
Symbolic Equivalence Checking ?

J.C. Fernandez, A. Kerbrat and L. Mounier

VERIMAG, B.P. 53 X, 38041 - Grenoble Cedex, France

Abstract. We describe the implementation, within ALDEBARAN of an al-
gorithmic method allowing the generation of a minimal labeled transition
system from an abstract model ; this minimality is relative to an equivalence
relation. The method relies on a symbolic representation of the state space.
We compute the minimal labeled transition system using the Binary Decision
Diagram structures to represent the set of equivalence classes. Some experi-
ments are presented, using a model obtained from LOTOS specifications.

1 Introduction

Program analysis is a part of process design whose purpose is to verify statically dy-
namic properties of the run time behaviour of a program. In this general framework,
we are interested in the verification of behavioural properties on a concurrent pro-
gram specified in the Lotos language [ISO87]. For this purpose, a possible approach
is to translate the program and the properties to be verified into suitable abstract
models, and to check the equivalence of these models under some abstraction cri-
teria. The abstract models considered in this work are labeled transition systems,
which provide behavioural descriptions of the programs and of the properties. The
equivalence relations chosen to compare these models are bisimulation relations, de-
fined by [Mil80], which are now widely used in the context of concurrent program
verification.
A bisimulation relation on a state space may be viewed either as a partition (the set
of its classes) or as a binary relation. According to the choice of the definition, two
algorithmic families can be considered to perform the equivalence checking. One of
them [PT87,KS90,BFH*92,LY92] is based on refinement principle: given an initial
partition, find the coarsest partition stable with respect to the transition relation.
The other is based on a cartesian product traversal from the initial state [FM91a,
GLZ89]. These algorithms are both applied on the whole state graph, and they
require an explicit enumeration of this state space. This approach leads to the well-
known state explosion problem. A possible solution is to reduce the state graph
before performing the check. Classical reduction algorithms already exist [Fer90,
KS90,PT87], but they can be applied only when the whole state space has been
computed, which limits their interest. In [BFH90], another reduction algorithm
is presented, namely the Minimal Model Generation Algorithm (MMG, for short).
This algorithm allows the minimization of the graph during its generation, thus
avoiding in part the state explosion problem. The main goal of this paper is to
present some implementation issues of this algorithm within the verification toolbox

? This work was partially supported by ESPRIT Basic Research Action “SPEC”

Cæsar-Aldébaran [FGM*92]. Several bisimulation relations are considered, such as
strong bisimulation, weak bisimulation and branching bisimulation.
The paper is organized as follows: first, we recall the definitions and notations used
throughout the paper, together with the MMG Algorithm. Then we present the
model used for our experiments, i.e., a net of transition systems represented by
means of Binary Decision Diagrams, BDDs for short. Finally, we give some results
obtained from the implementation of the algorithm within Aldébaran.

2 Definitions and Notations

We recall here the main definitions related to Labeled Transition Systems (LTS, for
short) and bisimulation relations, together with the associated notations.

Throughout the paper, we consider a LTS S = (Q, Aτ , {
a

−→}
a∈Aτ

, qinit) where: Q

is a set of program states, Aτ = A ∪ {τ} is a set of action names, where τ is a
distinguished name representing an internal action, →⊆ Q × Aτ × Q is the tran-
sition relation of the program, and qinit is the initial state of the program, i.e., a
distinguished element of Q.
Associated with the LTS S, we introduce the following notations:
P represents the lattice of partitions of Q:

– it is ordered by the refinement relation v: ρ v ρ′ iff ∀X ∈ ρ, ∃X ′ ∈ ρ′ . X ⊆ X ′

– its greatest lower bound operator is u: u
i
ρi = {T 6= ∅ | T = ∩

i
Xi and Xi ∈ ρi}

The pre- and post-condition functions from 2Q to 2Q, for a given a ∈ Aτ , are defined
as usual:

prea(X) = {q ∈ Q | ∃q′ ∈ X such that q
a

−→ q′}

posta(X) = {q ∈ Q | ∃q′ ∈ X such that q′
a

−→ q}

We denote by [q]ρ the class of the partition ρ containing the state q. Let prea
ρ, posta

