
An Overview of the Eucalyptus Toolbox

H. Garavel
Inria Rhône-Alpes / Verimag
Zirst, 655, avenue de l’Europe

F-38330 Montbonnot Saint Martin
France

hubert.garavel@inria.fr

Abstract

This article presents the essential features of a
protocol engineering environment, the Eucalyptus
toolbox, which has been developed or improved in
the framework of two successive European-Canadian
projects Eucalyptus-1 and Eucalyptus-2. This
toolbox is based on the formal description technique
Lotos standardized by Iso. It offers a wide range
of functionalities, including simulation, compilation,
verification and test case generation for Lotos de-
scriptions.

1 Introduction

The development of telecommunication protocols
and distributed systems can be improved by the use
of formal methods supported by appropriate software
tools.

Formal description techniques such as the Lotos
language standardized by Iso [30] have been defined
to allow a precise and unambiguous description of
complex reactive systems. The design of Lotos was
motivated by the need for a language with a high
abstraction level and a strong mathematical basis,
which could be used for the description and analysis
of complex systems. The Lotos language features
two clearly separated parts:

• The data part of Lotos, used to describe data
structures, is based on the well-known theory of
algebraic abstract data types. In this approach,
data structures are described by sorts, which
represent value domains, and operations, which
are mathematical functions defined on these do-
mains. The meaning of operations is defined
by algebraic equations. Sorts, operations, and
equations are grouped in modules called types,
which can be combined together using importa-
tion, renaming, parametrization, and actualiza-
tion. The underlying semantics is that of initial
algebras [9].

• The control part of Lotos, used to describe dy-
namic behaviours, is based on the process alge-
bra approach for concurrency, and appears to
combine the best features of CCS [38, 39] and
CSP [28]. Lotos relies on a small set of ba-
sic operators, which represent primitive concepts
of concurrent systems (sequential composition,
non-deterministic choice, guard, parallel compo-
sition, rendez-vous, etc.) These operators are
used to build algebraic terms that describe the
behaviour of concurrent systems; the approach
is compositional, since complex behaviours can
be obtained by combining elementary ones.

During the past decade, a number of software en-
gineering tools for Lotos have been developed, often
in large European projects. However, as such tools
are innovative and intrinsically complex, the devel-
opment and maintainance requires a time scale that
exceeds by far the duration of short-term, finalized
projects. We believe that robust and workable im-
plementations can only be obtained from a sustained,
long-term effort.

As an example of such a long-term effort, we
present the results of two successive European-
Canadian projects, named Eucalyptus-1 and
Eucalyptus-2, the name Eucalyptus being an
acronym for European-Canadian Lotos Protocol Tool
Set. Four partners have been involved in these
projects:

• The research project Spectre of Inria (Greno-
ble, France);

• The University of Liège (Belgium), Institut
d’Electricité Montefiore, Département Systèmes
et Automatique;

• The University of Montréal (Québec, Canada),
Départment Informatique et Recherche
Opérationnelle;

• The University of Ottawa (Ontario, Canada),
Department of Computer Science, Telecommu-
nications Software Engineering Research Group.

Eucalyptus-1 is a two-year project, which
started on January 1st, 1993. Eucalyptus-2 is a
two-year followup project, which started on January
1st, 1995. Both projects have been supported by the
European Commission (under contracts Esprit Ec-
Ca 001 and Isc-Can-65), the Natural Sciences and
Engineering Research Council of Canada (Nserc),
and the Telecommunications Research Institute of
Ontario (Trio).

Capitalizing on the experience acquired by the
various partners in using the Lotos language for
large-size applications and developing Lotos tools,
the Eucalyptus-1 and Eucalyptus-2 projects have
been taking aim at producing a complete, workable
protocol engineering toolbox for Lotos. This “Eu-
calyptus toolbox” consists of several tools, which
have been developed by the partners during the
project, or improved from pre-existing Lotos en-
vironments, such as Grenoble’s Cadp [13, 12] and
Ottawa’s XEludo [46]. Additionally, two other re-
search teams, although not members of the Euca-
lyptus consortium, have decided to integrate their
own tools in the Eucalyptus toolbox:

• The research project Pampa of Irisa (Rennes,
France);

• Institut National des Télécommunications (Int,
Evry, France).

This article presents the essential features of the
Eucalyptus toolbox. It is organized as follows. Sec-
tion 2 describes the functionalities of the toolbox
from an external point of view. Section 3 takes a
more internal view by presenting each component of
the toolbox separately. Section 4 introduces various
tools, which although not integrated yet in the tool-
box, should become part of it in a near future. Sec-
tion 5 demonstrates the practical usefulness of the
Eucalyptus toolbox by giving a comprehensive list
of applications and bibliographic references. Finally,
Section 6 formulates some concluding remarks.

2 Functionalities of the EUCALYP-

TUS toolbox

Although the Eucalyptus toolbox groups differ-
ent tools developed by different partners, extensive ef-
forts have been done to achieve a smooth integration,
by making tools compatible with each other, by de-
veloping gateways that allow different tools to inter-
operate, and by providing a unified user-interface.

From the user point of view, the Eucalyptus
toolbox is primarily viewed through its graphical
user-interface (Gui) based on X-windows. Func-
tionally, the Gui is simple: it is divided into two

main windows. The left sub-window presents the files
present in the current Unix directory. There are dif-
ferent types of files (e.g., Lotos programs, C pro-
grams, test sequences, etc.) By clicking on a partic-
ular file, the list of operations (e.g. code generation,
simulation, verification, etc.) permitted for this type
of file is proposed. When an operation is invoked, its
results are displayed in the right sub-window.

