
Verification of an Industrial SystemC/TLM Model Using LOTOS and CADP∗

Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin Serwe
INRIA Grenoble Rhône-Alpes / Vasy

655, avenue de l’Europe, F-38330 Montbonnot St Martin, France

Abstract

SystemC/TLM is a widely used standard for system level
descriptions of complex architectures. It is particularly use-
ful for fast simulation, thus allowing early development and
testing of the targeted software. In general, formal ver-
ification of SystemC/TLM relies on the translation of the
complete model into a language accepted by a verification
tool. In this paper, we present an approach to the validation
of a SystemC/TLM description by translation into LOTOS,
reusing as much as possible of the original SystemC/TLM
C++ code. To this end, we exploit a feature offered by the
formal verification toolbox CADP, namely the import of ex-
ternal C code in a LOTOS model. We report on experiments
of our approach on the BDisp, a complex graphical pro-
cessing unit designed by STMicroelectronics.

1. Introduction

Embedded systems combine on a single circuit several
hardware components with embedded software. To cope
with the increasing complexity and time-to-market pres-
sure, system level descriptions are increasingly used as ref-
erence descriptions. SystemC/TLM [1, 2] is a widely used
standard for describing a complex system-on-chip at system
level. Due to its fast simulation engines, SystemC/TLM is
particularly useful for testing the embedded software, even
before the hardware architecture is completely specified.

A system level description generally consists of a set
of interconnected modules executing concurrently. Dealing
with concurrency is known to be complex due to the many
possible interleavings. Because this also holds for a system-
on-chip, verification of system level descriptions is required
to detect design errors as soon as possible.

The development of a verification tool dedicated to Sys-
temC/TLM is a complex task, because a SystemC/TLM
description can contain arbitrary C++ code (SystemC and

*This work has been partially funded by the French government and
by Conseil Général de l’Isère as part of the Multival project (pôle de
compétitivité Minalogic).

TLM are actually implemented as C++ libraries). Existing
approaches to formal verification of SystemC/TLM trans-
late the complete model into a language accepted by a ver-
ification tool (see section 3.2). Such a complete translation
requires a significant effort and has the inconvenience that
the model under verification is not exactly the same as the
reference SystemC/TLM model used for design and test.

In this paper, we present an approach for the validation
of a SystemC/TLM description by translation into LOTOS
and use of the CADP toolbox [4]. We extend the approach
of [3] by reusing as much as possible of the original C++
code. In particular, we reuse a large part of the C++ code
(namely the parts corresponding to local computations of
processes) to implement LOTOS operations.

We have experimented with our approach on a com-
plex component of an industrial circuit, namely the BDisp
graphical processing unit designed by STMicroelectronics
(≈25,000 lines of SystemC/TLM). This led to optimiza-
tions of our approach, reducing the memory requirements
for formal verification.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of SystemC and TLM. Section 3
presents related work. Section 4 gives an overview of LO-
TOS. Section 5 presents our approach to the verification of
SystemC/TLM. Sections 6 and 7 present the BDisp model
and its LOTOS translation. Section 8 reports on our ex-
periments with the verification toolbox CADP. Finally, Sec-
tion 9 concludes.

2. SystemC and TLM

SystemC [1], a standard published by the Open SystemC
Initiative (OSCI), is a C++ library providing classes to de-
scribe heterogeneous systems composed of hardware and
software. The architecture of a system is defined by a set of
modules connected by synchronous or asynchronous ports
and channels (sc module, sc port, ...). Each mod-
ule contains zero, one, or more processes (SC_THREAD)
describing the behavior of the system. SystemC pro-
cesses interact using shared memory or communication
channels, and are synchronized using SystemC events

(sc_event e, e.notify(), wait(e)) and timing an-
notations (sc_time t, wait(t)).

Each SystemC process is a C++ method that is executed
by the SystemC scheduler, communicates with other pro-
cesses using shared memory, and may explicitly suspend
itself by executing a wait statement. When the process is
resumed by the scheduler, its execution continues from the
wait statement. Each SystemC process is eligible or run-
ning or waiting for a SystemC event. There is at most one
running process at a time. If the running process notifies an
event, then all processes waiting for this event move from
waiting to eligible.

