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This article describes an experiment with the compilation of the data part of Lotos. Using
a pattern-matching compiling algorithm described in [Sch88], a tool named Cæsar.adt was
developed. It enables Lotos abstract types to be translated automatically into corresponding
concrete types, implemented in the C language.

This paper intends to give a fair idea of the usefulness of this algorithm, when it is combined
with appropriate data representations. On several case studies taken from OSI descriptions,
this paper explains the basic principles of the translation and shows the great quality of the
generated code, which is likely to have better performances than other existing approaches.

Introduction

The ISO specification language Lotos [ISO87] [BB88] has two distinct parts: a control part, based on
a process algebra, and a data part, involving algebraic abstract data types [Gut77] [EM85]. Since each
part is independent from the other, it is possible to handle them separately.

Lotos data structures are described by sorts, which represent value domains, and operations, which
are mathematical functions defined on these domains by algebraic equations. Value expressions are
terms built from variables and operations. Sorts, operations, and equations are grouped in modules
called types, which can be combined together using multiple inheritance, renaming, parametrization,
and actualization.

Most of the tools available for Lotos handle the data part by dynamically rewriting value expressions
according to the equations. The rewriting motor can be either independent from the equations (as it
is in HIPPO [Tre87] and SPIDER [Joh88]) or specifically tailored to take advantage of the properties
of the equations (for instance in the “Lotos to C compiler” [ndM88]).

Other implementation techniques are based on code generation for abstract machines. Originally in-
tended for functional languages with pattern-matching features (like HOPE, ML, and Lazy ML) they
can also be applied to Lotos [WB89].
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Centre HITELLA
46 avenue Félix Viallet

38031 GRENOBLE cedex
FRANCE

e-mail: hubert@imag.imag.fr | hubert@imag.uucp
tel: +(33) 76 57 45 87 fax: +(33) 76 57 46 95



The algorithm described in [Sch88] allows a completely different approach. Algebraic specifications
can be statically compiled into data structures and routines of an algorithmic language, provided
some restrictions. The code produced is deterministic: rewrite rules application is fully determined at
compile-time. There is neither unification nor backtrack at run-time. The algorithm is general enough
to deal with many-sorted algebras and conditional equations.

A tool was built, named Cæsar.adt [Bar88], which implements this algorithm. The C language
was chosen as the target language for its machine efficiency, wide availability on existing hardware
architectures, and standardized interface conventions. Moreover, by using such a well-known language,
one can easily estimate the quality of code generation. The code produced by Cæsar.adt may serve to
test the correctness of type specifications. It may also be integrated into more sophisticated applications,
for example simulation and verification tools, such as Cæsar [Gar89].

This paper is organized as follows. Section 1 defines the theoretical framework of the approach: as-
sumptions and constraints are carefully stated before the principles of the pattern-matching compiling
algorithm are explained. Section 2 is more pragmatic and insists rather on practical issues the imple-
mentor is confronted with. Remaining sections deal with the problem of data representation through
concrete applications. Section 3 presents the general-case solution while sections 4 to 6 investigate
three special-case situations that are likely to be implemented with optimal efficiency: enumerations,
numerals and tuples.

Examples are taken either from the standard library of Lotos [ISO87, annex A] or from “real” specifi-
cations, e.g., draft descriptions in Lotos of the OSI transport service [ISO89a] and transport protocol
[ISO89b] [LS88]. To understand this article, a minimal knowledge of both Lotos and C languages is
required.

1 Theoretical framework

Lotos equational specifications are obviously too expressive and powerful to allow efficient compilation:
practical restrictions have to be made. The proposed constraints seem reasonable with respect to Lotos

specifiers’ actual needs. Furthermore, the user can get rid of certain limitations if the compiler performs
appropriate transformations on Lotos descriptions.

1.1 Orienting the equations

Equations occurring in a Lotos source text have the following syntactic form (brackets denote optional
elements):

[C1, ..., Cm =>] V1 = V2

where V1 and V2 are value expressions, and C1, ..., Cm are optional premisses, each premiss Ci being
either a boolean expression V ′

i or a simple equation of the form V ′

i = V ′′

i .

For compilation purpose, Lotos data specifications are considered as term rewriting systems instead of
equational systems. This means that equations are supposed to be oriented : provided that all premisses
Ci are satisfied, the term V1 can be rewritten into V2. Conversely V2 can not be rewritten into V1 unless
explicitly specified by another equation.

Attempts to translate automatically systems of equations into systems of rewrite rules would involve
the Knuth-Bendix completion algorithm [KB70].

It is necessary that any variable X occurring in V2, C1, ..., or Cm also occurs in V1. When specifiers
keep rewrite semantics in mind, this constraint is always fulfilled.

Note that although Lotos equations may contain universally quantified variables (i.e., declared in a



“forall” clause), terms to be rewritten at run-time may not: their variables are always bound to known
values.

1.2 Assuming termination

The rewriting system satisfies the termination (or Noetherian) property if no term can be rewritten
indefinitely.

Cæsar.adt does not try to verify whether Lotos algebraic specifications terminate or not. A survey
of general sufficient conditions ensuring termination can be found in [Der87].

1.3 Assuming confluence

The rewriting system satisfies the confluence (or Church-Rosser) property if, when a term V1 can be
rewritten into V2 and V3, there exists a term V4 such that V2 and V3 can be rewritten into V4.

Since Cæsar.adt aims at compiling, not verifying, it does not check for confluence (most tools follow
the same policy). Surveys of general techniques for proving this property are given in [HO80] and
[Klo87].

1.4 Assuming “call-by-value + priority” rewrite strategy

When rewriting a term, several possibilities often exist: rewrite strategies are heuristic criteria to remove
(or limit) such non-determinism. A number of strategies have been proposed: call-by-need [HL79], lazy
evaluation [PJ87], ... The strategy used in translating Lotos to C is “call-by-value+priority”. It is
defined by the following rules:

• when several subterms can be rewritten simultaneously, innermost ones are rewritten first.