From 1994 to 1995, a first version of the Gui
(see Figure 1) was developed by all the Eucalyp-
tus partners, using the XtPanel interface builder
developed by Steve Cole and Dave Nichols (Stanford
University). However, as various problems (porta-
bility, maintainability, and speed) were faced with
XtPanel, a second version of the Gui (see Figure 2)
was developed using the popular Tcl-Tk interface
builder. This new version solves all the aforemen-
tioned problems and should be made available by
September 1996.

The following functionalities can be accessed using
the Gui:

Extensions to LOTOS: It is possible to enrich
Lotos with new constructs (especially, compact
notations for type definitions) by using a pre-
processor which allows macro-definitions to be
defined and expanded into standard Lotos.

Analysis: The Eucalyptus toolbox contains front-
end tools performing lexical, syntactic, and
static semantics analysis according to the Lotos
standard [30].

Report generation: There are tools for pretty-
printing Lotos descriptions and generating
cross-references (for process names, gate names,
type names, etc.)

Code generation: There are compilers to translate
Lotos types and process definitions into C code
that can be executed and/or embedded in appli-
cation programs.

Simulation: The toolbox supports various forms of
simulation, such as interactive simulation (step-
by-step execution with backtracking), symbolic
expansion (in which input values are handled
symbolically), goal-oriented simulation, and ran-
dom execution.

Exhaustive verification: The toolbox allows to
generate the Labelled Transition System (Lts)
corresponding to a Lotos description. Ltss
with millions of states and transitions can be
generated, within the limits of memory available.
Ltss are stored using a compact format with
ad hoc data compression techniques. These Ltss
can be analyzed and verified in several ways.

They can be minimized and compared modulo
various equivalence (bisimulations) and preorder
relations. They can also be validated using prop-
erties expressed as formulas of temporal logic or
µ-calculus. Connections with external verifica-
tion tools are also provided.

Compositional verification: Due to the well-
known state explosion problem, exhaustive gen-
eration of Ltss is not always possible. The Eu-
calyptus toolbox allows to divide a Lotos de-
scription into parallel processes, to generate the
Ltss corresponding to these processes, to mini-
mize these Ltss modulo a bisimulation relation,
and to build the Lts for the whole system by re-
combining these reduced Ltss. In practice, this
“divide and conquer” approach often gives satis-
factory results.

“On the fly” verification: As an alternative ap-
proach to avoid the state explosion problem,
the Eucalyptus toolbox allows certain proper-
ties to be verified without generating the whole
Lts first. “On the fly” verification techniques
range from simple properties, such as deadlock
detection and search of particular execution se-
quences, up to more elaborated properties such
as “on the fly” comparisons of Ltss modulo
bisimulation relations and “on the fly” evalua-
tion of branching-time µ-calculus formulas.

Graph drawing: The toolbox contains several tools
to display the Ltss generated from Lotos de-
scriptions. For small Ltss (e.g., with less than
one hundred states), these tools generate au-
tomatically a PostScript representation, using
heuristics for 2-dimensional or 3-dimensional lay-
out. If necessary, these automatically-generated
pictures can be improved by hand using an in-
teractive editor available with the toolbox. In-
terfacing with external viewers such as Auto-
graph [43] is also provided.

Test generation: From the Lotos descriptions,
one can automatically generate test sequences,
which will be used to assess the conformity of
real implementations with respect to the original
descriptions. Several strategies for test genera-
tion are already available, others are expected to
be integrated soon.

Trace analysis: Finally, the Eucalyptus toolbox
allows to verify whether a given trace (execu-
tion sequence) can be obtained from a Lotos
description. This allows to validate test suites
and their verdicts with respect to a Lotos de-
scription representing the behavior of the system
under test.

3 Tools already available

At present, the Eucalyptus toolbox contains the
following tools:

APERO (Liège): The data part of Lotos is based
upon a highly abstract model (multi-sorted alge-
bras), which yields considerable expressive power
to the language but turns out to be too funda-
mental with respect to the usual needs in dy-
namic system descriptions. Moreover, this model
lacks some theoretical computability properties
(decidability), so that existing software tools
(simulators, compilers, verifiers, etc.) have to
put some restrictions on the Lotos descriptions
which they handle.

Furthermore, when taking a look at existing
Lotos descriptions, it appears that the descrip-
tion of the needed data types is often very large.
This lack of concision had already been identi-
fied by G. Scollo in 1986 who proposed to ex-
tend the language definition with shorthand no-
tations. However, most of the extensions pro-
posed by G. Scollo were not included in the stan-
dardized definition of the language. Thus, the
problem remained unsolved as system descrip-
tions using the extended language were neither
internationally accepted by the scientific commu-
nity nor tractable by Lotos related tools.

Apero (a loose acronym for “Act-one PrE-
pROcessor”) [42] offers a technical solution to
this problem. It behaves as a pre-processor that
translates the aforementioned shorthand nota-
tions into standard Lotos, thus allowing sim-
ple and compact specification of common data
structures in Lotos while keeping compatibility
with the standard language, and therefore with
existing tools. This pre-processing functionality
is combined with an extension of the data type
library of Lotos, adding generic definitions for
common data structures such as records or enu-
merations. This extended library contains an in-
finite number of definitions; for each Lotos de-
scription, Apero generates a subset containing
only the needed ones.