ρ

the pre- and post-condition functions corresponding to a partition ρ. These functions
are overloaded as follows:

from 2Q to P : prea
ρ(X) = {[q]ρ | q ∈ prea(X)}, posta

ρ(X) = {[q]ρ | q ∈ posta(X)}
from P to P: prea

ρ(ρ′) =
⋃
{prea

ρ(X) | X ∈ ρ′}, posta
ρ(ρ′) =

⋃
{posta

ρ(X) | X ∈ ρ′}

Intuitively, bisimulations relations are intended to compare LTS from a behavioural
point of view: two LTS are bisimilar if and only if they represent the same behaviour,
observed from a given abstract level.
Let Λ be a set of disjoint languages on A and λ ∈ Λ.

We write p
λ

−→ q if and only if:

∃u1 · · ·un ∈ λ ∧ ∃q1, · · · , qn−1 ∈ Q ∧ p
u1−→ q1

u2−→ q2 · · · qi
ui+1
−→ qi+1 · · · qn−1

un−→ q.
A relation R ⊆ Q × Q is a bisimulation iff it is symmetric and satisfies the following
property:

(p1, p2) ∈ R ∧ p1
λ

−→ q1 ⇒ ∃q2 . (p2
λ

−→ q2 ∧ (q1, q2) ∈ R)

From this general definition, one can obtain several relations by varying the value
of the Λ parameter. We will consider in this work the strong bisimulation relation,
noted ∼, obtained for Λ = {{a} | a ∈ Aτ}, and the weak bisimulation relation, noted
∼w, obtained for Λ = {τ∗a | a ∈ A}. Note that this last relation differs from Milner’s
“observational equivalence” ([Mil80]).
We will also consider a third relation, called branching bisimulation ([GW89]), noted
∼b, which can be viewed as another alternative to observational equivalence:
A relation R ⊆ Q × Q is a branching bisimulation if it is symmetric and satisfies the
following property:
(p1, p2) ∈ R ∧ p1

α
−→ q1 ⇒ (α = τ ∧ (q1, p2) ∈ R) ∨

(∃q2q
′
2 . (p2

τ∗

−→ q′2 ∧ q′2
α

−→ q2 ∧ (p1, q
′
2) ∈ R ∧ (q1, q2) ∈ R))

Let ρ be the partition associated to a bisimulation relation. The quotient of the LTS
S by ρ is the LTS:

S/R = ({[p]ρ | p ∈ Q}, A, {([p]ρ, a, [p′]ρ) | (p, a, p′) ∈ T}, [q0]ρ).

3 The MMG Algorithm

In this section we recall the algorithm proposed in [BFH90,BFH*92], which allows to
compute the quotient of a LTS S with respect to strong bisimulation. First, we give
its principle, introducing the main notations. Then, we propose a set of data struc-
tures, leading to an efficient implementation, and we show how the original algorithm
can be extended to deal with weak bisimulation and branching bisimulation.

3.1 The principle of the algorithm

Given a LTS S, the principle of the MMG algorithm is to refine an initial partition
ρinit of the state space of S until a reachable and stable partition is obtained. More
precisely, it can be defined as the computation of the greatest fixpoint of a split
function on the partition ρinit , distinguishing two subsets of classes at each step of
this computation :

– The set π of reachable classes, i.e., the classes containing at least one element
which has been found reachable so far from qinit .

– The set σ of stable classes, i.e., the reachable classes which have been found
stable with respect to the current partition (assuming a class X is stable with
respect to a partition ρ if and only if {X} = split(X, ρ)).