The Transaction Level Modeling (TLM) library [2] built
upon SystemC provides a transaction mechanism that en-
capsulates communication protocols (data transfer and syn-
chronization) between modules, accelerating both model
design and simulation. Using a transaction, a process in
an initiator module can directly call the methods exported
by a target module. A process can thus read many values
from a memory or set many registers of a peripheral without
any costly inter-process synchronization (no context switch
is required). Names and attributes of exported functions de-
pend on the protocol. In general, a protocol provides at least
read and write functions, but a protocol for a transaction
modeling an interrupt might be reduced to only one func-
tion without argument. At the TLM level of abstraction,
processes inside the same module communicate using Sys-
temC events and shared variables. A TLM model can be
timed or untimed: a timed model contains timing annota-
tions (sc_time t, wait(t)) whereas an untimed model
does not. An untimed model includes more possible behav-
iors than a timed model, increasing the coverage, but also
the cost, of the verification.

3. Existing approaches to TLM verification

The OSCI provides an open-source simulator for Sys-
temC/TLM and a library SCV to ease test generation. How-
ever, the OSCI does not provide tools for formal verifi-
cation. Moreover, while the SystemC specification allows
many schedulings for a given test case, the OSCI simulator
exhibits always the same scheduling. Thus, even if an exe-
cution leads to the expected result, another execution with a
different scheduling may be erroneous. This issue has been
addressed by many publications. Two approaches have been
investigated: stateless model checking of a SystemC/TLM
program, and translation of a SystemC/TLM program to a
language for which a model checker is available.

3.1. Stateless model checking

The first approach is based on the execution of the Sys-
temC/TLM program using an enhanced SystemC simula-

tor capable of exploring each test case with many schedul-
ings. One solution is to implement a random scheduler; this
increases error detection but the resulting coverage is un-
certain. Another option is to try all valid schedulings, but
this technique does not scale up to industrial examples. In
contrast, stateless model checking techniques based on dy-
namic partial order reduction [5, 6, 7] select only a small
subset of the valid schedulings, and so scale up to medium
sized industrial examples. The generated subset of schedul-
ings is large enough to guarantee that all local errors (i.e.
assertion violations) and deadlocks are found.

A SystemC/TLM program can contain loose timing an-
notations (e.g., an interval of realistic values [T − d, T + d]
instead of an exact duration T) if the timing of the real sys-
tem is uncertain. At runtime, a simulation engine can draw
a particular value inside each interval. Again, random sim-
ulation does not ensure coverage. Dynamic partial order re-
duction combined with linear programming techniques can
be used to generate a set of schedulings and timings that
guarantee to find all local errors and deadlocks for a given
test case [8].

All the stateless model checking techniques [5, 8, 6, 7]
that have been implemented for SystemC/TLM programs
can be applied only to bounded test scenarios.

3.2. Translation-based approaches

For programs that do not terminate, a second approach
has been investigated. The idea is to translate the Sys-
temC/TLM program to be verified to another language, and
then verify the translated program using an existing stateful
model checker. This approach has first been applied to the
RTL level SystemC descriptions [9, 10].

Many translations and languages have been proposed
for the validation of transactional models, like [11], which
translates SystemC/TLM programs into finite state ma-
chines (FSM), or like [12], which describes abstraction
techniques and a translation from SystemC/TLM to labeled
Kripke structures. Like our approach, most of these trans-
lations are manually, a notable exception being the LusSy
tool chain [13], which automatically translates TLM mod-
els into synchronous automata with variables; it provides
some simple abstraction techniques (e.g., abstract address
representation). The LusSy tool chain has been connected
to many model checkers, including symbolic model check-
ers based on BDD or SAT. Some small examples have been
successfully verified, but industrial examples face the state
space explosion problem.

The state space explosion problem appears chiefly be-
cause TLM models are mainly asynchronous. Indeed, after
each transition, there are many valid scheduling choices that
should be explored. It is therefore suitable to use the model
checkers for asynchronous programs, as these model check-

ers have been specifically optimized to fight state space ex-
plosion arising from asynchrony. For example, the SPIN
model checker uses partial orders to reduce state spaces; a
translation of TLM to Promela is described in [14], allowing
the use of SPIN to verify TLM models. Also, we recently
proposed a translation of TLM to LOTOS [15] that enables
verification of the benchmark of [14] for a slightly greater
number of processes than using SPIN; we pursue this line
of work in the present paper.

All the translations we have presented in this subsection
have given successful verification results only on small ex-
amples (a few hundred lines of code). This paper tries to go
beyond this limit by addressing larger problems, namely an
industrial example of about 25,000 lines of SystemC/TLM
code.