Figure 1: Version 1 of the Eucalyptus graphical user-interface

Figure 2: Version 2 of the Eucalyptus graphical user-interface

CÆSAR (Grenoble): Cæsar [19, 23] is a compiler
that translates Lotos descriptions into Ltss.
Cæsar translation algorithms proceed in sev-
eral steps, first translating the Lotos descrip-
tion to compile into an intermediate Petri Net
model, which provides a compact representation
of the control and data flows. Then, the Lts is
produced by performing reachability analysis on
this Petri net.

Cæsar only handles Lotos descriptions with
static control features: process recursion is not
allowed on the left and right hand part of
“|[...]|”, nor on the left hand part of “>>” and
“[>”. In spite of these restrictions, the subset
of Lotos accepted by Cæsar is large and usu-
ally sufficient for most applications. The current
version of Cæsar allows the generation of large
Ltss (some million states) within a reasonable
lapse of time. These Ltss can be generated ei-
ther in the Bcg format or in other formats used
by various verification tools.

Moreover, the efficient compiling algorithms of
Cæsar can also be exploited in the framework
of the Open/Cæsar environment (see below).

CÆSAR.ADT (Grenoble): Cæsar.adt [19, 24]
is a compiler that translates the data part of
Lotos descriptions into libraries of C types and
functions. Each Lotos sort is translated into
an equivalent C type and each Lotos opera-
tion is translated into an equivalent C function
(or macro-definition). Cæsar.adt also gener-
ates C functions for comparing and printing ab-
stract data types values, as well as iterators for
the sorts the domain of which is finite. The user
can also decide to provide hand-written C code
for some Lotos sorts and/or operations.

The user must indicate to Cæsar.adt which
Lotos operations are “constructors” and which
are not. Cæsar.adt does not allow non-
free constructors (“equations between construc-
tors”). However, it is always possible to trans-
form a Lotos description in order to remove
equations between constructors.

Translation of large programs (thousands of
lines) is usually achieved in a few seconds.
Cæsar.adt can be used in conjunction with
Cæsar, but it can also be used separately to
compile and execute efficiently large abstract
data types descriptions.

ALDEBARAN (Grenoble): Aldébaran [11,
17, 16] is a tool for comparing and reducing
Ltss (or networks of communicating Ltss) mod-
ulo various equivalence relations (such as strong
bisimulation, observational equivalence, delay

bisimulation, τ
∗
a bisimulation, branching bisim-

ulation, and safety equivalence) and preorder re-
lations (such as simulation preorder and safety
preorder). For instance, one can check that the
Lts of a protocol (generated using Cæsar) is
equivalent (modulo various abstraction criteria)
to the Lts representing the service of this pro-
tocol. Aldébaran has diagnostic capabilities
that provide the user with explanations (execu-
tion sequences) when two Ltss are found to be
not equivalent.

The verification techniques implemented in
Aldébaran are based either on the Paige-
Tarjan algorithm for computing the relational
coarsest partition, or on the “on-the-fly” tech-
niques proposed by Fernandez-Mounier, or on
symbolic Lts representation using Binary Deci-
sion Diagrams (Bdds).

OPEN/CÆSAR (Grenoble): Open/Cæsar is
an extensible environment for designing pro-
grams performing simulation, execution, verifi-
cation (partial, on-the-fly, etc.), and test gen-
eration. It allows these programs to be devel-
oped in a simple and modular framework, inde-
pendently from any particular description lan-
guage. Open/Cæsar is open and documented,
so that users can extend the environment by
adding their own libraries and programs.

Currently, several languages/compilers are con-
nected to the Open/Cæsar environment, in-
cluding the Cæsar and Cæsar.adt compilers,
the Bcg Open gateway for explicit graphs, the
Exp.Open gateway for networks of communicat-
ing automata, etc.

Several application programs are currently avail-
able within the Open/Cæsar framework, in-
cluding:

• Evaluator is an on-the-fly evaluator for
branching-time µ-calculus;

• Executor is a random execution tool;

• Exhibitor searches for execution se-
quences matching a given pattern defined
by a regular expression;

• Generator performs reachability analysis
and generates an Lts;

• Reductor is similar to Generator, but
performs on-the-fly reduction modulo the
τ
∗
a equivalence;

• Simulator is an interactive simulator with
a command-line interface;

• Terminator is a deadlock detection tool
based on G. Holzmann’s bit space technique
[29];

• Xsimulator is another interactive simula-
tor with a graphical user interface based on
X-windows.

BCG (Grenoble): Bcg (Binary-Coded Graphs)
[20, 44] is both a format for the representation
of explicit Ltss and a collection of libraries and
programs dealing with this format. Compared to
Ascii-based formats for Ltss, the Bcg format
uses a binary representation with compression
techniques resulting in much smaller (up to 20
times) files. Bcg is independent from any source
language but keeps track of the objects (types,
functions, variables) defined in the source pro-
grams. Due to its extended functionalities, the
Bcg format is more complex than Ascii-based
formats; however, a large set of programming
interfaces, object code libraries, and programs
makes this extra complexity almost invisible to
the user. Several tools are currently available for
this format:

• Bcg Io performs conversions between the
Bcg format and a dozen of other formats,
including the common format Fc2 [36] de-
signed in the European project Concur-2,
which provides for interfacing external ver-
ification tools such as the Concurrency
Workbench [7] and Auto/Autograph
[43];

• Bcg Open establishes a gateway be-
tween the Open/Cæsar environment
and the Bcg format, thus allowing all
Open/Cæsar tools to be applied to Bcg
graphs;

• Bcg Draw provides a graphical represen-
tation of Bcg graphs with an automatic,
2-dimensional layout of states and transi-
tions;

• Bcg Edit is an interactive editor which al-
lows to modify manually the graphical rep-
resentations generated by Bcg Draw.