• when, for a given subterm, several equations declared in the same type apply simultaneously, the
first equation (in the Lotos source text) is chosen.

This strategy is not always sufficient for reducing multiple possibilities to one single selection. In such
cases, the compiler will choose one solution which satisfies both constraints (the user should not expect
leftmost terms to be rewritten first). Such non-determinism is compatible with traditional rules for
evaluating expressions in algorithmic languages; the compiler may also take advantage of it to optimize
code generation.

Call-by-value is well-suited for Lotos application field because data described in OSI-like specifications
do not involve infinite objects that would require ad hoc strategies (such as lazy evaluation). Moreover
specifiers often have an operational (rather than declarative) view of Lotos data types; they expect
expressions to be evaluated as they are in algorithmic languages: this is call-by-value semantics.

The code produced by Schnoebelen’s algorithm is correct with respect to call-by-value+priority strategy.
The remaining issue is the conformance of this strategy to the declarative semantics of Lotos, as it is
defined in the standard [ISO87] (keeping in mind that equations are oriented).

If the system satisfies both termination and confluence, all strategies will rewrite a given term into
the same form: conjunction of Church-Rosser and Noetherian properties is a sufficient condition for
correctness.

If the rewriting of a term (according to call-by-value+priority strategy) never terminates, the corre-
sponding code will enter into infinite recursive calls.



Assuming a decreasing priority between equations may be found questionable. This does not violate
the declarative semantics of Lotos if the rewrite system is confluent. Many tools, nevertheless, assume
such a de facto order on equations, even if they do not verify confluence; specifiers are often aware of
this feature, and make use of it by writing intentionally non-confluent descriptions, such as:

X eq X = true

X eq Y = false

which defines the equality operator “eq” as the syntactic identity of algebraic terms. To prevent this,
a compiler could very well apply a random permutation on the equation set. However specifiers may
have strong reasons for relying on priorities:

• it allows concise (therefore safe) and generic operator definitions, whereas standard Lotos

style is often heavier (compare the above definition of “eq” with those given for “eq” in types
“TPDUSubsort” and “TransportAddress”, sections 4 and 5 respectively).

• it generally leads to more efficient implementations, because equations are simpler. For instance
the previous description of “eq” compiles in a single equality test, whereas more complicated
definitions of “eq” produce more complicated code.

• such specifications belong to a more general framework than confluent rewrite systems. The
operational semantics remains simple and compatible with the user’s intuitive point of view
(although declarative semantics for rewrite systems with priorities may be more difficult to define
formally).

When specifiers comply to standard Lotos style, it is quite certain that non-confluent descriptions are
nothing but mistakes.

1.5 Linearizing the equations

The pattern-matching compiling algorithm described in [Sch88] requires all equations to be left-linear
which means that, for each equation:

[C1, ..., Cm =>] V1 = V2

the left-side term V1 does not contain several occurrences of the same variable (this constraint stands
only for V1 and does not apply to premisses Ci even if they have the form V ′

i = V ′′

i ).

Most tools require left-linearity when they do not verify termination. Fortunately, it is possible to
get rid of this constraint automatically by performing syntactic transformations on equations before
applying Schnoebelen’s algorithm. The basic idea is to replace non-linear equations by conditional
ones. If some variable X has at least two occurrences in V1, then a new variable X ′ is created (whose
sort is that of X), one of the occurrences of X in V1 is replaced by X ′ and the premiss X=X ′ is added
to the equation. For instance:

C1, ..., Cm => F (X, X) = V0

is replaced by:
C1, ..., Cm, X = X ′ => F (X, X ′) = V0

This must be repeated until all variables occurring in V1 are pairwise different.

The transformation is correct under previous assumptions. Because of confluence and termination
assumptions, any term can be rewritten into a unique normal form, i.e., a term (without any variable)
that can not be rewritten. In call-by-value strategy context, the comparison of two terms X and X ′

(as well as “X = X ′”, where “=” is the congruence symbol of Lotos) can be implemented by syntactic
identity of the normal forms of X and X ′. Note that this transformation is not necessarily compatible
with other rewrite strategies (call-by-need, for example).



1.6 Identifying constructors

The translation algorithm must be successively applied to each (non-formal) sort of a Lotos specifi-
cation. For each sort S the set of operations whose result has S for sort is considered. This set must
be divided in two classes:

constructors of S: an operation F is a constructor if there exists a normal form term without any
variable and containing F . This means that some occurrences of F can not be reduced because
the semantics of F is not completely defined by the equations.

non-constructors of S: an operation F is a non-constructor if all occurrences of F in terms
having no variable can be eliminated by rewriting.

For instance, the boolean sort “Bool” defined in Lotos standard library [ISO87, annex A.4] has only
“true” and “false” as constructors. The integer sort “Nat” [ISO87, annex A.6.1.1] has “0” and “Succ”
as constructors.

The constructor concept is important for code generation because any expression can be evaluated
(i.e., rewritten) to a normal form term containing only constructor operations. It follows that con-
structors are the basis for data structure representation and implementation. On the other hand,
non-constructors are auxiliary operations defined in terms of constructors: they can be implemented
as functions operating on data.

Some compiling algorithms [WB89] treat all operations as constructors. Conversely Schnoebelen’s
algorithm takes as input a set of operations that are supposed to be constructors. This set does not
need to be exact, although it must contain all the constructors. The smaller this set is, the better is
the generated code.

The current version of the tool Cæsar.adt makes no attempt to determine whether an operation is con-
structor or not. The user has to indicate constructors by setting a special comment (*! constructor *)

in the Lotos source text, immediately after each constructor declaration place. This constraint is not
too severe because the user usually knows (or should know!) the set of constructors. With constructor
indication, Lotos type specifications can also be read and understood more easily. One may wonder
what happens if the specifier does not supply Cæsar.adt with the right set of constructors:

• if a non-constructor operation F is declared as “constructor” in a special comment, then normal
form terms resulting from evaluation will contain occurrences of F . The user has to fix the mistake
if this result is not expected.