A step of the algorithm consists in scanning each reachable class of the current
partition, checking whether this class is stable or not with respect to this partition.
Whenever a reachable class is found unstable, it is split into stable subclasses, and
its predecessors are removed from σ, since their stability is questioned (see below the
definition of the split function). Only subclasses which are obviously reachable are
put in π: those which either contain qinit , or are directly reachable from a reachable
stable class.
It can be shown that, for a suitable split function, the resulting partition exactly
coincides with the set of equivalence classes of the coarsest (strong) bisimulation on

S containing ρinit ([BFH90]). Thus, when choosing for ρinit the universal partition,
this algorithm computes the states of the quotient of S with respect to the strong
bisimulation relation ∼.
In the rest of the section, we give a more formal description of this algorithm. First,
we precise the definitions of the split function and of the stability and reachability
properties [FM91b]:
Let ρ be a partition of the states of S and X, Y ∈ ρ.

split function : split(X, ρ) = u
Y ∈ρ

u
a∈Aτ

{X ∩ prea(Y), X \ prea(Y)}

Stability : Stable(ρ) = {X ∈ ρ | split(X, ρ) = {X}}
Stable(ρ) denotes the set of the stable classes of partition ρ. Note that if a
class X ⊆ prea(Y) is stable for all classes Y ∈ posta

ρ(X) then X is stable. We
also extend this notion of stability to transitions between classes : the transition
X

a
−→ Y is said stable with respect to ρ if and only if X ⊆ prea(Y).

Reachability : Accρ(X) = [qinit] ∪
⋃

a∈Aτ

posta
ρ(X).

Given a partition ρ, the set of reachable classes is the least fixed-point of Accρ

in the lattice 22Q

. However, note that a class belonging to this set can contain
unreachable states.

The MMG algorithm computes the greatest fixpoint

νρ.ρinit u split(µπ.Accρ(π ∩ Stable(ρ)), ρ).

which can be written in a more algorithmic fashion :

begin

ρ = ρinit; π = {[init]ρ}; σ = ∅ ;

while π 6= σ do

choose X in π \ σ ;

let π′ = split(X, ρ);
if π′ = {X} then

σ := σ ∪ {X}
π := π ∪ postρ(X) ;

else π := π \ {X} ;

if ∃Y ∈ π′ such that init ∈ Y then

π := π ∪ {Y } ;

fi

σ := σ \ preρ(X);
ρ := (ρ \ {X}) ∪ π′;

fi

od

end

Note that the statement σ := σ \ preρ(X) can be performed by scanning the stable
classes and checking if all the transitions from X to a stable class are stable. This
point is detailed in the next section, together with the computation of the split
function.

3.2 Data structures and implementation issues

We define the LTS Tr = (ρr, A, {
a

−→r}a∈Aτ
, [qinit]ρr

), associated with the current
partition ρr. Tr represents the quotient of S by ρr. It is built as follows : Initially,

Tinit = (ρinit , A, {
a

−→init}a∈Aτ
, [qinit]ρinit

) where
a

−→init= {(X, Y) | X, Y ∈

ρinit}. During the refinement process, when a class X is split into subclasses X1, .., Xn,
ρr+1 = ρr \ {X} ∪ {X1, · · · , Xn} and the transitions (X, a, Y) (resp. (Z, A, X)) are
removed from Tr and replaced by the transitions (Xi, a, Y) (resp (Z, a, Xi)). Note
that the decomposition of X in subclasses can be retrieved at any time using a
decomposition tree.
The implementation of the split function relies on the two following propositions

Proposition 3.1 When splitting a class X, we only have to consider as splitters
the classes Y such that (X, a, Y) belongs to {

a
−→r}, where a ∈ Aτ .

Proof. According to the definition of Tr, for all Y such that X ∩ prea(Y) 6= ∅ we

have (X, a, Y) ∈ {
a

−→r}. Consequently, if we consider a class Y in ρr such that

∀a ∈ Aτ , (X, a, Y) /∈ {
a

−→r}, we can deduce that ∀a ∈ Aτ , X ∩ prea(Y) = ∅. Then
split(X, Y) = {X} and it is not necessary to try to split X with respect to Y .

