of refinements with respect to B and
a, for a ∈ A, may be computed in any order (property (iv) of proposition 3.3). We define an
operator ΦB which refines a partition for all a ∈ A, with respect to B.

Definition 3.3 Let a1, ..., an be the elements of the set A. For B ⊆ Q, we define an operator
ΦB such that:
ΦB = Φa1,B ◦ ... ◦ Φan,B.

Proposition 3.4 properties of ΦB

Let B, B1 and B2 be subsets of Q and ρ, ρ1, ρ2 partitions of Q.

(i) ΦB(ρ) is a partition of Q,

(ii) monotonicity: ρ1 v ρ2 ⇒ ΦB(ρ1) v ΦB(ρ2),

(iii) ΦB(ρ) is a refinement of ρ,

(iv) ΦB1
◦ ΦB2

= ΦB2
◦ ΦB1

,

(v) πB(ΦB(ρ)).

(vi) πB(ρ) ⇔ ΦB(ρ) = ρ

(vii) ΦB1
◦ ΦB2

(ρ) v ΦB1∪B2
(ρ),

(viii) ΦB1
◦ ΦB2

◦ ΦB1∪B2
= ΦB1

◦ ΦB2
,

Proof. (i)–(iv) follow from properties of operator Φa,B.
(v) ΦB(ρ) = (Φa1,B ◦ ... ◦ Φai,B ◦ ... ◦ Φan,B)(ρ), by definition. From the definition of
ΦB(ρ) and property (v) of proposition 3.3, we get πa1,B(ΦB(ρ)) . Furthermore, from prop-
erty (iv) of proposition 3.3, we deduce: ΦB(ρ) = (Φai,B ◦ ... ◦ Φa1,B ◦ ... ◦ Φan,B)(ρ) . Thus,
∀a ∈ A . πa,B(ΦB(ρ)) .
(vi) πB(ρ) ⇔ ∀a ∈ A . πa,B(ρ) ⇔ ∀a ∈ A . ρ = Φa,B(ρ), from property (vi) of proposi-
tion 3.3. Thus, ρ = ΦB(ρ) .
(vii) first, we prove that (Φa,B1

◦ Φa,B2
)(ρ) v Φa,B1∪B2

(ρ) (1):
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let X ∈ (Φa,B1
◦ Φa,B2

)(ρ), Y ∈ ρ and X ⊆ Y . We must consider four cases:
X = Y ∩ T−1

a [B1] ∩ T−1
a [B2] ⊆ Y ∩ (T−1

a [B1] ∪ T−1
a [B2]) = Y ∩ (T−1

a [B1 ∪ B2]) ∈ Φa,B1∪B2
(ρ)

X = (Y ∩ T−1
a [B1]) − T−1

a [B2] ⊆ Y ∩ T−1
a [B1] ⊆ Y ∩ T−1

a [B1 ∪ B2] ∈ Φa,B1∪B2
(ρ)

X = (Y ∩ T−1
a [B2]) − T−1

a [B1] ⊆ Y ∩ T−1
a [B2] ⊆ Y ∩ T−1

a [B1 ∪ B2] ∈ Φa,B1∪B2
(ρ)

X = (Y − T−1
a [B1]) − T−1

a [B2] = Y − (T−1
a [B1] ∪ T−1

a [B2]) = Y − T−1
a [B1 ∪ B2] ∈ Φa,B1∪B2

(ρ)
then, from the fact that the Φai,Bj

commute with each other we have:
ΦB1

◦ ΦB2
(ρ) = Φa1,B1

◦ ... ◦ Φan,B1
◦ Φa1,B2

◦ ... ◦ Φan,B2
(ρ) =

Φa1,B1
◦ Φa1,B2

◦ ... ◦ Φai,B1
◦ Φai,B2

◦ ... ◦ Φan,B1
◦ Φan,B2

(ρ) v
Φa1,B1∪B2

◦ ... ◦ Φai,B1∪B2
◦ ... ◦ Φan,B1∪B2

= ΦB1∪B2
(ρ) (by monotonicity of Φai,Bj

and (1)).