• if a constructor operation F is not declared as “constructor”, the definition of F can not be
total and a run-time error will occur while executing the code generated for F .

A more sophisticated approach would involve automatic constructor characterization, derived from in-
depth analysis of the equations. This is theoretically possible [CR87] [Com88]. The general algorithm is
probably difficult to implement, but in the particular case where equations are left-linear, the solution
can be computed quite simply.

1.7 Removing equations between constructors

An algebraic data type specification can be compiled with the restricted form of Schnoebelen’s algorithm
[Sch88, § 3] when its equations have the following form:

[C1, ..., Cm =>] F [(V1, ..., Vn)] = V0

where F is a non-constructor operation (possibly infixed in Lotos) and V1, ..., Vn are value expressions
containing only constructor operations and variables (occurrences of non-constructors in V1, ..., Vn are



forbidden). These constraints prevents constructors from being rewritten. In such case they are called
free constructors and it is said that the specification has no equation between constructors.

The following example, taken from the transport service formal description [ISO89a, § 12.3.2], contains
equations between constructors. Two sorts are defined: “TSP” represents transport requests, and
“TReqHistory” describes data structures which store histories of requests. For clarity, definition of
requests is shortened to the strict minimum:

type TransportServicePrimitive is Boolean

sorts

TSP

opns ...

IsTReq : TSP -> Bool

_eq_ : TSP, TSP -> Bool

eqns ...

endtype

type TransportServiceBasicTSPRequestHistory is TransportServicePrimitive, Boolean

sorts

TReqHistory

opns

NoTReqs : -> TReqHistory

Append : TSP, TReqHistory -> TReqHistory

Empty, NonEmpty : TReqHistory -> Bool

_eq_, _ne_ : TReqHistory, TReqHistory -> Bool

eqns

forall t, t1, t2 : TSP, h, h1, h2 : TReqHistory

ofsort TReqHistory

not (IsTReq (t)) => Append (t, h) = h

ofsort Bool

Empty (NoTReqs) = true;

Empty (Append (t, h)) = Empty (h) and not (IsTReq (t));

NonEmpty (h) = not (Empty (h));

IsTReq (t) => NoTReqs eq Append (t, h) = false;

IsTReq (t) => Append (t, h) eq NoTReqs = false;

IsTReq (t1), IsTReq (t2) =>

Append (t1, h1) eq Append (t2, h2) = (t1 eq t2) and (h1 eq h2);

h1 ne h2 = not (h1 eq h2);

endtype

Obviously, operations “NoTReqs” and “Append” are constructors of sort “TReqHistory” because the
terms “NoTReqs” and “Append (t, NoTReqs)”, when “IsTReq (t)” is true, can not be rewritten. But
“Append” is not a free constructor since it appears on the left part of the first equation. Intuitively,
this means that “Append” serves two aims: it plays both a data representation role (request histories
are isomorphic to LISP structures, given that “NoTReqs” and “Append” behave as “nil” and “cons”)
and an operational role of selective insertion (transport primitives which do not verify “IsTReq” are
discarded and kept away from the history).

It is possible to transform a type specification in order to remove all equations between constructors
[Tho86, § 3]. Given a non-free constructor F , the basic idea is to dissociate both roles of F by using
two operators instead of one:

• a new free constructor operation F ′ is introduced, which is intended to play the data representation
role of F .

• F becomes a non-constructor operation, which will only be in charge of the operational role.

• it is also necessary to modify equations, in order to define each non-constructor operation (in-



cluding F ) in terms of F ′ instead of F . More precisely, for each equation of the form:

[C1, ..., Cm =>] F0 [(V1, ..., Vn)] = V0

where F0 is an operation that can be equal or not to F , all occurrences of F in value expressions
V1, ..., Vn must be replaced by F ′.

• eventually, a new equation must be added, which indicates that F has to be replaced by F ′

in all cases where its semantics is left undefined by the original equations. This is achieved by
introducing the following equation:

F [(X1, ..., Xn)] = F ′ [(X1, ..., Xn)]

(where X1, ..., Xn are free variables declared by a “forall” quantifier) which must be put after all
equations of the form:

[C1, ..., Cm =>] F [(V1, ..., Vn)] = V0

according to decreasing priority between equations. It could be possible (but rather complex) to
avoid the use of priority between equations by adding adequate premisses to the new equation.

This transformation is correct with respect to orientation, confluence, termination, and call-by-
value+priority assumptions.

Applied to the former example, it leads to the dichotomy of the non-free constructor “Append” into a
free constructor “App” and a non-constructor “Append”. The resulting type specification is:

type TransportServiceBasicTSPRequestHistory is TransportServicePrimitive, Boolean

sorts

TReqHistory

opns

NoTReqs : -> TReqHistory

App : TSP, TReqHistory -> TReqHistory

Append : TSP, TReqHistory -> TReqHistory

Empty, NonEmpty : TReqHistory -> Bool

_eq_, _ne_ : TReqHistory, TReqHistory -> Bool

eqns

forall t, t1, t2 : TSP, h, h1, h2 : TReqHistory

ofsort TReqHistory

not (IsTReq (t)) => Append (t, h) = h;

Append (t, h) = App (t, h);

ofsort Bool

Empty (NoTReqs) = true;

Empty (App (t, h)) = Empty (h) and not (IsTReq (t));

NonEmpty (h) = not (Empty (h));

IsTReq (t) => NoTReqs eq App (t, h) = false;

IsTReq (t) => App (t, h) eq NoTReqs = false;

IsTReq (t1), IsTReq (t2) =>

App (t1, h1) eq App (t2, h2) = (t1 eq t2) and (h1 eq h2);

h1 ne h2 = not (h1 eq h2);

endtype

The current version of Cæsar.adt does not allow non-free constructors, since it only implements the
restricted form of the pattern-matching compiling algorithm [Sch88, § 3]. The user has to remove
equations between constructors by hand or, better, not write them.