ELUDO (Ottawa): The Lotos environment un-
der development at the University of Ottawa
is named XEludo (an acronym for “Environ-
nement Lotos de l’Université d’Ottawa”) [46].
The main currently operational tools in XEludo
are Isla, Sela, and Goal (see below). XE-
ludo includes common facilities available to all
the tools, including:

1. A graphical interface for ASCII terminals,
based upon the “curses” library of UNIX;

2. A graphical interface based upon X-
windows;

3. A Lotos translator, which is a stand-alone
program that performs initial verification
and preprocessing on the Lotos descrip-
tion to be analyzed under XEludo. It may
be executed from inside XEludo or as and
independent Lotos specifier’s development
tool. The main functions supported by the
translator are the following:

• Lexical, syntactical and static seman-
tics analysis;

• Translation to a Prolog internal rep-
resentation suitable for the XEludo
tools, which are written in Prolog; the
translation of the Lotos description
into its equivalent Prolog form is done
only once;

• Generation of cross-references of pro-
cesses, gates and types;

• Creation of a user-defined type library,
to replace the default standard library;

• Output of a parse tree of the descrip-
tion;

• Pretty-printing of the Lotos descrip-
tion.

ISLA (Ottawa): Isla [26] provides a step-by-step
execution mode which allows to simulate the se-
quence of possible actions that are permitted by
a Lotos description. The execution of a Lotos
description can be represented as a tree, where
the root of the tree is the description itself, the
intermediate nodes are behavior expressions and
the branches of the tree represent Lotos actions.

The user may choose to simulate the whole de-
scription at once, or only parts of it (certain pro-
cesses). At each step, during simulation, the user
is prompted with a menu of possible next actions.
The user chooses the next action to be executed
and, if the selected action requires data to be
supplied by the environment (the user plays the
role of the environment), then data must be en-
tered for the simulation to continue.

A menu-driven facility prompts the user with ap-
propriate choices for data. Also, at any point
during simulation, the user may ask to see the
current behavior of the system or the behavior
that will result by executing one of the possible
next actions.

Furthermore, Isla displays the complete set of
execution paths that have been exercised by the
user during the current simulation session, in the
form of a tree. This allows her to check, for
example, where in the execution tree a guard
was evaluated and where certain value identifiers

were instantiated. So, if certain chosen values
did not lead to the desired sequence, the user
can back up to a point where a different value
can be entered. Therefore, the user may return
to a previous execution point, and redo execution
from that point with different choices.

It is also possible to save the sequence of actions,
executed up to some point in the tree, in the
memory or in an external file, thereby gaining
the possibility of continuing the simulation, at a
later time, from where it was left off.

TESTGEN (Evry): Testgen [5] is a tool for gen-
erating optimal test sequences from the Lotos
description of a protocol, in order to check the
conformance of a protocol implementation to its
formal description. The classical technique of
Unique Input/Output sequences is adapted to
the Ltss obtained from Lotos specifications by
defining a new concept: the Unique Event se-
quence. This approach, combined with power-
ful optimization techniques (Rural Chinese Post-
man Tour and Greedy Overlap) produces opti-
mal test sequences, which check the conformance
of a protocol implementation by performing a
minimal cost tour of the reference Lts. This
method overcomes the limited controllability and
observability of the protocol implementation by
an external tester.

TETRA (Montréal): Tetra (TEst and TRace
Analyzer) [3, 4, 8] compares a given trace of in-
teractions with a reference description written in
Lotos, checking whether an execution history of
the Lotos description could produce the given
trace. The tool allows for two modes of analysis:

• off-line trace analysis, where the reference
description is compiled together with the
traces to be analyzed, which are written in
the form of Lotos processes;

• on-line trace analysis, which compiles the
reference description alone and analyses the
interactions of a trace one after the other
as they are received from another site ex-
ecuting/simulating the implementation un-
der test. The result of a trace analysis is
either “valid trace” or “invalid trace”.

In the latter case, an optional error diagnostic fa-
cility provides indications about possible causes
of the discrepancy between the trace and the
Lotos description according to various error hy-
potheses.

Beside trace analysis, Tetra also has an option
to validate test cases and their verdicts with re-
spect to a reference description which defines the

expected behavior of the tested system. It estab-
lishes in this case whether or not the branches
of a test case conform to the reference descrip-
tion. Diagnostic analysis for erroneous branches
is possible as well.

VISCOPE (Rennes): Viscope [32] is a tool for
automatic display (in 2- or 3-dimensions) of
Ltss. Based on partial-order theory, it gener-
ates a PostScript representation with a layout of
states and transitions that make concurrent ac-
tions visible, most notably by preserving the “di-
amonds” in the Ltss, which are created by the
interleaving of concurrent actions. A new ver-
sion of Viscope is currently under development,
which should provide full compatibility with the
Bcg format and the Bcg Edit tool.

4 Tools to be integrated

There exist other tools, which, although available
separately, are not integrated yet in the Eucalyptus
toolbox. We mention them since some of them are
likely to be integrated in a near future:

BRIDGE (Ottawa): Bridge is a tool that
strengthens the toolbox integration, by allowing
combined use of complementary tools. It pro-
vides a convenient gateway between verification
and simulation tools.