(viii) Let ρ be a partition of Q. From (iii) and (iv), we have
(ΦB1

◦ ΦB2
◦ ΦB1∪B2

)(ρ) v ΦB1
◦ ΦB2

(ρ). Conversely, from (ii), (v), (vi) and (vii)
(ΦB1

◦ ΦB2
)(ρ)= (ΦB1

◦ ΦB2
◦ ΦB1

◦ ΦB2
)(ρ) v (ΦB1

◦ ΦB2
◦ ΦB1∪B2

)(ρ)

2

Given a partition ρ, the sequence of refinements with respect to B, for B ∈ ρ, may be
computed in any order (property (iv) of proposition 3.4). When a class B is split into B1

and B2, refining with respect to B is useless (property (viii) of proposition 3.4).

Definition 3.4 Let ρ = {Bi | 1 ≤ i ≤ n} be a family of subsets of Q and ρ′ be partition of
Q. We define an operator Φ such that:
Φ(ρ, ρ′) = (ΦB1

◦ ... ◦ ΦBn)(ρ′)

Proposition 3.5 properties of Φ
Let B be a subset of Q and ρ, ρ1, ρ2 partitions of Q.

(i) Φ(ρ1, ρ2) is a partition of Q,

(ii) left–monotonicity: ρ1 v ρ2 ⇒ Φ(ρ1, ρ) v Φ(ρ2, ρ),

(iii) right–monotonicity: ρ1 v ρ2 ⇒ Φ(ρ, ρ1) v Φ(ρ, ρ2),

(iv) Φ(ρ1, ρ2) is a refinement of ρ2,

(v) π(ρ1,Φ(ρ1, ρ2)),

(vi) π(ρ1, ρ2) ⇔ Φ(ρ1, ρ2) = ρ2

(vii) if B ∈ ρ1 and πB(ρ2) then Φ(ρ1, ρ2) = Φ(ρ1 − {B}, ρ2).

Proof. (i)–(vi) follow from properties of operator ΦB.
(vii) By definition of Φ, we have: Φ(ρ1, ρ2) = ΦB(Φ(ρ1 − {B}, ρ2)). It is easy to see that:
∀ρ1, ρ2, partitions of Q ρ1 v ρ2 ∧ πB(ρ2) ⇒ πB(ρ1). From πB(ρ2) and Φ(ρ1 − {B}, ρ2) v ρ2,
we have πB(Φ(ρ1 − {B}, ρ2)). From property (vi) of proposition 3.4, we deduce
ΦB(Φ(ρ1 − {B}, ρ2)) = Φ(ρ1 − {B}, ρ2).

2
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The set of partitions of Q, ordered by refinement is a complete lattice. From the operator
Φ, we define hereafter an operator Φ̃ on the complete lattice of partitions of Q. Φ̃ is shown
to be u–continuous. The maximal fixpoint of Φ̃, for a given partition ρI , is the coarsest
refinement of ρI compatible with the transition relation.

Proposition 3.6 Let Φ̃(X) = Φ(X,X).

(i) monotonicity: ρ1 v ρ2 ⇒ Φ̃(ρ1) v Φ̃(ρ2),

(ii) if T−1 is image-finite then Φ̃ is u–continuous,

(iii) Given an initial partition ρ, the maximal fixpoint of Φ̃, i.e. the coarsest
partition compatible with (Ta)a∈A and ρ, is the limit of the sequence:

ρ0 = ρ

ρr+1 = Φ̃(ρr)

Proof. We prove the property (ii) u–continuity. By monotonicity of Φ̃, we have
Φ̃(ui∈Iρi) v ui∈IΦ̃(ρi).
Conversely, we prove: ui∈IΦ̃(ρi) v Φ̃(ui∈Iρi). Let x ∈ ui∈IΦ̃(ρi), a ∈ A and y ∈ ui∈Iρi

such that x ∩ T−1
a [y] 6= ∅. We have to prove that x ⊆ T−1

a [y]. There exist two decreasing se-
quences (xi)i∈I and (yi)i∈I such that ∀i ∈ I . xi ∈ Φ̃(ρi) ∧ ∩i∈Ixi = x and ∀i ∈ I . yi ∈ ρi ∧
∩i∈Iyi = y. We have x ∩ T−1

a [y] 6= ∅ ⇔ ∀i ∈ I . xi ∩ T−1
a [yi] 6= ∅. By property (v) of propo-

sition 3.5, ∀i ∈ I . xi ∈ Φ̃(ρi) ∧ xi ∩ T−1
a [yi] 6= ∅ ∧ yi ∈ ρi implies xi ⊆ T−1

a [yi]. Furthermore,
from the fact that T−1

a is ∩–continuous [17], ∩i∈Ixi ⊆ ∩i∈IT
−1
a [yi] = T−1

a [∩i∈Iyi] = T−1
a [y].