Equations between constructors could be handled automatically, either by applying the above trans-
formation before the restricted form of the algorithm (another technique for removing constructors can
also be found in [Com89]), or by implementing the enhanced version of the algorithm [Sch88, § 7]. As
a matter of fact, both methods give identical results.



Whether non-free constructors should be allowed or not is still an open debate:

• detractors argue that equations between constructors are not necessary and should be avoided
since they bring confusion between data and operations. They prone constructor discipline [GH78]
which is, in fact, an “imperative” approach to specification: data structures are defined first by
the means of constructors; then other operations are defined by induction on the set of construc-
tors. It is true that this methodology provides suitable guidelines that, in most cases, prevent the
specifier from non-confluence, non-termination and non-completeness. Furthermore it allows auto-
matic verification (see in [GH78], for instance, a sufficient condition ensuring that non-constructor
operations are totally defined).

• conversely, partisans of equations between constructors praise their expressiveness (they are
needed for specifying assertions on data structures, for example). They also emphasize the fact
that non-free constructors are better understood than in the past, due to recent advances in
algebraic specification theory [Com88] [Com89].

2 Implementation issues

While trying to implement Schnoebelen’s algorithm for generating C programs from Lotos specifica-
tions, several problems arise, caused by the existing differences between source and target languages.
These issues and the design choices of the tool Cæsar.adt are presented here.

2.1 Flattening types

Compilation basically aims at translating each Lotos sort into a corresponding C type, and each
Lotos operation into a corresponding C function.

When compiling the data part of a Lotos specification, all process definitions are skipped and the
standard flattening transformation [ISO87, § 7.3.4] is applied. In fact, things are not so simple; although
the modular organization of types should not interfere with the compilation of sorts and operations, it
does so, mainly because of C language conventions:

• Lotos allows the specifier to freely organize type definitions whereas C requires objects to be
declared before being used. For this reason Lotos types must be compiled in “reverse inheritance
order” i.e., in a topological order satisfying type dependence constraints. If T1 and T2 are Lotos

types such that T1 inherits from T2, the C code defining objects of T2 should precede that of T1.

• moreover, the translation of Lotos sorts often results in recursive type declarations. The same
problem occurs with operations, leading to mutually recursive functions. To enforce C rules,
appropriate mechanisms must be used (Cæsar.adt automatically supplies them): forward type
and function declarations, use of generic (i.e., “char *”) pointers and related type conversions.

With respect to these constraints, each sort can be handled in turn by Schnoebelen’s algorithm. In
fact, the current version of Cæsar.adt forbids inheritance of constructor operations: the constructors
of a sort have to be declared in the same type as the sort.

No code is generated for sorts and operations defined by renaming: they share the implementation of
the sorts and operations they rename.

No attempt is made to deal with types parametrized by formal sorts and operations: to be compiled,
types must be fully actualized. This approach leads to larger but more specialized (therefore efficient)
code. Production of polymorphic C code is possible, yet difficult: the corresponding amount of work
was considered too important for the Cæsar.adt project.



2.2 Generating C libraries

The C code produced from a Lotos description is not a complete program that can be executed by
itself. It is rather a library of types and functions, to be used in application programs (probably also
written in C). For this reason Cæsar.adt generates two source files according to C separate compilation
rules:

a “.h” file: this file is an interface which contains types, macro-definitions, and function headers.
It has to be included by application programs.

a “.c” file: this file contains function definitions which implement function headers declared in the
interface file. It is compiled separately and the resulting object module is linked with object
modules generated by separate compilation of application programs.

To improve clarity of examples given below, both “.h” and “.c” files are merged into a single one.

2.3 Mapping LOTOS identifiers to C ones

To make use, in applications programs, of the libraries produced by Cæsar.adt, the user must be
aware of the correspondence between Lotos sort and operation identifiers, and related C type and
function identifiers.

It is not always possible to give a C object the same name as the Lotos object it implements, because
Lotos and C identifiers follow different lexical conventions (Lotos allows operation identifiers such as
“#”, “**”, or “<=>” that could not be used in C) and because Lotos permits operation overloading
whereas C does not.

To overcome this problem, Cæsar.adt requires the user to specify the C name under which a given
Lotos object is to be implemented. This is achieved through the use of special comments (also called
qualifying comments or annotations) which are a meaningful subset of Lotos comments. When no
C name is given, Cæsar.adt generates automatically a unique C identifier, which is not necessarily
user-friendly.

Each declaration of a Lotos operation F can be followed by a special comment having the form:

(*! implementedby N0 [constructor] *)

which indicates that, F will be implemented by a C function whose name is N0. The keyword
“constructor”, when present, states that F is a constructor.

Each declaration of a Lotos sort S can be followed by a special comment having the form:

(*! implementedby N1 comparedby N2 enumeratedby N3 printedby N4*)

which means that:

• S will be implemented by a C type whose name is N1.

• the syntactic equivalence on value expressions of sort S (i.e., the relation denoted by Lotos

keyword “=”, which may be different from the “eq” operation whenever it is defined for S) will
be implemented by a C function whose name is N2.

• Cæsar.adt has to generate a C macro-definition called N3 which allows a C variable of type N1

to enumerate all values of S exhaustively. This feature is needed for executing Lotos constructs
such as “choice X:S”, “?X:S”, and “any S”. Of course the domain of S must be finite: this
feature is only available for enumerations and (bounded subsets of) numerals. Practically, it
is implemented in C as a “for” loop. Although the order in which values of S are visited, is
determined, application programs must not rely on it.



• Cæsar.adt must produce a C function called N4 that displays value expressions of sort S on a
file, in some readable ASCII format.

All C names given in special comments must be pairwise different and also different from every C
reserved keyword (including “main”).