The verification tools Aldébaran, Bcg, and
Open/Cæsar can discover quickly “faulty” ex-
ecution sequences, i.e., execution sequences that
do not correspond to a permitted behaviour.
However, as these tools operate at the level
of the Lts model, the correspondence between
faulty execution sequences and source Lotos de-
scriptions is (partially) lost, due to the sophisti-
cated, optimized translations performed by the
Cæsar/Cæsar.adt compilers.

The Bridge tool (used in conjunction with
Open/Cæsar’s Exhibitor tool) solves this
problem by allowing faulty execution sequences
to be re-executed step by step using the in-
teractive simulator Isla. As Isla maintains
a direct correspondence between the simulation
steps and the source Lotos descriptions, it is
very easy for the user to understand the reason
of the error.

SELA (Ottawa): Sela [25] is a symbolic expander
for Lotos. The step-by-step execution mode
provided by Isla is very useful, but it is also
time consuming.

Sela allows one to compute the tree of all pos-
sible next actions from the current point, or any

given point in the tree. This is known as the
symbolic execution tree because expressions are
computed in terms of (not necessarily) bounded
value identifiers. In terms of Lotos theory,
the calculation of this tree is called ’expansion’.
When generating a symbolic tree, guards and
predicates, whose values depend on interactions
with the environment, are assumed to be true.
In addition, the user is required to set limits on
the depths and widths of the symbolic tree to be
generated.

Although calculation of the symbolic tree may
not terminate, it can yield finite initial sub-
trees of an infinite monolithic Lotos description
equivalent to the original one.

GOAL (Ottawa): Goal [27] is a tool providing
“Goal-Oriented Execution” for Lotos. Both
Isla and Sela suffer from the well-known prob-
lem of state explosion: for most practical Lotos
descriptions, execution trees grow very quickly.

Goal-oriented execution attempts to relieve this
problem. In this type of execution, the tool at-
tempts to find execution sequence(s) leading to
a certain action or sequence of actions (these are
the “goals”). The Lotos description is scanned
statically to find where the action(s) can be
found. Then the inference rules are applied, tak-
ing into consideration this information. The re-
sult are sets of execution sequences reaching the
goals.

TGV (Grenoble and Rennes): Tgv (Test Gen-
eration based on Verification) [14, 15] takes as
inputs an Lts and an automaton formalizing the
behavioural part of a test purpose and generates
a test case in the standard Ttcn format. This
translation is performed in successive steps.

The first step transforms the Lts into a graph
representing the observable behaviour of the pro-
tocol description in the testing environment, tak-
ing into account the concurrency which may be
produced by asynchronous interaction between
the tester and the implementation. Additional
transformations are also performed during this
step: abstraction of unobservable internal ac-
tions and determinization.

The next step, the kernel of Tgv, is based upon
a depth-first search algorithm, which produces a
test graph containing all informations needed in
Ttcn test cases.

The last step takes as input the test graph, ex-
tracts from the transition labels the message pa-
rameters and produces the constraint part. The
remaining graph is unfolded into a tree describ-

ing the behavioural part of the test case. Fi-
nally the constraint and behavioural parts of the
test case are translated into the graphical format
Ttcn Gr.

XTL (Grenoble): XTL (eXecutable Temporal
Language) is a functional-like programming lan-
guage designed to allow an easy, compact imple-
mentation of various temporal logic operators.
These operators are evaluated over an Lts gen-
erated from a source program and encoded in the
Bcg format.

Beside the usual predefined types (booleans, in-
tegers, characters, strings, etc.), the Xtl lan-
guage allows to access all types and functions de-
fined in the source program and provides special
types, such as states, transitions, sets of states,
sets of transitions, and labels of the Lts. It offers
primitives to access the informations contained
in states and labels: this allows to express “basic
predicates” (i.e. containing no temporal opera-
tors) defined over the states and labels of the
Lts. There also exist predefined functions to ac-
cess the initial state and the successors and pre-
decessors of states and transitions, thus allowing
the exploration of the transition relation.

Therefore, the Xtl language can be viewed as
a high-level query language for accessing all in-
formation contained in Bcg graphs. The tem-
poral operators of various temporal logics can
be implemented as recursively defined user Xtl
functions operating on sets of states and tran-
sitions. A prototype compiler for Xtl has been
developed, and several temporal logics like Hml,
Ctl, Actl and Ltac have already been imple-
mented in Xtl.

5 Applications

The Eucalyptus tools have been used in many
different application fields. We give here a (non-
exhaustive) list of case-studies, most of which have
led to scientific publications:

Cryptography: message authentication algorithm
[31, 41, 47];

Embedded software: car overtaking protocol [10],
Airbus 330/340 Flight Warning Computer [21],
railyard systems [18];

Network protocols: bus instrumentation protocol
Fip [1], Osi95 transport service [35], bounded
retransmission protocol [37], Internet transport
protocol Tcp [45];

Telephony: transit node message router [40], Plain
Ordinary Telephone Service (Sics, Sweden), fea-
ture interactions in telephony systems [34];

Distributed systems: rel/REL reliable atomic
multicast protocol [2], groupware protocols [33],
distributed leader election algorithms [22],

Hardware protocols: bus arbiter of Bull’s Pow-
erScale architecture [6].