4. LOTOS

The ISO standard LOTOS [16] (Language Of Tempo-
ral Ordering Specification) is a process algebra used to de-
scribe asynchronous concurrent processes communicating
and synchronizing by rendezvous on gates. In the following
we briefly introduce the main concepts of LOTOS occurring
in the examples of this paper; for a complete description
of LOTOS, we refer the reader to existing tutorials, such
as [17].

LOTOS specifications are composed of a data part and
a behavior part. Data values and operations are described
by algebraic specifications in the style of ACTONE [18].
Types define a collection of sorts, operations on sorts, and
equations describing the meaning of operations.

Behaviors are expressed by terms combining processes
with algebraic operators. Figure 1 gives a simplified gram-
mar of LOTOS behaviors; lower case identifiers stand for
terminals and upper case identifiers for non terminals (P is
a process name, G a gate name, X a variable name, S a sort
name, and V a value expression).

As usual in process algebras, the semantics of a LO-
TOS specification is defined operationally by a translation
of LOTOS into a Labeled Transition System (LTS). Here,
we only sketch the meaning of behavioral operators. A
communication “G O1 On; B” on a gate G allows
to communicate several values Oi, called offers, either for
emission (!) or reception (?); then behavior B is executed.
“B1[]B2” specifies a nondeterministic choice between be-
haviors B1 and B2. “B1|[G1, ..., Gn]|B2” specifies the
parallel composition of B1 and B2 synchronizing on the
gates G. Synchronization on gates with offers only occurs
if the offers are compatible (same number of offers, same
types, and same or compatible values). A behavior B can
be guarded by a Boolean expression V : “[V]-> B” spec-
ifies that B will only be executed if V is true. “let X:S=V
in B” allows to define a variable X of sort S that is initial-

B ::= G O1 ... On;B (communication)
| B1[]B2 (choice)
| B1|[G1, ..., Gn]|B2 (parallel)
| exit(V1, ..., Vn) (termination)
| [V]->B (guard)
| let X : S = V in B (variable definition)
| P[G1, ..., Gm](V1, ..., Vn) (process call)

O ::= !V | ?X : S (offer)

Figure 1. Grammar of LOTOS (excerpt)

ized to value V and used in B. Finally, a behavior B can
be given a name by declaring a process P parameterized by
sets of gates (Gi) and of variables (Xi of sort Si) as fol-
lows: “process P [G1, ..., Gm](X1:S1, ..., Xn:Sn): exit :=
B endproc”.

5. Translating a TLM model into LOTOS

To translate an untimed SystemC/TLM model into a LO-
TOS specification, we extend the translation approach de-
scribed in [3]. This approach splits a SystemC/TLM model
in two parts that are handled differently:

1. communications and synchronizations between Sys-
temC/TLM processes, i.e., the SystemC/TLM specific
code; the translation of this code into LOTOS behav-
iors is described in [3].

2. local computations within a single module, e.g.,
classes, methods, sequential control, data manipula-
tion; the translation of this code into LOTOS data types
is not detailed in [3].

The present paper reduces this translation effort by
reusing most of the non SystemC/TLM specific C++ code
of the original model. Our approach takes advantage of
a particular capability of CÆSAR (the LOTOS to C com-
piler included in the CADP verification toolbox [4]), which
allows the possibility to implement LOTOS sorts (respec-
tively, LOTOS operations) by external C data types (respec-
tively, C functions).

For each SystemC/TLM module described by a C++
class M , we create a corresponding LOTOS model import-
ing C/C++ code, as follows:

1. We define, in C, a compact representation MC of the
class M . A value of type MC is called module state.
This type will be used by the model checker to store
and compare the explored states.

2. We define a LOTOS sort MLOTOS corresponding to
MC, and we declare a set of LOTOS operations allow-
ing to access or modify a module state (i.e., an element
of MC).

��
��
��
��

MLOTOS (i.e. MC)
implementation of

interface with the
extracted C++ code

(implement operations
on MLOTOS by calls to

methods of M)

LOTOS processes
modeling the

SystemC processes

on objects of
local computations

class M

linked with
verification tool

sort MLOTOS

declaration of:

operations on MLOTOS

gccCÆSAR

g++

LOTOS code C code extracted C++ code

Figure 2. LOTOS model reusing C++ code

3. We translate each SystemC/TLM process of M into
a LOTOS process, using the aforementioned LOTOS
operations for the local computations, and applying the
translation rules of [3] for the communications.

4. We extract from the original SystemC/TLM module
the C++ code needed to implement the LOTOS opera-
tions.

5. We implement an interface between this C++ code
extracted in the previous step, and the LOTOS code
(compiled to C using the LOTOS to C compiler
CÆSAR).