We conclude: x ⊆ T−1
a [y].

2

The following proposition establishes that the maximal fixpoints of Ψ (see section 2) and Φ̃
are the same.

Proposition 3.7 Given a labeled transition system S = (Q, A, T, q0), the maximal fixpoint
ρΨ of the operator Ψ is the maximal fixpoint ρΦ̃, where ρ̃0 = {Q}.

Proof. We have ρΨ v ρΦ̃ since π(ρΨ, ρΨ). Conversely, we have ρΦ̃ v Ψ(ρΦ̃) thus ρΦ̃ v ρΨ.
2

4 Solution

In this section, the Paige & Tarjan algorithm is adapted in order to compute the maximal
fixpoint of Φ̃. The resulting algorithm has the same complexity as the original one. The
major difference between the two algorithms lies on the fact that a refinement step, i.e. the
computation of ΦB , is reduced to the computation of Φa,B in the original one. In other words,
a refinement step of our algorithm consists of repeating the Paige’s and Tarjan’s refinement
step, for each a ∈ A. Let S = (Q,A, T, q0) be a finite-state labeled transition system, ρI be
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a partition of Q, n = | Q | and m = | T |. We suppose that for all a in A, the image set
sizes | Ta[p] | are uniformly bounded by a constant c. The rest of the section is organized
as follows: first, we develop an abstract algorithm for computing the maximal fixpoint of Φ̃.
Then, we show how this algorithm can be implemented in O(mn) time, from the properties
of Φ, ΦB and Φa,B . Finally, from this algorithm we derive the adaptation of the Paige &
Tarjan algorithm.
The maximal fixpoint of Φ̃ is the limit of the sequence:

ρ0 = ρI

ρr+1 = Φ(ρr, ρr)

From property (v) of proposition 3.5, we have π(ρr, ρr+1). Thus, from property (viii) of
proposition 3.5 the following sequence has the same limit as the previous one:

ρ0 = ρI

W0 = ρI

ρr+1 = Φ(Wr, ρr)

Wr+1 = ρr+1 − ρr

We can derive an abstract algorithm for computing this limit:

W,ρ = ρI , ρI

repeat

W,ρ = Φ(W,ρ) − ρ,Φ(W,ρ) (1)
until W = ∅

The multiple-assignment prescribes that Φ(W,ρ) − ρ and Φ(W,ρ) must be computed before
executing the assignments W = Φ(W,ρ)− ρ and ρ = Φ(W,ρ). The elements of W are called
splitters. From the definition of Φ and the properties (v) and (viii) of the proposition 3.4, if
an element of W is split into subblocks, we need not partition with respect to B. Thus, we
consider W1 ∪ W instead of W , W1. We can replace the computation of Φ appearing in (1)
by the following one:
W1 = W

for each B ∈ W1

ρ,W,W1 = ΦB(ρ),ΦB(ρ) − ρ − {B},ΦB(ρ) ∩ W1 − {B}
From property (iv) of proposition 3.4, the refinements steps may be performed in any order.
We can transform the abstract algorithm into the following one:

W,ρ = ρI , ρI

repeat

choose any B ∈ W

replace ρ by ΦB(ρ)
replace W by (ΦB(ρ) − ρ) ∪ (ΦB(ρ) ∩ W ) − {B}

Finally, from the definition of Φa,B, we obtain the following algorithm in which W and Φa,B

are computed at the same time:
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W,ρ := ρI , ρI

repeat

choose and remove any B in W

for each a ∈ A

Ia,B = {X ∈ ρ | X ∩ T−1
a [B] 6= ∅ ∧ X 6⊆ T−1

a [B]}

I
1,2
a,B = {X ∩ T−1

a [B] | X ∈ Ia,B} ∪ {X − T−1
a [B] | X ∈ Ia,B}

ρ = ρ − Ia,B ∪ I
1,2
a,B

W = W − Ia,B ∪ I
1,2
a,B







Φa,B(ρ)







ΦB(ρ)

until W = ∅
This algorithm can be implemented in O(mn) time: W and Φa,B can be computed in
O(| B | +