Proposition 3.2 When splitting a class X, we only have to consider the unstable
transitions (X, a, Y) ∈ Tr.

Proof. Let (X, a, Y) ∈ Tr be a stable transition. From the definition of the stability
of a transition, X ⊆ prea(Y), and then split(X, Y) = {X}. So it is not necessary to
split X with respect to stable transitions.

Proposition 3.3 When the algorithm terminates, Tr is equal to S/∼.

It remains to show how this algorithm can be extended respectively to weak bisimu-
lation and branching bisimulation. We recall for each of these relations the definition
of the split function [FM91b], and we briefly discuss how this function can be im-
plemented.

weak bisimulation :

split(X, ρ) = u
Y ∈ρ

u
a∈Aτ

{X ∩ preτ∗a(Y), X \ preτ∗a(Y)}.

The data structures and propositions given above can be straightly extended to
this case by substituting in each definition prea by preτ∗a.

branching bisimulation :

split(X, ρ) = u
Y ∈ρ

X 6=Y

u
a∈Aτ

{Fa(X, Y), X \ Fa(X, Y)}

u u
a∈A

{Fa(X, X), X \ Fa(X, X)}

where : Fa(X, Y) = µZ.(X ∩ preτ (Z) ∪ X ∩ prea(Y)) and µZ.f(Z) denotes the
least fixpoint of f .

Branching bisimulation is a particular case. The definition of Fa implies some dif-
ferences in the previous definitions :

1. A transition (X, a, Y) is said stable iff X ⊆ Fa(X, Y).
2. Another difference is that a class X cannot be split with respect to itself if the

label considered is τ . So, if there exists a transition (X, τ, X) in Tr, class X
must not be split. Moreover, when X is split in X1, ..., Xn, the new transitions
(Xi, τ, Xj), (i, j) ∈ [1..n] × [1..n] must be inserted in Tr, because a class Xi may
be splittable with respect to Xj if i 6= j. So we keep in Tr on each class a τ loop
during the refinement. When the algorithm terminates, we remove all τ loops,
without altering the equivalence.

4 An Implementation Using Binary Decision Diagrams

4.1 The model

Our model is similar in many respects with those of [EFT91] and [BdS92]. It

consists of a set of communicating LTSs. Si = (Qi, Ai, {
a

−→i}a∈Aτ
, init i), i = 1..N

and a composition expression F which expresses the communications between the
LTSs. The syntax of the language of composition expressions is extracted from the
language LOTOS [ISO87], so all CCS-like programs with parallel composition and
hiding operators only can easily be translated.
expression ::= expression |[label-list]| expression | hide label-list in expression |

LTS
label-list ::= ε | label, label-list

We will call S = F (S1, S2, ..., SN) the LTS given by this set of communicating LTSs.
More details on this model can be found in [Mou92].

Compositional minimization : The use of this model allows an a-priori reduction
of the size of the LTSs to be minimized. When the equivalence considered is a con-
gruence, which is the case of the bisimulations mentioned in section 2, it is possible
to minimize the LTSs first wrt the congruence, then to apply the MMG algorithm on
the composition for the same congruence. This strategy is especially interesting with
weaker bisimulations, where some examples needing several hours of computations
with the full model can be minimized in a few minutes when the LTSs have been
reduced beforehand.

Synchronization set : We define for each action a ∈ A1 ∪ A2 ∪ . . . ∪ AN a syn-
chronization set Synchro(a) which will contain the lists of LTSs for which a is a
synchronous action and a set Asynchro(a) which will contain the LTS for which a is
asynchronous. This set is constructed by analysis of the composition expression F .
Each element of Synchro(a) corresponds in fact to a Labeled Synchronization Vector
as introduced by [AN82] and used in [BdS92] .