The following subsections detail these five steps, using the
following SystemC/TLM module M as a running example.

class M: public sc module {
sc port<...> tlm port;
data t data; ...
void compute() { /*SC THREAD*/
while(!stream.full()) {
addr+=4; data=tlm port.read(addr);
stream<<data; wait();}}

};

5.1. Definition of the C type MC

The first step is to define a compact representation MC of
the SystemC/TLM module described by the class M . MC is
a C structure (struct type) MC that contains all the mem-
bers of M the values of which are not constant. Notice that
the C++ class M is aimed at fast simulation, whereas MC is
aimed at state space exploration and verification. Therefore,
reducing the memory footprint of MC is more important
than reducing the access time to each of its fields. Hence,
each field of MC should be represented with the minimum
number of bits (e.g., no more than one bit for a boolean
value) and padding bits should be avoided as far as possi-
ble. Furthermore, each value of MC should have a unique
memory representation to ease comparing and storing.

In addition to the C structure MC, CÆSAR also requires
the user to provide the following C functions:

• a comparison function taking two module states of
type MC as argument, used during state space explo-
ration to decide whether a state has already been en-
countered (e.g., memcmp(), if the structure MC con-
tains no padding)

• a printing function for states of type MC.

5.2. Definition of the LOTOS sort MLOTOS

According to the different ways processes operate on the
state of a module M , the LOTOS operations to manipulate
values of sort MLOTOS have one of the following three pro-
files, where each Ti is a type used both in LOTOS and C++,
such as addr t, data t, or Bool :

• MLOTOS → Tr: an operation of this profile corre-
sponds to an access to the state without side-effect.
The case where Tr = Bool corresponds to the eval-
uation of a condition.

• MLOTOS × T1 × · · · × Tn≥0 → MLOTOS: an oper-
ation of this profile corresponds to a modification of
the state of the module as a “side-effect” of executing
an instruction, as for instance an assignment. Notice
that as in any pure functional language, side effects can
only be represented by passing the current state before
the call as an additional first parameter and return the
state after the call as return value.

• MLOTOS × T1 × · · · × Tn≥0 → MLOTOS × Tr: an
operation of this profile corresponds to a modification
of the state that also returns a value. As a LOTOS op-
eration can return only one single value, it is neces-
sary to define an additional LOTOS sort for each pair
〈MLOTOS, Tr〉, together with operations to access the
elements of this pair.

At this stage, we just have to declare these operations
in LOTOS; they will be implemented in C++ as described
in 5.4 and 5.5.

In the running example, we have to declare the
four LOTOS sorts MLOTOS, data t, addr t, and
〈MLOTOS,addr t〉. The implementations of data t and
addr t of the original SystemC/TLM model can be reused
directly. The sort 〈MLOTOS,addr t〉 is implemented as a
C structure with two fields (named state and addr).

We also have to declare the following operations:

• M stream full : MLOTOS → Bool evaluates the
C++ condition stream.full().

• M compute 1 : MLOTOS → 〈MLOTOS,addr t〉
simulates the process compute up to the transaction.

• M compute 2 : MLOTOS,data t → MLOTOS

simulates the process compute from the transaction
to the wait() statement.

5.3. Translation of the processes of M

Using the operations of MLOTOS, the SystemC/TLM
processes can be translated into LOTOS processes accord-
ing to the rules described in [3]: each SystemC/TLM pro-
cess is translated to a LOTOS process; the shared variables
and the SystemC events are modeled using additional LO-
TOS processes; finally, all these LOTOS processes are in-
terconnected using LOTOS parallel composition operators.

In the running example, the process M::compute() is
translated into the following LOTOS process:

process Compute[TLM READ,WAIT]
(state:MLOTOS): exit:=

[M stream full(state)]-> exit
[]
[not(M stream full(state))]->

let x:〈MLOTOS,addr t〉 =
M compute 1(state) in

TLM READ !get addr(x) ?d:data t;
let new state:MLOTOS =

M compute 2(get state(x),d) in
WAIT;
Compute[TLM READ,WAIT](new state)

endproc

5.4. Split of the methods of M

To reuse the code of M , one must first make a copy of
class M by removing all occurrences of SystemC/TLM spe-
cific types (such as inheritance from sc_module and the
port tlm port); we still note M this modified class. Then,
to reuse the methods of M when implementing the opera-
tions of MLOTOS, we extract corresponding fragment meth-
ods from each method of M . Note that the code reused does
not contain any SystemC/TLM specific statement.