In all examples below, the following naming conventions are used:

• the name of the C object implementing a Lotos object is the capitalized Lotos identifier, unless overloading
problems occur (for example with “eq”), in which case the capitalized name of the sort is appended: “EQ BOOL”,
“EQ TSP”, ... (this will be sufficient here to distinguish overloaded forms of an operator)

• the names used for implementing syntactic equivalence for sorts “Bool”, “Nat”, ... are “CMP BOOL”, “CMP NAT”, ...
respectively.

• the names used for implementing enumeration macros for sorts “Bool”, “Nat”, ... are “ENUM BOOL”, “ENUM NAT”, ...
respectively.

• the names used for implementing printing functions for sorts “Bool”, “Nat”, ... are “PRINT BOOL”, “PRINT NAT”, ...
respectively.

2.4 Choosing between functions and macros

When efficiency is necessary, it can prove useful to translate Lotos operations into macro-definitions
instead of functions. Whether to use macros rather than functions is an implementation choice which
is fully independent from pattern-matching compiling algorithm.

Macros are likely to be faster because function call overhead is avoided. But their expansion often
leads to larger object code. Furthermore, using macros can also have negative effects on speed, if the
arguments are to be evaluated more than once (see the code generated for operators “xor” and “iff”
in section 4); it can even become incorrect if macros are used (in hand-written application programs)
with arguments that are not free from side effects.

The current version of Cæsar.adt attempts to take the right solution. Nevertheless the tradeoff is
not obvious and the user should perhaps be allowed to decide, for instance by using a special comment
“(*! inline *)”.

For conciseness, functions whose bodies contain nothing but a “return” statement are replaced by equivalent macro-

definitions in examples below.

2.5 Allocating and reclaiming memory

In most cases, concrete implementations of abstract data types make use of dynamic memory. Storage
management may be a major issue for large-size applications. Representation of values is often expensive
and lots of memory cells created for intermediate results become unreferenced when computations finish.

To overcome this problem, garbage collecting (for memory cells of various sizes) should be used. Several
techniques exist [PJ87]: reference counting [Knu73, p. 412–413] [Bob80] is quite obsolete; generation
scavenging [Lie83] [Ung84] seems to be an efficient solution.

Following examples use a rudimentary allocation scheme (using the C function “malloc”) which does not check for memory

exhaustion and does not involve garbage collecting.

3 Compilation of “ordinary” sorts

The first step, when translating Lotos abstract data types in C, is the implementation of Lotos value
expressions. This part of the problem is not covered in [Sch88], since it is highly dependent of the
target language. The solution retained in Cæsar.adt is presented here.



The domain of a sort S is the set of normal form terms of sort S. If S has n constructor operations
F1, ..., Fn and if m1, ..., mn are the respective arities of these operators, the domain of S is contained
in the set Σ of terms V defined by the following syntactical rule:

V = F1 [(V 1

1
, ..., V m1

1
)] | ... | Fn [(V 1

n , ..., V mn

n )]

(where symbol “|” denotes alternative choice). Note that values V 1

1
, ..., V mn

n are not necessarily of
sort S, since Lotos allows many-sorted algebras. The domain of S is equal to Σ if there are neither
equations between constructors of S, nor conditional equations. Otherwise the inclusion is strict: Σ
contains terms that can be rewritten.

Data representation derives from this property. Terms are implemented by syntax trees, using C struc-
tures (i.e., records), unions (i.e., discriminated records) and pointers. A value of sort S is represented
by a pointer to a so-called S-node which is a union with n fields and a discriminant with n tags. The
ith tag is associated with constructor Fi. The ith field of the union is a structure having mi sub-
fields, corresponding to the operands V 1

i , ..., V mi

i of Fi . The jth sub-field is a pointer to the S
j

i -node

implementing V
j

i , where S
j

i is the sort of V
j

i .

This schema could be improved by two optimizations:

• for each Fi such that mi = 1, the ith field of the union is a structure with a single sub-field; it
can be replaced by this sub-field.

• for each Fi such that mi = 0, the ith field is an empty structure which can be removed. But a
more subtle enhancement also allows the ith tag to be removed: the term Fi can be represented
by an “exotic” pointer value (for example “NULL”, or “NULL+1”, or “NULL+2”, ... with appropriate
type conversions) different from all pointer values referencing S-nodes. This technique ensures
faster data access and manipulation.

Once data representation is determined, the next step is the translation of Lotos operations into C
functions (or macros). Constructors and non-constructors are handled differently.

Each constructor operation of S is implemented by a C function which allocates a new S-node in the
heap memory, initializes its tag, fields and sub-fields, and returns a pointer to the node.

Compilation of non-constructors is achieved by Schnoebelen’s pattern-matching compiling algorithm.
Note that this algorithm is fully independent of the way values are implemented. For each non-
constructor F , all equations of the form:

[C1, ..., Cm =>] F [(V1, ..., Vn)] = V0

are considered. The body of the C function corresponding to F is recursively generated by induction
on the set of these equations defining F . It looks like a decision tree, depending on the values of the
formal parameters of F . Whenever equations do not define completely the meaning of an operation,
the generated code contains a call to function “ERROR” which issues a warning message and terminates
the execution.

The following example shows (a simplified version of) the code generated by Cæsar.adt for the
description given in section 1.7 of request histories (after removal of equations between constructors).
The example focuses on sort “TReqHistory”, the constructors of which are “NoTReqs” and “App”. The
implementation of sorts “Bool” and “TSP” and related operations is not shown here.



typedef struct STRUCT {

enum { DISCR_NOTREQS, DISCR_APP } DISCR;

union {

struct {

TSP T;

struct STRUCT *H;

} APP;

} UNION;

} *TREQHISTORY;

#define ALLOC_TREQHISTORY(X) (X) = (TREQHISTORY) malloc (sizeof (TREQHISTORY *))

TREQHISTORY NOTREQS () {

TREQHISTORY X1;

ALLOC_TREQHISTORY (X1);

X1->DISCR = DISCR_NOTREQS;

return X1;

}

TREQHISTORY APP (X1, X2) TSP X1; TREQHISTORY X2; {

TREQHISTORY X3;

ALLOC_TREQHISTORY (X3);