6 Conclusion

To be effective, formal description techniques need
to be supported by software engineering tools, which
allow to compile, simulate, verify and generate tests.
Based on Lotos, a powerful and sound formal lan-
guage, the Eucalyptus toolbox offers these func-
tionalities. It gathers a number of tools, which have
been either developed or improved in the frame-
work of two successive European/Canadian projects
Eucalyptus-1 and Eucalyptus-2. These tools
have been interfaced and integrated into a unified
graphical user-interface. Other tools will be added to
the toolbox in a near future. The Eucalyptus tools
have been assessed on realistic case-studies, some of
them in industrial context. Finally, beside the tool-
box development, it is worth mentioning the signifi-
cant role played by the Eucalyptus-2 project in the
definition of Extended Lotos, a revised version of
Lotos, which is currently under elaboration within
Iso.

Acknowledgements

As the Eucalyptus toolbox integrates a number
of tools from various institutions, this article com-
piles a number of tool descriptions provided by sev-
eral persons. The author is grateful to those who
provided the material for the basis of a unified pre-
sentation of the Eucalyptus toolbox. He would
also like to thank all the scientists, engineers, and
students who have contributed, directly or indirectly,
to the Eucalyptus-1 and Eucalyptus-2 projects,
namely:

In Grenoble: Marius Bozga, Dr. Jean-Claude Fer-
nandez, Jean-Michel Frume, Dr. Hubert Gar-
avel, Dr. Alain Kerbrat, Dr. Laurent Mounier,
Radu Mateescu, Renaud Ruffiot, Dr. Joseph
Sifakis, Mihaela Sighireanu, and Louis-Pascal
Tock;

In Evry: Pr. Ana Cavalli and Toma Macavei;

In Liège: France Bierbaum, Pr. André Dan-
thine, Jean-Charles Henrion, Michel Jankowski,
Dr. Guy Leduc, Luc Léonard, and Charles
Pecheur;

In Ottawa: Xavier Etchevers, Mark Jorgensen,
Pr. Luigi Logrippo and Jacques Sincennes;

In Montréal: Omar Bellal, Pr. G. v. Bochmann,
and Daniel Ouimet;

In Rennes: Dr. Claude Jard and Dr. Thierry Jeron.

References

[1] Pierre Azema, Khalil Drira, and François Verna-
dat. A Bus Instrumentation Protocol Specified
in LOTOS. In Juan Quemada, José Manas, and
Enrique Vázquez, editors, Proceedings of the 3rd
International Conference on Formal Description
Techniques FORTE’90 (Madrid, Spain). North-
Holland, November 1990.

[2] Simon Bainbridge and Laurent Mounier. Spec-
ification and Verification of a Reliable Multi-
cast Protocol. Technical Report HPL-91-163,
Hewlett-Packard Laboratories, Bristol, U.K.,
October 1991.

[3] G.v. Bochmann and O. Bellal. Test Result Anal-
ysis with respect to Formal Specification. In Pro-
ceedings of the 2nd International Workshop on
Protocol Test Systems (Berlin, Germany), Oc-
tober 1989.

[4] G.v. Bochmann, D. Desbiens, M. Dubuc,
D. Ouimet, and F. Saba. Test Result Analysis
and Validation of Test Verdicts. In Proceedings
of the 3rd International Workshop on Protocol
Test Systems (McLean, Virginia, USA), Octo-
ber 1990.

[5] Ana Cavalli, Sung Un Kim, and Patrick
Maigron. Improving conformance testing for LO-
TOS. In Richard L. Tenney, Paul D. Amer,
and M. Umit Uyar, editors, Proceedings of the
6th International Conference on Formal De-
scription Techniques FORTE’93 (Boston, MA,
USA), pages 367–384. North-Holland, October
1993.

[6] Ghassan Chehaibar, Hubert Garavel, Laurent
Mounier, Nadia Tawbi, and Ferruccio Zulian.
Specification and Verification of the Power-
Scale Bus Arbitration Protocol: An Indus-
trial Experiment with LOTOS. In Reinhard
Gotzhein and Jan Bredereke, editors, Proceed-
ings of the Joint International Conference on

Formal Description Techniques for Distributed
Systems and Communication Protocols, and
Protocol Specification, Testing, and Verification
FORTE/PSTV’96 (Kaiserslautern, Germany),
pages 435–450. IFIP, Chapman & Hall, October
1996. Full version available as INRIA Research
Report RR-2958.

[7] R. Cleaveland, J. Parrow, and B. Steffen. The
Concurrency Workbench. In J. Sifakis, editor,
Proceedings of the 1st Workshop on Automatic
Verification Methods for Finite State Systems
(Grenoble, France), volume 407 of Lecture Notes
in Computer Science, pages 24–37. Springer Ver-
lag, June 1989.

[8] M. Dubuc, G.v. Bochmann, O. B. Bellal, and
F. Saba. Translation from TTCN to LO-
TOS and the Validation of Test Cases. In
Juan Quemada, José Manas, and Enrique
Vázquez, editors, Proceedings of the 3rd In-
ternational Conference on Formal Description
Techniques FORTE’90 (Madrid, Spain). North-
Holland, November 1990.

[9] H. Ehrig and B. Mahr. Fundamentals of Al-
gebraic Specification 1 — Equations and Initial
Semantics, volume 6 of EATCS Monographs on
Theoretical Computer Science. Springer Verlag,
1985.

[10] Patrik Ernberg, Lars-̊ake Fredlund, and Bengt
Jonsson. Specification and Validation of a Sim-
ple Overtaking Protocol using LOTOS. In Ken-
neth R. Parker and Gordon A. Rose, editors,
Proceedings of the 4th International Conference
on Formal Description Techniques FORTE’91,
pages 377–392. North-Holland, 1991.