The modified class M is:

class M /*: public sc module */ {
/* sc port<...> tlm port;*/
data t data; ...
addr t compute 1() {
addr+=4; return addr;}

void compute 2(data t tmp) {
data=tmp; stream<<data;}

};

5.5. Implementation of the LOTOS opera-
tions as C++ functions

The operations of MLOTOS are implemented by C++
functions (declared as C functions to enable linking with
the C code generated by CÆSAR), which initialize an ob-
ject of type M according to the module state MC, call the

corresponding fragment method of M , and copy the result-
ing state of M back into a new value of type MC. There-
fore, the user must also provide two functions MC to M()
and M to MC(), which convert between a module state (a
value of the structure MC) and a state of the module M .

In the running example, M compute 1() is imple-
mented as follows:

extern M module;
〈MC,addr t〉 M compute 1 (MC mc) {
〈MC,addr t〉 tmp;
MC to M(&mc, &module);
tmp.addr = module->compute 1();
M to MC(&module, &tmp.state);
return tmp;}

6. The BDisp and its SystemC/TLM model

In the rest of this paper, we illustrate our verification ap-
proach on the SystemC/TLM model of a graphical process-
ing unit that is used in real circuits.

6.1. The BDisp

The BDisp is an IP (Intellectual Property) designed
by STMicroelectronics. It is a 2D-graphics co-processor
implementing Blit (Block Image Transfer) and numerous
graphical operators, e.g., rotations, alpha blending, or Blue
Ray disc decoding. A job is a sequence of operations that
the BDisp must perform to generate a video stream. Both
real-time jobs and non-real-time jobs are supported.

The BDisp is software-controlled by memory-mapped
registers and instruction queues stored in memory. In or-
der to program a job, the embedded software fills an in-
struction queue describing the graphical operations to be
applied. Next, the embedded software starts the job execu-
tion by writing into the BDisp registers; then, it can check
the status of a queue by reading the BDisp registers.

There are two kinds of queues: composition queues (CQ)
for real-time jobs, and application queues (AQ) for non-
real-time jobs. The BDisp processes one queue at a time,
scheduling the queues according to their priorities. The
BDisp receives interruptions generated by the Video Timing
Generator (VTG). These interruptions, together with the in-
formation contained in instruction queues, controls the ex-
ecution pace of the composition queues in order to satisfy
real-time constraints. Additionally, the CPU can suspend a
queue or change its priority by writing to BDisp registers.

The BDisp provides many types of interruption to man-
age all situations, but the interruptions generated by the
BDisp are not relevant for the properties addressed in this
paper.

6.2. The BDisp SystemC/TLM model

STMicroelectronics provided us with a SystemC/TLM
model of the BDisp. This model is large: it consists of 22
files, totaling to about 25,000 lines of code.

The BDisp SystemC/TLM model is designed at a level of
abstraction tailored to functional validation. The code con-
tains a few wait instructions with a duration. These timed
wait instructions are used to allow the other processes to
be executed. However, the durations are not precise enough
to allow performance evaluation.

Simulating the BDisp requires several additional models:
a model of the CPU, a model of the VTG, a model of the
memory, and a model of the bus. The CPU model is a so-
called “native wrapper”: the embedded code, written in C,
is included in the SystemC/TLM code, and the accesses to
the BDisp registers are instrumented in such a way that each
register access generates a transaction. All these models are
quite simple compared to the BDisp model.

The SystemC/TLM module describing the BDisp imple-
ments several sorts of connections. Communication be-
tween the bus and other components (BDisp, CPU, and
memory) is modeled using the TAC TLM protocol designed
by STMicroelectronics [19]. Communication between the
BDisp and the VTG uses interrupts and is modeled by an-
other TLM protocol (the BDisp module exports one method
that is called by the VTG process to notify an interruption).

Internally, the BDisp module contains only one Sys-
temC/TLM process, which is an SC_THREAD. That does
not mean an absence of concurrency inside the BDisp. In-
deed, two external processes, the CPU and the VTG, can
simultaneously execute code inside the BDisp module by
calling its exported methods.

STMicroelectronics provided us with some test scenarios
to validate the BDisp. Each test scenario is composed of a
piece of C code to program the BDisp, a memory dump
containing the instruction queues, and the expected outputs.

All the tests run well and reveal no error. However, as
the OSCI simulator is used, each test is executed with only
one single scheduling. Moreover, the simulations are driven
by particular timing annotations, which may differ from the
real system. Modeling the BDisp in LOTOS will allow us
to explore more situations and, possibly, detect more syn-
chronization errors than by using the test scenarios.