X3->DISCR = DISCR_APP;

X3->UNION.APP.T = X1;

X3->UNION.APP.H = X2;

return X3;

}

TREQHISTORY APPEND (X1, X2) TSP X1; TREQHISTORY X2; {

if (CMP_BOOL (NOT (ISTREQ (X1)), TRUE)) return X2;

else return APP (X1, X2);

}

BOOL EMPTY (X1) TREQHISTORY X1; {

if (X1->DISCR == DISCR_NOTREQS) return TRUE;

else return AND (EMPTY (X1->UNION.APP.H), NOT (ISTREQ (X1->UNION.APP.T)));

}

#define NONEMPTY(X) (NOT (EMPTY (X1)))

BOOL EQ_TREQHISTORY (X1, X2) TREQHISTORY X1, X2; {

if (X1->DISCR == DISCR_NOTREQS)

if (X2->DISCR == DISCR_APP)

if (CMP_BOOL (ISTREQ (X2->UNION.APP.T), TRUE)) return FALSE;

else ERROR ();

else ERROR ();

else if (X2->DISCR == DISCR_NOTREQS)

if (CMP_BOOL (ISTREQ (X1->UNION.APP.T), TRUE)) return FALSE;

else ERROR ();

else if (CMP_BOOL (ISTREQ (X1->UNION.APP.T), TRUE) &&

CMP_BOOL (ISTREQ (X2->UNION.APP.T), TRUE))

return AND (EQ_TSP (X1->UNION.APP.T, X2->UNION.APP.T),

EQ_TREQHISTORY (X1->UNION.APP.T, X2->UNION.APP.T));

else ERROR ();

}

#define NE_TREQHISTORY(X1,X2) (NOT (EQ_TREQHISTORY (X1, X2)))

int CMP_TREQHISTORY (X1, X2) TREQHISTORY X1, X2; {

if (X1->DISCR != X2->DISCR) return 0;

switch (X1->DISCR) {

case DISCR_NOTREQS :

return 1;



case DISCR_APP :

return CMP_TSP (X1->UNION.APP.T, X2->UNION.APP.T) &&

CMP_TREQHISTORY (X1->UNION.APP.H, X2->UNION.APP.H);

}

}

void PRINT_TREQHISTORY (F, X) FILE *F; TREQHISTORY X; {

switch (X->DISCR) {

case DISCR_NOTREQS :

fprintf (F, "NOTREQS");

break;

case DISCR_APP :

fprintf (F, "APP (");

PRINT_TSP (F, X->UNION.APP.T);

fprintf (F, ", ");

PRINT_TREQHISTORY (F, X->UNION.APP.H);

fprintf (F, ")");

break;

}

}

4 Compilation of enumerations

A sort S is an enumeration when its constructors F1, ..., Fn have no operand, i.e., have the following
profile:

F1 : -> S ... Fn : -> S

The set of normal form terms of sort S is syntactically characterized by:

V = F1 | ... | Fn

Consequently S can be translated into an enumerated C type. Each constructor operation of S is
implemented by a corresponding enumerated value.

Booleans are the most simple case of enumeration. From the definition of type “Boolean” given in
the standard library of Lotos [ISO87, annex A.4] (and annotated by special comments stating that
“true” and “false” are constructors), Cæsar.adt produces the C code below:

typedef enum { TRUE, FALSE } BOOL;

BOOL NOT (X) BOOL X; {

if (X == TRUE) return FALSE; else return TRUE;

}

BOOL AND (X1, X2) BOOL X1, X2; {

if (X2 == TRUE) return X1; else return FALSE;

}

BOOL OR (X1, X2) BOOL X1, X2; {

if (X2 == TRUE) return TRUE; else return X1;

}

#define XOR(X1,X2) (OR (AND (X1, NOT (X2)), AND (X2, NOT (X1))))

#define IMPLIES(X1,X2) (OR (X2, NOT (X1)))

#define IFF(X1,X2) (AND (IMPLIES (X1, X2), IMPLIES (X2, X1)))



#define EQ_BOOL(X1,X2) (IFF (X1, X2))

#define NE_BOOL(X1,X2) (XOR (X1, X2))

#define CMP_BOOL(X1,X2) ((X1) == (X2))

#define ENUM_BOOL(X) for((X) = TRUE; (int)(X) <= (int)FALSE; (X) = (BOOL)((int)(X) + 1))

void PRINT_BOOL (F, X) FILE *F; BOOL X; {

switch (X) {

case TRUE: fprintf (F, "TRUE"); break;

case FALSE: fprintf (F, "FALSE"); break;

}

}

Enumerations are not limited to booleans. The following example, taken from the transport protocol
description [ISO89a, § 12.3.3.3, p. 10] (see also [LS88, p. 253]), proves that they can be compiled
with optimal efficiency. It describes a list of enumerated values which are used to establish a basic
classification of TPDUs.

type TPDUSubsort is NaturalNumber

sorts

TPDUSubsort (*! implementedby TPDUSUBSORT *)

opns

CR (*! implementedby CR constructor *),

CC (*! implementedby CC constructor *),

DR (*! implementedby DR constructor *),

DC (*! implementedby DC constructor *),

DT (*! implementedby DT constructor *),

AK (*! implementedby AK constructor *),

ED (*! implementedby ED constructor *),

EA (*! implementedby EA constructor *),

RJ (*! implementedby RJ constructor *),

ER (*! implementedby ER constructor *) : -> TPDUSubsort

h (*! implementedby H *) : TPDUSubsort -> Nat

_eq_ (*! implementedby EQ_TPDUSUBSORT *),

_ne_ (*! implementedby NE_TPDUSUBSORT *) : TPDUSubsort, TPDUSubsort -> Bool

eqns

forall s, s1 : TPDUSubsort

ofsort Nat

h (CR) = 0;

h (CC) = succ (h (CR));

h (DR) = succ (h (CC));

h (DC) = succ (h (DR));

h (DT) = succ (h (DC));

h (ED) = succ (h (DT));

h (AK) = succ (h (ED));

h (EA) = succ (h (AK));

h (RJ) = succ (h (EA));

h (ER) = succ (h (RJ));

ofsort Bool

s eq s1 = h (s) eq h (s1);

s ne s1 = not (s eq s1);

endtype

From this type specification, Cæsar.adt generates the following C code (the definitions of
“CMP TPDUSUBSORT”, “ENUM TPDUSUBSORT” and “PRINT TPDUSUBSORT” are not shown, since they are
almost the same as for booleans):



typedef enum { CR, CC, DR, DC, DT, AK, ED, EA, RJ, ER } TPDUSUBSORT;