[11] Jean-Claude Fernandez. An Implementation of
an Efficient Algorithm for Bisimulation Equiva-
lence. Science of Computer Programming, 13(2–
3):219–236, May 1990.

[12] Jean-Claude Fernandez, Hubert Garavel, Alain
Kerbrat, Radu Mateescu, Laurent Mounier, and
Mihaela Sighireanu. CADP: A Protocol Valida-
tion and Verification Toolbox. In Rajeev Alur
and Thomas A. Henzinger, editors, Proceedings
of the 8th Conference on Computer-Aided Verifi-
cation (New Brunswick, New Jersey, USA), Au-
gust 1996.

[13] Jean-Claude Fernandez, Hubert Garavel, Lau-
rent Mounier, Anne Rasse, Carlos Rodŕıguez,
and Joseph Sifakis. A Toolbox for the Verifica-
tion of LOTOS Programs. In Lori A. Clarke, ed-
itor, Proceedings of the 14th International Con-
ference on Software Engineering ICSE’14 (Mel-

bourne, Australia), pages 246–259. ACM, May
1992.

[14] Jean-Claude Fernandez, Claude Jard, Thierry
Jéron, Laurence Nedelka, and César Viho. Us-
ing On-the-Fly Verification Techniques for the
Generation of Test Suites. In R. Alur and T. A.
Henzinger, editors, Proceedings of the 8th Inter-
national Conference on Computer-Aided Verifi-
cation (Rutgers University, New Brunswick, NJ,
USA), volume 1102 of Lecture Notes in Com-
puter Science, pages 348–359. Springer Verlag,
August 1996. Also available as INRIA Research
Report RR-2987.

[15] Jean-Claude Fernandez, Claude Jard, Thierry
Jéron, Laurence Nedelka, and César Viho. An
Experiment in Automatic Generation of Test
Suites for Protocols with Verification Technol-
ogy. Science of Computer Programming, 29(1–
2):123–146, July 1997. Special issue on Indus-
trially Relevant Applications of Formal Analysis
Techniques. Also available as INRIA Research
Report RR-2923.

[16] Jean-Claude Fernandez, Alain Kerbrat, and
Laurent Mounier. Symbolic Equivalence Check-
ing. In C. Courcoubetis, editor, Proceedings
of the 5th Workshop on Computer-Aided Veri-
fication (Heraklion, Greece), volume 697 of Lec-
ture Notes in Computer Science. Springer Ver-
lag, June 1993.

[17] Jean-Claude Fernandez and Laurent Mounier.
A Tool Set for Deciding Behavioral Equiva-
lences. In Proceedings of CONCUR’91 (Ams-
terdam, The Netherlands), August 1991.

[18] Lars-̊ake Fredlund and Fredrik Orava. An Ex-
periment in Formalizing and Analysing Railyard
Configurations. In Z. Brezočnik and T. Kapus,
editors, Proceedings of COST 247 International
Workshop on Applied Formal Methods in System
Design (Maribor, Slovenia), pages 51–60. Uni-
versity of Maribor, Slovenia, June 1996.

[19] Hubert Garavel. Compilation of LOTOS Ab-
stract Data Types. In Son T. Vuong, editor,
Proceedings of the 2nd International Conference
on Formal Description Techniques FORTE’89
(Vancouver B.C., Canada), pages 147–162.
North-Holland, December 1989.

[20] Hubert Garavel. Binary Coded Graphs — Defi-
nition of the BCG Format (version 1.0). Rapport
interne, INRIA Rhône-Alpes, Grenoble, 1994.

[21] Hubert Garavel and René-Pierre Hautbois. Ex-
perimenting LOTOS in Aerospace Industry. In

Teodor Rus and Charles Rattray, editors, Theo-
ries and Experiences for Real-Time System De-
velopment, volume 2 of Amast Series in Com-
puting, chapter 11. World Scientific, 1994.

[22] Hubert Garavel and Laurent Mounier. Speci-
fication and Verification of Various Distributed
Leader Election Algorithms for Unidirectional
Ring Networks. Science of Computer Program-
ming, 29(1–2):171–197, July 1997. Special is-
sue on Industrially Relevant Applications of For-
mal Analysis Techniques. Full version available
as INRIA Research Report RR-2986.

[23] Hubert Garavel and Joseph Sifakis. Compila-
tion and Verification of LOTOS Specifications.
In L. Logrippo, R. L. Probert, and H. Ural, edi-
tors, Proceedings of the 10th International Sym-
posium on Protocol Specification, Testing and
Verification (Ottawa, Canada), pages 379–394.
IFIP, North-Holland, June 1990.

[24] Hubert Garavel and Philippe Turlier. CÆSAR.-
ADT : un compilateur pour les types abstraits
algébriques du langage LOTOS. In Rachida
Dssouli and Gregor v. Bochmann, editors, Actes
du Colloque Francophone pour l’Ingénierie des
Protocoles CFIP’93 (Montréal, Canada), 1993.

[25] B. Ghribi and L. Logrippo. A Validation Envi-
ronment for LOTOS. In A. Danthine, G. Leduc,
and P. Wolper, editors, Proceedings of the 13th
IFIP International Workshop on Protocol Spec-
ification, Testing and Verification (Liège, Bel-
gium), pages 93–108. IFIP, North-Holland, May
1993.