7. The BDisp LOTOS model

7.1. Overview

Primarily, our goal was to validate the control part of the
BDisp, e.g., all issues related to interprocess synchroniza-
tion. We were interested neither in validating the sequential

graphical operators (CADP is primarily aimed at validat-
ing concurrent algorithms) nor the embedded software that
controls the BDisp (we have no access to it). Consequently,
our LOTOS model describes only the features and the ex-
ternal components that are relevant to the control part of the
BDisp.

Following the method presented in section 5, we
define the C structure type BDispC and the LOTOS
sort BDispLOTOS, and we implement the operations on
BDispLOTOS using C++ functions extracted from the orig-
inal SystemC/TLM model. To minimize the size of the type
BDispC, we store only the registers that are meaningful to
the control. For some registers, we do not need to store all
the bits. For example, in the SystemC/TLM state, the regis-
ter BLT CTL uses 32 bits, but we are only interested in the
31th bit. Thus, the type BDispC is implemented using bit
fields:
struct {int BLT_CTL_31:1; ...} BDispC;
and the conversion from the LOTOS state to the Sys-
temC/TLM state uses bitwise operations:
sc_state.registers[BLT_CTL_ID].value =

lotos_state.BLT_CTL_31<<31;
After these optimizations, the C structure BDispC occupies
only 52 bytes to store the state of a BDisp with 2 composi-
tion queues, 4 application queues, and a maximum number
of screen lines reduced to 4; instead, the C++ class BDisp
uses about 40 kilobytes.

Once the LOTOS sorts are defined, we translate the three
SystemC/TLM processes (BDisp, VTG, and CPU) in three
concurrent LOTOS processes, called BDisp process,
CPU, and VTG. These three LOTOS processes can read and
modify the contents of the BDisp module, which we model
as a shared variable of type BDispLOTOS. In our LO-
TOS model, this shared variable is encapsulated in a process
called BDisp state.

Next, we inline the code of the exported functions in
the corresponding initiator process, because we have shown
in [15] that transaction inlining reduces the number of
states. This means that:

• the code of the BDisp module used to set or get the
value of each register is inlined in the CPU LOTOS
process;

• the code of the BDisp module used to simulate the ef-
fect of a video synchronization is inlined in the VTG
LOTOS process.

The BDisp module contains two SystemC events,
which we model using a dedicated LOTOS process called
event handler, as described in [3].

The architecture of the LOTOS model is shown on
Figure 3. There are five LOTOS processes, three of
which correspond to the three SystemC/TLM processes

event handler

BDisp

BDisp state

VTGCPU

Lotos

process
extracted

C++
code

interface
C headers
C++ code

Figure 3. Architecture of the LOTOS model

(BDisp process, CPU, and VTG). The other two pro-
cesses are used for communications (BDisp state and
event handler).

Our approach allowed us to reuse about 5500 lines of the
original SystemC/TLM code (which is, in fact, C++ code),
the remaining lines being not related to control. We have
written 1000 lines of LOTOS code, and about 2500 lines of
C/C++ code for the interface. A complete SystemC/TLM
to LOTOS translation, as described in [3], would have re-
quired far more work.

7.2. Abstractions and simplifications

The original SystemC/TLM model contains a lot of de-
tails that are not relevant for verifying the control part of the
BDisp. We present in this section the abstractions and sim-
plifications we applied, still preserving the potential issues.

CPU commands. In the original SystemC/TLM model,
sending a command from the CPU to the BDisp is achieved
by a TLM write transaction Tr. The address of Tr is ob-
tained by adding the register offset to the base address of the
BDisp. The command arguments are encoded in the 32-bit
data field of Tr. As we are not interested in this encod-
ing mechanism, we represent all possible BDisp commands
by a new LOTOS type CPU command. This brings three
benefits:

• this new type requires fewer bits than a numeric offset;

• we can iterate efficiently over the registers (this is used
in the CPU to generate a command nondeterministi-
cally);

• no model of the bus is required.

Instruction nodes. Each instruction node is significantly
reduced by removing anything unrelated to control. For
an instruction node of a composition queue CQn, we keep
only two Booleans and one screen line number (reduced to
the range 0 . . . 3). For an instruction node of an application
queue AQn, we need only two Booleans. Thus, the instruc-
tion nodes are small enough to be enumerated efficiently.