NAT H (X) TPDUSUBSORT X; {

if (X == CR) return ZERO;

else if (X == CC) return SUCC (H (CR));

else if (X == DR) return SUCC (H (CC));

else if (X == DC) return SUCC (H (DR));

else if (X == DT) return SUCC (H (DC));

else if (X == ED) return SUCC (H (DT));

else if (X == AK) return SUCC (H (ED));

else if (X == EA) return SUCC (H (AK));

else if (X == RJ) return SUCC (H (EA));

else return SUCC (H (RJ));

}

#define EQ_TPDUSUBSORT(X1,X2) (EQ_NAT (H (X1), H (X2)))

#define NE_TPDUSUBSORT(X1,X2) (NOT (EQ_TPDUSUBSORT (X1, X2)))

5 Compilation of numerals

A sort S is a numeral if it only has two constructors F1 and F2 the profiles of which are:

F1 : -> S F2 : S -> S

The set of normal form terms V is defined by the following syntactic rule:

V = F1 | F2 (V )

It is therefore clear that values of sort S are isomorphic to natural numbers (coded in base 1). They
can be represented by unsigned integers, while F1 and F2 are respectively implemented by 0 and the
function x 7→ x + 1.

This special case obviously applies to natural numbers defined in the standard library of Lotos [ISO87,
annex A.6.1.1]. The type “BasicNaturalNumber” has to be completed with special comments telling
Cæsar.adt that “0” and “Succ” are constructors and that “+”, “*” and “**” must be implemented
by C functions called “PLUS”, “MULT” and “POWER” respectively.

The bodies of these functions reflect Schnoebelen’s algorithm behavior. For each formal parameter y,
tests are made to decide whether the form of y is “0” or “Succ (x)”, in which case the value of x is
obtained as y − 1. For obvious reasons, iteration over the domain of “Nat” is restricted to the interval
0..255, the bounds of which can easily be modified by the user. Natural numbers are printed using
decimal notation, instead of algebraic terms with “0” and “Succ”.

typedef unsigned int NAT;

#define ZERO 0

#define SUCC(X) ((X) + 1)

NAT PLUS (X1, X2) NAT X1, X2; {

if (X2 == ZERO) return X1;

else return PLUS (SUCC (X1), X2 - 1);

}



NAT MULT (X1, X2) NAT X1, X2; {

if (X2 == ZERO) return ZERO;

else return PLUS (X1, MULT (X1, X2 - 1));

}

NAT POWER (X1, X2) NAT X1, X2; {

if (X2 == ZERO) return SUCC (ZERO);

else return MULT (X1, POWER (X1, X2 - 1));

}

#define CMP_NAT(X1,X2) ((X1) == (X2))

#define ENUM_NAT(X) for (X = 0; X <= 255; X++)

#define PRINT_NAT(F,X) fprintf (F, "%u", X)

Numerals different from sort “Nat” can also be found in Lotos specifications. The following example
appears in the description of the transport service [ISO89a, § 8.2] [LS88, p. 251]:

type TransportAddress is Boolean

sorts

TAddress (*! implementedby TADDRESS *)

opns

SomeTAddress (*! implementedby SOMETADDRESS constructor *) : -> TAddress

AnotherTAddress (*! implementedby ANOTHERTADDRESS constructor *) : TAddress -> TAddress

_eq_ (*! implementedby EQ_TADDRESS *),

_ne_ (*! implementedby NE_TADDRESS *) : TAddress, TAddress -> Bool

eqns

forall a, a1 : TAddress

ofsort Bool

SomeTAddress eq SomeTAddress = true;

SomeTAddress eq AnotherTAddress (A) = false;

AnotherTAddress (A) eq SomeTAddress = false;

AnotherTAddress (A) eq AnotherTAddress (A1) = A eq A1;

A ne A1 = not (A eq A1);

endtype

The corresponding C code produced by Cæsar.adt is:

typedef unsigned int TADDRESS;

#define SOMETADDRESS 0

#define ANOTHERTADDRESS(X) ((X) + 1)

BOOL EQ_TADDRESS (X1, X2) TADDRESS X1, X2; {

if (X1 == SOMETADDRESS)

if (X2 == SOMETADDRESS) return TRUE;

else return FALSE;

else

if (X2 == SOMETADDRESS) return FALSE;

else return EQ_TADDRESS (X1 - 1, X2 - 1);

}

#define NE_TADDRESS(X1,X2) (NOT (EQ_TADDRESS (X1, X2)))



6 Compilation of tuples

A sort S is a tuple when it has only one constructor F , whose profile is:

F : S1, ..., Sn -> S

The arity n should be greater than zero (otherwise S is an enumeration with a single value) and sorts
S1, ..., Sn should be different from S (otherwise the domain of S would be empty since it would be
impossible to write well-typed value expressions of sort S).

A tuple value is implemented by a pointer to structure having n fields, one per formal parameter of F .
This can be seen as a degenerate form S-node with no discriminant and a single field. Use of pointers
could be avoided: this is a well-known debate arising in most programming languages. The constructor
is translated into a C function that dynamically allocates a structure, fills in the fields and returns a
pointer to it.

Both optimizations described in section 3 also apply to tuples, especially the second one, which enables
sorts with several constructors, but a single constructor of arity greater than zero, to be implemented
like tuples. Lists, trees, natural numbers with an additional “undefined” value, ... fall into that range.