∑

q∈B | T−1
a [q] |) time [15]. The algorithm terminates after at most n − 1 steps

[15]. The total cost of the algorithm is obtained by summing over all blocks B used for
refinement and over all elements in such blocks [1,15].
Let us consider the case in which | A | = 1. Paige & Tarjan presented an algorithm that
computes the coarsest refinement of ρ in O(m log n) time and in O(m) space [15]. In order to
reduce the size of W , they generalize the Hopcroft’s algorithm [1] that minimizes the number
of states of a deterministic finite automaton. Intuitively, the basic idea is to keep track of how
blocks of the partition are split into subblocks at each refinement step. Thus, a splitter B is
either a class (simple splitter) or a union of classes (compound splitter) such that ρ is stable
with respect to B. A splitter is regarded as a set expression. Their structures consist of the
binary associative operator ∪, which operands are either elements of the current partition
ρ or further expressions. A subexpression is either a splitter or a proper subexpression. If
X , Y are unions of classes of the current partition, we write X � Y to mean that X is a
subexpression of Y . Notice that an element of ρ occurs at most in one expression of W . We
describe hereafter how the computation of Φa,B is improved.

• If ρ is stable with respect to a splitter B (i.e. the property πa,B(ρ) holds) and B1 ⊆ B,
then Hopcroft’s “process the smaller half” idea may be exploited in order to perform
the refinement step with respect to B1 and B−B1. From property (v) of proposition 3.3
each set X ∈ ρ is either a subset of T−1

a [B] or disjoint from it. The refinement step
consists of the transformation of ρ with ΦB by replacing each X ∈ ρ ∧ X ⊆ T−1

a [B]
by the following sets:

X1 = (X ∩ T−1
a [B1]) − T−1

a [B − B1]
X2 = (X ∩ T−1

a [B − B1]) − T−1
a [B1]

X3 = X ∩ T−1
a [B1] ∩ T−1

a [B − B1]
(2)

X1 (resp. X2 and X3 is the subset of X whose successors are in B1 (resp. in B − B1

and together in B and B − B1. This decomposition may be obtained by searching
through the smaller set only, B1 say, and using the map infoB(a, p) = | Ta[p] ∩ B |, for
all p ∈ Q. X1, X2, X3, infoB1

and info(B−B1) can be computed in time | Ta[B1] |. The
sets X1, X2 and X3 are computed by applying one of the three following rules:

(i) if infoB1
(a, p) = infoB(a, p) then X1 := X1 ∪ {p}
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(ii) if infoB1
(a, p) = 0 then X2 := X2 ∪ {p}

(iii) if 0 < infoB1
(a, p) < infoB(a, p) then X3 := X3 ∪ {p}

Suppose that B is a compound splitter and B1 is a subexpression of B. The following
code computes Φa,B and W :

compute the maps infoB1
and info(B−B1)

for each set X such that X ∈ ρ ∧ X ⊆ T−1
a [B]

replace X byX1, X2andX3 as described in (2)
update Win the following manner

if X � Y then substitute (X1 ∪ X2 ∪ X3) for Xin Y

else add X1 ∪ X2 ∪ X3 to W

• if ρ is unstable with respect to B then the refinement step consists of the transformation
of ρ with ΦB by replacing each X ∈ ρ by the following sets:

X1 = X ∩ T−1
a [B1]

X2 = X − T−1
a [B1]

(3)

Suppose that B is a sample splitter. The following code computes Φa,B and W :

compute the map infoB

for each set X such that X ∈ ρ ∧ X 6⊆ T−1
a [B] ∧ X ∩ T−1

a [B] 6= ∅
replace X byX1andX2 as described in (3)
update Win the following manner

if X � Y then substitute (X1 ∪ X2) for Xin Y

else add X1 ∪ X2 to W

For the general case in which | A |> 1, the stability is expressed by the property πB. A
refinement step consists in repeating the previous one for each a ∈ A.

4.1 Algorithm

Several data structures are required to represent states, classes, splitters. Each state p points
to a list of couples (a, T−1

a [p]), where T−1
a [p] is represented as a list. This allows scanning

of the set T−1
a [p] in time proportional to its size. Each class of ρ has an associated integer

giving its size and points to a list its elements. Each state points to its predecessor in its
class (this allows deletion in O(1) time) and to the class containing it. We maintain a set
W of splitters. The refinement step with respect to B is performed according to (3) in the
first case whereas it is performed according to (2) in the second one. A compound splitter
B is represented as a binary tree with the infoB map associated with the root, and has B1

and B2 as children if B = B1 ∪ B2. For each class, we maintain a piece of information which
indicates whether it is in W or it is a leaf of a compound splitter. For each p ∈ Q and each
a ∈ A, we maintain a list of couples (B, infoB)which has at most c elements. The space
needed for the data structures is O(m). The algorithm consists of repeating the refinement
step with respect to B until W = ∅.
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Case 1: B is a class