Abstraction set : During the analysis of the composition expression F , we collect
all the actions used by the operator hide in a so-called abstraction set.
Let Li, i = [1..n] be the sets of actions used by the operator hide. We define the
abstraction set as follows :

Definition 4.1 Hide =
⋃

i

Li

The definition of the set Hide is a restriction of the semantics of the Lotos hide
operator, since the hiding of an action in a sub-expression will be considered globally
in Hide:
Given the expression S1|[]| (hide a in (S2|[a]|S3)), with the current definition of
Hide, all occurrences of a in S1 will be renamed by τ . But this restriction can easily
be bypassed by relabeling the action a in the sub expression hide a in (S2|[a]|S3).

4.2 Binary Decision Diagrams

To implement this algorithm, we need to represent state classes, and to perform
operations on these classes, like intersection, union and complementation. We also
need to represent the function prea and to compute prea(X) for any state class X .
For this purpose, we choose Binary Decision Diagrams.
A Binary Decision Diagram (BDD) [Bry86] is an efficient way to represent and ma-
nipulate boolean functions. They are constructed as a decision tree, and it has been
shown in [Bry86] that a normal form can then be computed by sharing subtrees,
this normal form depending of the ordering of the boolean variables involved. BDDs
have already been successfully applied to implement other algorithms related to
equivalence checking [BCM*89,EFT91,BdS92].

4.3 Representation of a LTS with BDDs

Given a LTS S = (Q, A, {
a

−→}
a∈Aτ

, init), its representation with BDDs will be given

by : S(x,y) = (A, {
a

−→(x,y)}a∈Aτ
, initx) that is, a set of BDDs representing the

transition relation and one BDD for the initial state. x and y are the sets of boolean
variables needed for the encoding. These sets are called support sets in the following.
As usual, we will identify a set X with its characteristic function fX , represented
by a BDD. Especially, a LTS S = (Q, A, {

a
−→}

a∈Aτ
, init) will be represented by

S(x,y) = (A, {
a

−→}
a∈Aτ

, initx), where each element of the tuple S(x,y) is the char-
acteristic function of the corresponding set in S.

4.4 Representation of the global LTS

Given Si(xi,yi)
= (A, {

a
−→i}a∈Aτ

, init i)0≤i≤n the representation of LTSs Si with

BDDs, and the sets Hide, Synchro and Asynchro associated to a given composition
expression F , the representation of the global system

S = (Q, A, {
a

−→}
a∈Aτ

, init) = F (S1, S2, ..., SN)

is

S(X,Y) = (A, {
a

−→}
a∈Aτ

, init)

with

X =
⋃

i=1..N

xi Y =
⋃

i=1..N

yi

a
−→ = (a /∈ Hide) ∧ (FSynchro(a) ∨ FAsynchro(a))

τ
−→ = (

∨

a∈Hide

(FSynchro(a) ∨ FAsynchro(a))

∨
∨

i6=j

((Stablei ∧
τ

−→j) ∨ (
τ

−→i ∧ Stablej)))

FSynchro(a) =
∨

Bi∈Synchro(a)

∧

j∈Bi

a
−→j

FAsynchro(a) =
∨

i,j∈Asynchro(a),i6=j

((Stablei ∧
a

−→j) ∨ (
a

−→i ∧ Stablej))

Stablei =
∧

xj∈xi,yj∈yi

(xj = yj)

4.5 prea(X) computation

In order to compute prea(X) for X ∈ Q, we need two specialized operators on BDDs.

Definition 4.2 Let f be a boolean function defined on the support set y, and x a
support set such that x ⊂ y. We will call Smooth the existential quantifier defined
as :

Smoothx = Smoothx1oSmoothx2o..oSmoothxn
(f)

Smoothxi
= fxi

∨ fxi

where fxi
= f(x1, x2, .., xi−1, 1, xi+1, .., xn) and fxi

= f(x1, x2, .., xi−1, 0, xi+1, .., xn)

In practice, the Smooth operator defines a projection of f on the support set y \ x.