Instruction queues. Once an instruction queue is trig-
gered, the BDisp reads an instruction node from the mem-
ory. Since we focus on the verification of the BDisp, we as-
sume that the embedded software controlling the BDisp has
correctly written the instructions to the memory before trig-
gering the queue. Thus, we can use lazy evaluation to model
the instruction queues. Instead of generating the contents of
an instruction queue when it is filled in by the CPU, we wait
until the BDisp reads it. Each time a new instruction node
is read by the BDisp, we generate its contents nondetermin-
istically. The benefits are twofold:

• we can remove the code that writes instruction nodes
to the memory;

• we store at most one node per instruction queue, re-
ducing the memory size of a state.

This abstraction may prevent detection of bugs due to con-
current accesses to a node, but such bugs are possible only
with erroneous embedded software, and, as said above, we
assume that this software is correct.

Boolean abstraction of counters. After a few experi-
ments, we noticed that two integer variables could increase
infinitely, leading to an infinite state space. After exam-
ining the code and the test scenarios provided by STMi-
croelectronics, we concluded that we could safely assume
that these variables take only two values, and thus be ab-
stracted by booleans. To check the correctness of this ab-
straction, we applied the same modification to the original
SystemC/TLM model, and we ran the test scenarios pro-
vided by STMicroelectronics again. The simulation results
are identical, which confirms the correctness of our abstrac-
tion.

7.3. Accessing the BDisp state

The contents of the BDisp module are stored in the
variable state of the process BDisp state. The vari-
able state is of sort BDispLOTOS, which is imple-
mented using the C type BDispC. Many functions ac-
cess or modify this variable. For example, the function
ExeSetCommand_CIF simulates the effect of a CPU
command (i.e., a write to a BDisp register); this function
takes a BDisp state and a CPU command as arguments, and
returns the updated BDisp state.

To model a variable such as state, which is shared be-
tween several processes, the usual solution in process alge-
bra is based on a READ/WRITE mechanism: the LOTOS
process BDisp state storing the variable value has two
gates READ and WRITE, used to send the current value and
get the new value.

Here is how the CPU can write to a BDisp register using
the READ/WRITE mechanism:

READ ?state:BDispLOTOS

let new state:BDispLOTOS =
ExeSetCommand CIF(state,command) in

WRITE !new state;

First, the BDisp state process sends its current state to
the CPU process. Next, the CPU process executes the com-
mand. Finally, the CPU process sends back the new state to
the BDisp state process.

When using the READ/WRITE mechanism, the code of
the BDisp state process is quite simple. Moreover, it
is easy to implement a lock to prevent concurrent accesses
to the BDisp state: a READ rendezvous locks the state, a
WRITE rendezvous unlocks it.

However, the BDisp case study revealed a drawback of
the READ/WRITE mechanism. The BDisp state is sent to
three processes (CPU, VTG, and BDisp process). Even-
tually, many processes contain one or several local variables
of sort BDispLOTOS. In a first version of the BDisp LO-
TOS model, there were 17 such variables, using 52 bytes of
memory each, leading to excessive memory consumption
for states of the LOTOS model (about 1 kilobyte per state).

We therefore designed a different mechanism, named
EXECUTE/RETURN, to avoid this duplication of BDisp
state local copies. In this approach, the gates WRITE and
READ are replaced by the gates EXECUTE and RETURN.
The initiator process (e.g., the CPU) sends an opcode to
the BDisp state process using the EXECUTE gate. The
BDisp state process decodes the opcode and executes
the corresponding function. If the function returns some
values (in addition of the new BDisp state), these values are
send back to the initiator process using the RETURN gate.
The lock mechanism is implemented by adding two boolean
offers to each EXECUTE or RETURN communication: the
first boolean specifies whether to take the lock or not, the
second whether to release it or not.

This EXECUTE/RETURN mechanism requires more
LOTOS code than the usual READ/WRITE mechanism, be-
cause a new type has to be implemented to store the op-
codes, and because the BDisp state process contains
specific code for each function of the BDispLOTOS sort.
But the EXECUTE/RETURN mechanism is very profitable
in presence of large shared variables. Indeed, we reduced
the state size for the whole LOTOS model from one kilo-
byte down to 104 bytes, i.e., by an order of magnitude.