A refinement step is performed as follows:
Step 1 Remove the element B from W .
For each a in A, perform the following two steps:
Step 2 (compute the set I = {X1 | ∃X ∈ ρ ∧ X1 = X ∩ T−1

a [B] 6= ∅}). Copy the elements
of B into a temporary set B ′. For each state p in T−1

a [B] move this p into a new class. (The
elements of a same class are moved into the same new class). Make each new class point to
its associated old class. During the scan of B ′, compute the map infoB .
Step 3 (update ρ and W ). After the step 2, each old class X contains the elements
X − T−1

a [B]. For each X1 in I perform the following statements:
If X = X1 (this is performed in O(1) time by the comparison between the numbers of the
elements of the old and new classes) make X point to X1.
For the case X 6= X1, make each element of the new class point to X1 by scanning X1, add
X1 to ρ and update W in the following manner: if X is in W then add X1 to W . If X is a
leaf of a compound splitter, it is replaced by a subtree whose root is the new node X12 and
whose leaves are X and X1: make X12 point to X and X1 and make X and X1 point back
to X12. (This is performed in O(1) time since the old class points to its father). If X is not
in W and X is not a leaf then create a new node X12 as previously and add it to W .
Case 2: B is a compound splitter B1 ∪ B2 (suppose that | X1 |≤| X2 |)
A refinement step is performed as follows:
Step 1 Remove B from W .
For each a in A, perform the following two steps:
Step 2 Compute the maps infoB1

by scanning the leaves of B1. During the same scanning,
decrement infoB , compute the set I = {X | X ∈ ρ ∧ X ⊆ T−1

a [B]} and copy elements of
the leaves in a temporary set B ′. After scanning all the leaves of B1, mark infoB2

as being
infoB . If B1 or B2 are nodes, add them to W .
Step 3 For each X in I, perform the following statement:
split X in X1, X2 and X3 by using infoB and infoB1

. if X = Xi (i.e. X is not split) for
some i = 1, 2, 3, then make X point to Xi else add the non-null classes among X1, X2 and
X3 to ρ. Update W in same manner that in the simple case except that if all the classes Xi

are non-null, then two nodes X123 and X23 are created such that X123 points to X1 and X23

and X23 points to X2 and X3.

4.2 Example

Consider the following labeled transition system (Q,A, T, q0):

• Q = {0, 1, 2, 3, 4, 5}

• A = {a, b, c}

• Ta[0] = {1}, Ta[1] = {2}, Ta[2] = {1}

• Tb[0] = {3}, Tb[1] = {3, 4}, Tb[2] = {4}
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• Tc[3] = {5}, Tc[4] = {5}

We start with universal partition 0 = {B0} where B0 = {0, 1, 2, 3, 4, 5} and W = {B0}. We
decompose infob in infoa,B , infob,B and infoc,B. We represent infoα,B with its graph.

1. refinement with respect to B0

(a) label a
T−1

a [B0] = {0, 1, 2}
B1 = {0, 1, 2}
B2 = {3, 4, 5}
infoa,B0

= (0, 1)(1, 1), (2, 1)
ρ = {B1, B2}
W = {(B0, B1, B2)}

(b) label b
T−1

b [B0] = {0, 1, 2}
ρ and W are not modified
infob,B0

= (0, 1)(1, 2), (2, 1)

(c) label c
T−1

c [B0] = {3, 4}
B3 = {3, 4}
B4 = {5}
infoa,B0

= (3, 1), (4, 1)
ρ = {B1, B3, B4}
W = {(B0, B1, B2), (B2, B3, B4)}

2. refinement with respect to (B0, B1, B2)
infoa,B1

= (0, 1)(1, 1), (2, 1) , infob,B1
= ∅ , infoc,B1

= ∅
infoa,B2

= ∅ , infob,B2
= infob,B0

, infoc,B2
= infoc,B0

ρ is not modified and W = {(B2, B3, B4)}

3. refinement with respect to (B2, B3, B4) | B4 |<| B3 |
infoa,B4

= infob,B4
= ∅ , infoc,B4

= infoc,B0

The partition is not modified and W = ∅.