Definition 4.3 Let f be a boolean function defined on the support set x = (x1, .., xn).
Let y = (y1, y2, .., yn) a support set such that x and y are disjoints. We will call Shift
the substitution operation defined as :

Shiftx→y(f) = Smoothx(
∧

i=1..n

(xi ⇔ yi) ∧ f)

If both support sets have the same relative order, that is ∀(xi, xj) ∈ x, xi < xj ⇒
yi < yj , then this operator will not change the structure of the BDD, thus the result-
ing BDD will have the same size. Moreover, in that case the implementation of the
shift operator consists of one linear traversal of the BDD with variables relabeling.
Given these two operators, we can now compute prea(X). In the MMG Algorithm,
we have to compose the computations of pre with the results of previous computa-
tions of pre. So if the characteristic function of X ∈ Q is defined on the support set
x, we would like the result of prea(X) to be defined on the same support set. That
gives the following formula for the computation of prea(X) :

prea(X) = Smoothy(
a

−→(x,y) ∧Shiftx→y(Xx))

4.6 Ordering of support sets

The ordering of variables in a support set determines the normal form of a BDD. So
with two different orderings, the same formula will be represented by two different
BDDs. It is important to find a good ordering , as the size of a BDD can be linear
to exponential wrt the number of variables used for the encoding
Two levels of ordering are considered: the local ordering, which is internal to a
communicating LTS and the global ordering, that describes how we mix local support
sets. It is shown in [EFT91] that the interleaved order is better for the construction
of Stable, giving a BDD with 3*n nodes while the concatenated order gives O(2n)
nodes for this BDD. Since we need to construct Stable during the composition,
we have chosen the interleaved order. Having fixed the local order, we still have
to choose a global ordering. Again, we considered two different orders, as found
in [BdS92] : only the concatenated global order has been implemented, with good
results. It is argued in [BdS92] that this order is better when the number of classes
of the minimal model is small when compared with the size of the complete LTS.

4.7 Discussion

One drawback in this approach is that the algorithm starts from the universal par-
tition which is much bigger than the set of reachable states, so we end up with a
lot of computations done just to get rid of these unreachable states. This is partly
the case in the MMG Algorithm, where we consider only the reachable classes for
splitting. But a reachable class can contain only a few reachable subclasses and a
lot of unreachable ones, which have to be removed layer by layer before getting the
“right” subclasses. Worse, before an unreachable class is recognized as such, some
unneeded computations can be done using this class.
In our model, i.e., communicating LTSs, as long as the LTSs themselves are finite, the
reachable states space of the composition is also finite. In that case, our experiments
have shown that restricting the initial partition to the reachable states space greatly
improve the efficiency of the MMG Algorithm. In practice, such a reachable states
space computation can be done efficiently using BDDs.

5 Results

The implementation has been tested on several examples. Three of them are pre-
sented here. The first one is the usual benchmark example, namely the Milner’s
Scheduler, which has the advantage to be made easily bigger by adding new cyclers.
The second example is a Reliable Multicast Protocol [SE90], specified in Lotos

within the Hewlett-Packard Laboratories [BM90]. This protocol provides a multicast
service, with one sender and several receiver. This protocol has been implemented
in two versions :

– A “working” version where no process can crash.
– A “crashing” version where the processes have the possibility to crash. The corre-

sponding model happens to be large, with 126 223 states and 428 766 transitions
when generated with Cæsar. It is reduced to a model with 2995 states and 9228
transitions by minimizing first each LTS of the composition expression.

The last example is a Lotos specification of the “Transit Node” case-study defined in
the Race project SPECS (Specification Environment for Communicating Software).
It describes a routing component in telecommunications network.
For the performances given below, we used a SUN SPARC IPX workstation with 16
megabytes of memory. For these examples, the LTSs and the composition expres-
sion have been generated from the corresponding LOTOS program using a parser
provided with the Cæsar-Aldébaran package.