[26] R. Guillemot, R. Haj-Hussein, and L. Logrippo.
Executing Large LOTOS Specifications. In
S. Aggarwal and K. Sabnani, editors, Proceed-
ings of the 8th International Workshop on Pro-
tocol Specification, Testing and Verification (At-
lantic City, NJ, USA), pages 399–410. IFIP,
North-Holland, 1988.

[27] M. Haj-Hussein, L. Logrippo, and J. Sincennes.
Goal-Oriented Execution of LOTOS Specifica-
tions. In M. Diaz and R. Groz, editors, Proceed-
ings of the 4th International Conference on For-
mal Description Techniques FORTE’92 (Perros-
Guirec, France), pages 311–327. North-Holland,
1992.

[28] C. A. R. Hoare. Communicating Sequential Pro-
cesses. Prentice-Hall, 1985.

[29] Gerard J. Holzmann. Design and Validation of
Computer Protocols. Software Series. Prentice
Hall, 1991.

[30] ISO/IEC. LOTOS — A Formal Descrip-
tion Technique Based on the Temporal Order-
ing of Observational Behaviour. International
Standard 8807, International Organization for
Standardization — Information Processing Sys-
tems — Open Systems Interconnection, Genève,
September 1988.

[31] ISO/IEC. Approved Algorithms for Message Au-
thentication — Part 2: Message Authenticator
Algorithm. International Standard 8731-2, In-
ternational Organization for Standardization —
Banking, Genève, 1992.

[32] Claude Jard and Thierry Jéron. 3D layout
of reachability graphs of communicating pro-
cesses. In R. Tamassia and I. G. Tollis, editors,
Proceedings of the DIMACS Workshop Graph
Drawing’94 (Princeton, New Jersey, USA), vol-
ume 894 of Lecture Notes in Computer Science.
Springer Verlag, 1994. Bilingual version avail-
able as IRISA Research Report PI-854.

[33] Alain Kerbrat and Slim Ben Atallah. Formal
Specification of a Framework for Groupware De-
velopment. In G. v. Bochmann, R. Dssouli, and
O. Rafiq, editors, Proceedings of the 8th Interna-
tional Conference on Formal Description Tech-
niques for Distributed Systems and Communi-
cation Protocols FORTE’95 (Montreal, Quebec,
Canada), October 1995. Short paper.

[34] Henri Korver. Detecting Feature Interactions
with Cæsar/Aldebaran.

[35] Luc Léonard. The LOTOS Specification of the
Enhanced Transport Service. In The OSI95
Transport Service with Multimedia Support,
pages 239–244 and 398–515. Springer Verlag,
1994.

[36] Eric Madelaine and Robert de Simone. FC2:
Reference Manual Version 1.1. INRIA, Sophia-
Antipolis (France), July 1993.

[37] R. Mateescu. Formal Description and Analy-
sis of a Bounded Retransmission Protocol. In
Z. Brezočnik and T. Kapus, editors, Proceed-
ings of the COST 247 International Workshop
on Applied Formal Methods in System Design
(Maribor, Slovenia), pages 98–113. University of
Maribor, Slovenia, June 1996. Also available as
INRIA Research Report RR-2965.

[38] Robin Milner. A Calculus of Communicating
Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer Verlag, 1980.

[39] Robin Milner. Communication and Concur-
rency. Prentice-Hall, 1989.

[40] Laurent Mounier. A LOTOS Specification of a
Transit-Node. Rapport SPECTRE 94-8, VER-
IMAG, Grenoble, March 1994.

[41] Harold B. Munster. LOTOS Specification of
the MAA Standard, with an Evaluation of LO-
TOS. NPL Report DITC 191/91, National Phys-
ical Laboratory, Teddington, Middlesex, UK,
September 1991.

[42] Charles Pecheur. VLib: Infinite Virtual Li-
braries for LOTOS. In A. Danthine, G. Leduc,
and P. Wolper, editors, Proceedings of the 13th
IFIP International Workshop on Protocol Spec-
ification, Testing and Verification (Liège, Bel-
gium), pages 1–16. IFIP, North-Holland, May
1993.

[43] Valérie Roy and Robert de Simone.
Auto/Autograph. In R. P. Kurshan and E. M.
Clarke, editors, Proceedings of the 2nd Workshop
on Computer-Aided Verification (Rutgers, New
Jersey, USA), volume 3 of DIMACS Series in
Discrete Mathematics and Theoretical Computer
Science, pages 477–491. AMS-ACM, June 1990.

[44] Renaud Ruffiot. Définition et réalisation d’un
atelier logiciel pour l’étude des systèmes de
transitions. Mémoire d’ingénieur cnam, INRIA
Rhône-Alpes, Grenoble, December 1994.

[45] Ina Schieferdecker. Abruptly-Terminated Con-
nections in TCP – A Verification Example. In
Z. Brezočnik and T. Kapus, editors, Proceed-
ings of the COST 247 International Workshop
on Applied Formal Methods in System Design
(Maribor, Slovenia), pages 136–145. University
of Maribor, Slovenia, June 1996.

[46] B. Stepien, J. Tourrilhes, and J. Sincennes.
ELUDO: The University of Ottawa LOTOS
Toolkit. Technical report, University of Ot-
tawa, 1994. Obtainable by FTP on lo-
tos.csi.uottawa.ca.

[47] Philippe Turlier. La compilation des types ab-
straits algébriques du langage LOTOS. Mémoire
d’ingénieur cnam, Laboratoire de Génie Infor-
matique — Institut IMAG, Grenoble, December
1992.