5 Evaluation

We present measures carried out on experimentation of Aldébaran. Aldébaran [5] is a system
for verifying communicating systems, represented by labeled transition systems. It allows
the reduction and the comparison of labeled transition systems with respect to the following
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equivalence: bisimulation, observational, and acceptance equivalence. Various operations
such as parallel compositions of labeled transition systems are also made possible by using
different strategies of reductions. The algorithm presented in section 4 allows the reduction
of labeled transition systems with hundred thousands of transitions in some minutes.
Aldébaran may be interfaced with other systems which manipulate labeled transition sys-
tems. Aldébaran has a sample input format which is a list of triples representing the tran-
sition relation. For instance, Aldébaran is interfaced with a LOTOS compiler [7] and a
common object code produced by LUSTRE and ESTEREL compilers [4].
Aldébaran is written in C and runs on UNIX. Presently, the limit of the size of a labeled
transition system on a SUN 3/60 with 50 Mega-bytes of memory, is one million transitions,
because the memory cost of a transition is twenty bytes.
We give an example of reduction carried out by Aldébaran. The reduction is based on
observational equivalence. Reduction with respect to observational equivalence consists of
transforming the labeled transition system by computing transitive closure of the transition
relation labeled by τ [10] and finding the coarsest partition with respect to the transition
relation and the universal partition. The example is Milner’s problem of scheduling (see
[12], page 33). This example is interesting for evaluation purposes because the numbers of
states, transitions and equivalence classes grow in the same proportion when the number of
tasks increases. We give two specifications in Lotos [7]. We consider a ring of n elementary
identical components, called cyclers. A cycler specification in Lotos is:

process CYCLER[gi, ai, bi, gi+1 ] : noexit :=

gi ; ai ;

(( bi ; gi+1 ; CYCLER[ gi, ai, bi, gi+1])

[]

( gi+1 ; bi ; CYCLER[ gi, ai, bi, gi+1]))

endproc

A cycler should cycle endlessly as follows: (i) Be enabled by predecessor at gi, (ii) Receive
initiation request at ai (iii) Receive termination signal at bi and enable successor at gi + 1
in either order. We give two specifications of scheduler: the first one is such that the ai

and bi are visible whereas in the second one, only the ai are visible. (This last specification
expresses that the scheduler is observationally equivalent to (a1...an)ω). In both cases, we
give a table that summarizes the time (in seconds) spent for finding the coarsest partition
compatible with the transition relation and the universal partition.

5.1 First specification

specification SCHEDULER [a1, ..., an, b1, ..., bn ] : noexit behaviour

hide g1, ..., gn in

(cycler[g1, a1, b1, g2]

|[g1, g2]|

(
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...

cycler[gi, ai, bi, gi+1]

|[gi+1]|

...

(cycler[gn, an, bn, g1] ||| g1; stop)

...

))

where library cycler endlib

endspec

numbers of cyclers number of states number of transitions number of classes time

2 13 35 9 0.017s

3 37 139 25 0.05s

4 97 453 65 0.26s

5 241 1321 161 0.88s

6 577 3595 385 2.6s

7 1345 9339 897 7.28

8 3073 23465 2049 20.5s

9 6913 57687 4663 56.3s

10 15361 138111 10241 159.8s

5.2 Second specification

specification SCHEDULER [a1, ..., an] : noexit behaviour

hide g1, ..., gn, b1, ..., bn in

(cycler[g1, a1, b1, g2]

|[g1, g2]|

(

...

cycler[gi, ai, bi, gi+1]

|[gi+1]|

...

(cycler[gn, an, bn, g1] ||| g1; stop)

...

))

where library cycler endlib

endspec
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numbers of cyclers number of states number of transitions number of classes time

2 13 35 3 0.01s

3 37 325 4 0.05s

4 97 1465 5 0.15s

5 241 5851 6 0.6s

6 577 21853 7 1.9s

7 1345 78247 8 6.9s

8 3073 272209 9 24s

9 6913 927451 10 80s

Notice that in both cases, time increases quasi linearly with the number of transitions.

6 Conclusion

In this paper, we have formally established a description of bisimulation equivalence in
terms of the relational coarsest partition problem. We have presented an adaptation of the
Paige & Tarjan algorithm and its implementation. The new algorithm provides an efficient
decision procedure for other equivalence relations requiring the computation of bisimulation
equivalence.
In practice, this algorithm runs efficiently in the context of the verification of communicating
systems in which a state has a few number of successors.
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