A general example of tuple appears in the transport protocol description [ISO89b, § 37.3]. It defines
a sort “ThreeTuple” which is a tuple composed of three sorts, respectively “Element1”, “Element2”
and “Element3”. These sorts are generic: no assumption can be made about their structure, except
the fact that the operators “eq” and “ne” are defined for them. Three selector operations “First”,
“Second” and “Third” are also defined to extract the tuple components.

type ThreeTuple is Element1, Element2, Element3, Boolean

sorts

ThreeTuple (*! implementedby THREETUPLE comparedby CMP_THREETUPLE printedby PRINT_THREETUPLE *)

opns

Tuple (*! implementedby TUPLE constructor *) : Element1, Element2, Element3 -> ThreeTuple

First (*! implementedby FIRST *) : ThreeTuple -> Element1

Second (*! implementedby SECOND *) : ThreeTuple -> Element2

Third (*! implementedby THIRD *) : ThreeTuple -> Element3

_eq_ (*! implementedby EQ_TUPLE *),

_ne_ (*! implementedby NE_TUPLE *) : ThreeTuple, ThreeTuple -> Bool

eqns

forall x1, y1 : Element1, x2, y2 : Element2, x3, y3 : Element3, t1, t2 : ThreeTuple

ofsort Element1

First (Tuple (x1, x2, x3)) = x1;

ofsort Element2

Second (Tuple (x1, x2, x3)) = x2;

ofsort Element3

Third (Tuple (x1, x2, x3)) = x3;

ofsort Bool

Tuple (x1, x2, x3) eq Tuple (x1, x2, x3) = true;

x1 ne y1 => Tuple (x1, x2, x3) eq Tuple (y1, y2, y3) = false;

x2 ne y2 => Tuple (x1, x2, x3) eq Tuple (y1, y2, y3) = false;

x3 ne y3 => Tuple (x1, x2, x3) eq Tuple (y1, y2, y3) = false;

t1 ne t2 = not (t1 eq t2);

endtype

The last equation was added since [ISO89b] does not provide any equation to define operation “ne”
(this minor omission was detected by Cæsar.adt). This type definition can be implemented as follows:



typedef struct {

ELEMENT1 E1;

ELEMENT2 E2;

ELEMENT3 E3;

} *THREETUPLE;

#define ALLOC_THREETUPLE(X) (X) = (THREETUPLE) malloc (sizeof (THREETUPLE *))

THREETUPLE TUPLE (X1, X2, X3) ELEMENT1 X1; ELEMENT2 X2; ELEMENT3 X3; {

THREETUPLE X4;

ALLOC_THREETUPLE (X4);

X4->E1 = X1;

X4->E2 = X2;

X4->E3 = X3;

return X4;

}

#define FIRST(X) ((X)->E1)

#define SECOND(X) ((X)->E2)

#define THIRD(X) ((X)->E3)

BOOL EQ_TUPLE (X1, X2) THREETUPLE X1, X2; {

if (CMP_ELEMENT3 (X1->E3, X2->E3) &&

CMP_ELEMENT2 (X1->E2, X2->E2) &&

CMP_ELEMENT1 (X1->E1, X2->E1)) return TRUE;

else if (CMP_BOOL (NE_ELEMENT1 (X1->E1, X2->E1), TRUE)) return FALSE;

else if (CMP_BOOL (NE_ELEMENT2 (X1->E2, X2->E2), TRUE)) return FALSE;

else if (CMP_BOOL (NE_ELEMENT3 (X1->E3, X2->E3), TRUE)) return FALSE;

else ERROR ();

}

#define NE_TUPLE(X1,X2) (NOT (EQ_TUPLE (X1, X2)))

#define CMP_THREETUPLE(X1,X2) (CMP_ELEMENT1 ((X1)->E1, (X2)->E1) && \

CMP_ELEMENT2 ((X1)->E2, (X2)->E2) && \

CMP_ELEMENT3 ((X1)->E3, (X2)->E3))

void PRINT_THREETUPLE (F, X) FILE *F; THREETUPLE X; {

fprintf (F, "TUPLE (");

PRINT_ELEMENT1 (F, X->E1);

fprintf (F, ", ");

PRINT_ELEMENT2 (F, X->E2);

fprintf (F, ", ");

PRINT_ELEMENT3 (F, X->E3);

fprintf (F, ")");

}

Conclusion

A realistic compilation technique was presented for translating a wide class of Lotos data descriptions
into libraries of C types and functions. It is based on the pattern-matching compiling algorithm
described in [Sch88], completed by efficient value representations. It generates good-quality code at
high speed (all examples shown in this paper are processed in a few seconds).

The general translation scheme can be refined to handle, with optimal efficiency, some special cases of
current use, that can be recognized from a limited analysis of type signatures. Experience confirms this



approach; the following statistics give an idea of the intensive use of enumerations, numerals and tuples
in OSI specifications (sorts defined by renaming or actualization are not taken into account since they
reflect the sorts they derive from):

transport service [ISO89a] transport protocol [ISO89b]

enumerations 4 7
numerals 2 1
tuples 9 3
“ordinary” types 1 4

A prototype tool, Cæsar.adt, was developed according to these principles. To simplify the implemen-
tation, some pragmatic restrictions were made: the user must indicate constructor operations to the
compiler and constructor discipline is enforced. Although the current version of the tool is far from
being perfect, it gives a precise idea of what can be achieved.

With respect to other FDTs, the proposed compiling technique obviously applies to SDL whose abstract
data types are close to those of Lotos. It also makes possible automatic translation of Lotos data
specifications into ASN.1 type definitions (in addition to C ones). Only sorts and constructors would be
considered in the translation process because ASN.1 describes data but not operations; non-constructors
could be dropped since they have no equivalent in ASN.1. Moreover, C functions could be generated
automatically to interface internal (i.e., C) and external (i.e., ASN.1) data representations.
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