– Name : Name of the example with :
• ScXX : Milner’s Scheduler with XX cyclers.
• RelCm : ’Crashing’ version of the Reliable Multicast Protocol with mini-

mized LTSs.
• Transit : Transit Node.

– N : number of states of the non minimized model, if it was generated.
– M : number of transitions of the non minimized model.

for each bisimulation, we give :
• n? : number of states of the minimized model.
• m? : number of transitions of the minimized model.
• t? : time (in s) for the minimization with reachable states computation.
• t’? : time (in s) for the minimization without reachable states computation.

These times are those given by the system, after the execution of Aldébaran.
They include the LTSs loading time, LTSs composition, reachable states com-
putation (if it is the case) and minimization. A “-” in a cell indicates that the
corresponding minimization is not finished after one hour of computation or has
been aborted due to lack of memory.

Full Model ∼ ∼w ∼b

Name N M n1 m1 t1 t1’ n2 m2 t2 t2’ n3 m3 t3 t3’
Sc8 3073 13825 N-1 M-1 155 - 8 8 2 280 8 8 2 47

Sc10 15361 84481 N-1 M-1 - - 10 10 3 1400 10 10 3 170
Sc20 3.14 107 3.3 108 N-1 M-1 - - 20 16 23 - 16 20 23 -
Sc40 6.59 1013 1.35 1015 N-1 M-1 - - 40 40 102 - 40 40 101 -
Sc80 1.4 1026 5.8 1027 N-1 M-1 - - 80 80 1650 - 80 80 1650 -

RelCm 2995 9228 910 3847 480 - 43 156 125 - 95 358 55 -
Transit 93384 579892 - - - - - - - - 18 43 360 -

These results show that this implementation is well suited for weaker bisimulations,
especially branching bisimulation. It is hardly surprising, since the complexity of
the algorithm depends greatly on the size of the minimal model, especially when we
compute the reachable state space first. The size of the LTSs have a great influence
on the size of the BDDs, and thus on the performances themselves. It is better to
have a communicating LTSs system with a lot of small LTSs than a system with a
few big ones.
Another problem is the generation of LTS without environment constraints : two
LTSs synchronized together can be represented by a small global model. But taken
without the constraints due to the synchronization with the other, each automaton
can have a big local model, sometimes bigger than the global model.

6 Conclusion

In this paper we have studied one application of the MMG algorithm, which allows
the minimization of a LTS during its generation. This algorithm has been adapted
for various equivalences (strong, weak or branching bisimulation) and implemented
in Aldébaran with interesting results. The main problems encountered in our experi-
ments arise from the model itself, a system of communicating automata, where some
base automata can be bigger than the full model itself. This disproportion comes
mainly from the removal of some constraints due to synchronization, leading to the
enumeration of some variables on their domain.
In the same context, we have studied another kind of model where a state is a
couple (control state, memory state). Dealing with such model, which can be infi-
nite, requires the use of technics such as abstract interpretation proposed by P. &
R.Cousot [CC77] and applied in [CH77]. This method allows to approximate a set
of states with numerical variables by a polyhedron. All operations needed for the
MMG algorithm are defined on polyhedra and computation of an approximation of
the reachable states space is possible even in an infinite model, thanks to special
operators defined in [CH77].
We are currently experimenting with this kind of model, with interesting results
especially for the reachable states space computation. We are now working on the
extension of this technic on petri net with values, as used in Cæsar [GS90] as in-
termediate form. Such extension would allow us to do static analysis on LOTOS
programs.

Acknowledgements

We would like to thank Nicolas Halbwachs for his fruitful comments on this paper.
Thanks are also due to Christophe Ratel for his efficient BDD package used within
our implementation.

References

[AN82] A. Arnold and M. Nivat. Comportement de processus. Les mathématiques de
l’informatique, 1982.

[BCM*89] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and J. Hwang. Symbolic
Model Checking: 1020 states and beyond. Technical Report, Carnegie Mellon
University, 1989.

[BdS92] A. Bouali and R. de Simone. Symbolic bisimulation minimisation. In Fourth
Workshop on Computer-Aided Verification,Montreal, june 1992.

[BFH90] A. Bouajjani, J.C. Fernandez, and N. Halbwachs. Minimal model generation.
In Workshop on Computer-aided Verification, Rutgers, American Mathematical
Society, Association for Computing Machinery, june 1990.

[BFH*92] A. Bouajjani, J.C. Fernandez, N. Halbwachs, C. Ratel, and P. Raymond. Min-
imal state graph generation. Science of Computer Programming, 18(3), June
1992.

[BM90] S. Bainbridge and L. Mounier. Specification and Verification of a Reliable Mul-
ticast Protocol. Software Engineering Department Technical Report HPL-91-63,
Hewlett-Packard Laboratories, Bristol, U.K, 1990.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8), 1986.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In 4th
POPL, january 1977.

[CH77] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th. Annual Symp. on Principles of Programming
Languages, pages 84–87, 1977.

[EFT91] R. Enders, T. Filkorn, and D. Taubner. Generating bdds for symbolic model
checking in ccs. In K. G. Larsen, editor, Proceedings of the 3rd Workshop on
Computer -Aided Verification (Aalborg, Denmark), july 1–4 1991.

[Fer90] J. C. Fernandez. An implementation of an efficient algorithm for bisimulation
equivalence. Science of Computer Programming, 13(2-3), May 1990.

[FGM*92] J.Cl. Fernandez, H. Garavel, L. Mounier, A. Rasse, C. Rodriguez, and J. Sifakis.
A tool box for the verification of lotos programs. In 14th International Confer-
ence on software Engineering, 11-15May 1992.

[FM91a] J.-C. Fernandez and L. Mounier. “on the fly” verification of behavioural equiv-
alences and preorders. In Workshop on Computer-aided Verification, Aalborg
University, Denmark, LNCS 575, Springer Verlag, july 1–4 1991.

[FM91b] J.Cl. Fernandez and L. Mounier. A tool set for deciding behavioural equiva-
lences. In J.F. Groote J.C.M. Baeten, editor, CONCUR’91, Concurrency theory,
LNCS 527, Springer Verlag, august 26-29 1991.

[GLZ89] J.C. Godskesen, K. Larsen, and M. Zeeberg. Tav, tools for automatic verifica-
tion. In Proceedings of the 1st International Workshop on Automatic Verification
Methods for Finite State Systems (Grenoble, France), Springer Verlag, jun 1989.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and verification of lotos speci-
fications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa), IFIP, North Holland, Amsterdam, June 1990.

[GW89] R.J. Van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics (extended abstract). CS-R 8911, Centrum voor Wiskunde en
Informatica, Amsterdam, 1989.

[ISO87] ISO. LOTOS — A Formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. Draft International Standard 8807, Interna-
tional Organization for Standardization — Information Processing Systems —
Open Systems Interconnection, Genève, July 1987.

[KS90] P. Kanellakis and S. Smolka. Ccs expressions, finite state processes and three
problems of equivalence. Information and Computation, 86(1), May 1990.

[LY92] D. Lee and M. Yanakakis. Online minimization of transition systems. In ACM
STOC 92, Vancouver, B.C., 1992.

[Mil80] R. Milner. A calculus of communication systems. In LNCS 92, Springer Verlag,
1980.

[Mou92] L. Mounier. Méthodes de Vérification de Spécifications Comportementales :
étude et mise en oeuvre. PhD thesis, Université de Grenoble, 1992.

[PT87] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM J. Com-
put., No. 6, 16, 1987.

[SE90] S. K. Shrivastava and P. D. Ezhilchelvan. rel/REL: A Family of Reliable Mul-
ticast Protocol for High-Speed Networks. Technical Report , University of New-
castle, Dept. of Computer Science, U.K, 1990.