However, the EXECUTE/RETURN mechanism might
increase the number of transitions in the LTS. Suppose that
a process wants to execute an atomic sequence of operations
o1, . . . , on on the BDisp state. Using the classic mecha-
nism, a single READ and a single WRITE transitions are
enough. Instead, the EXECUTE/RETURN mechanism re-
quires, for each operation oi, one EXECUTE transition and
possibly one RETURN transition. To avoid this increase
of the LTS size, it is possible to aggregate the atomic se-

quence o1, . . . , on in a single new operation o′. Thus, only
one EXECUTE transition is required, and one RETURN
transition if the sequence o′ returns some values. Aggrega-
tion works as long as the operations of an atomic sequence
are not separated by other LOTOS transitions; in particular,
this approach worked well on the BDisp case study.

8. Experiments and results

8.1. Interactive and random simulation

The LOTOS model of the BDisp were simulated using
the Open/Cæsar Interactive Simulator (OCIS). Compared
to simulating the SystemC/TLM model with the simulator
provided by the OSCI, using OCIS offers two benefits:

• the simulation is interactive: the user can choose the
CPU commands, the contents of the instruction nodes,
and how the processes are scheduled

• the user can freely backtrack to any previous state, be-
cause OCIS stores the tree of explored states.

Another possibility to simulate the LOTOS model would be
to use the random simulator tool Executor of CADP. Con-
trary to the OSCI SystemC simulator, Executor chooses the
scheduling nondeterministically.

8.2. Generation of the full LTS

Beyond simulation, we aimed at formal verification by
generating the labeled transition system (LTS) correspond-
ing to our LOTOS model of the BDisp.

Early attempts indicated that the LTS of this LOTOS
model is too large to be generated. On a 64 bit Linux ma-
chine (2 GHz Opteron), we interrupted the generation af-
ter 3 hours and 20 minutes (at this point, the generation
required 15.7 gigabytes of memory). The graph obtained
contained 155,377,179 states and 371,146,000 transitions.
It is likely that the full graph is many times bigger.

To fight the state explosion, we applied the composi-
tional verification techniques offered by CADP. We could
generate the LTS of the CPU (45 states after reduction), the
LTS of the VTG (21 states), and the LTS of the BDisp pro-
cess (124 states). However, we could not generate the LTS
of the BDisp state process, which may be as big as the
LTS of the full system. Consequently we could not use com-
positional verification.

8.3. Model checking of verification scenarios

Because we could not generate the full LTS, we decided
to concentrate on verification scenarios, that restrict the in-
puts to some of their most realistic values. For the BDisp

LTS generation LTS reduction property evaluation
LTS size time LTS size time P1 P2 P3 P4 P5

AQ1 100 states 3.3 s 70 states <1 s T T F T F
AQ2 4,077 states 3.4 s 780 states <1 s T T F T F
AQ3 20,459 states 3.5 s 2,005 states <1 s T T F T F
AQ4 73,225 states 4.0 s 3,743 states <1 s T T F T F

CQ1AQ0 11,322 states 3.5 s 1,303 states <1 s T F T T T
CQ1AQ1 410,514 states 7.4 s 15,647 states 17 s T F F T T
CQ1AQ2 1,587,961 states 26 s 36,266 states 91 s T F F T T
CQ1AQ3 5,153,484 states 114 s 63,486 states 410 s T F F T T
CQ1AQ4 15,909,887 states 620 s 97,307 states 1880 s T F F T T

CQ1AQ1+RESET 1,660,845 states 28 s 56,051 states 128 s F F F T T

Table 1. Results of the experiments

case study, a verification scenario is mainly a sequence of
CPU commands that do something useful, like triggering
the queues, whereas the control information of the instruc-
tion nodes is chosen nondeterministically.

• scenarios “AQn”, with n ∈ [1..4]: we trigger n appli-
cation queues (n×3 CPU commands), the VTG is dis-
abled since it has no effect on the application queues;

• scenarios “CQ1AQn”, with n ∈ [0..4]: we trigger 1
composition queue and n application queues (n×3+3
CPU commands), the VTG is enabled;

• scenario “CQ1AQ1+RESET”: we add a soft reset to
the scenario CQ1AQ1 (6+1 CPU commands).

For each of these ten scenarios, we generated the LTS (see
Table 1) and minimized for branching bisimulation (using
the bcg min tool of CADP).

We expressed five properties using regular alternation-
free mu-calculus formulas [20], and evaluated them on the
minimized LTS corresponding to the verification scenarios,
using the Evaluator 3.5 model checker of CADP.

• P1: if a composition queue is triggered before any ap-
plication queue, and if the composition queue is not
suspended, then no application queue can be executed.

• P2: if a composition queue is triggered but not dis-
abled, then there exists always a path to execute it.

• P3: if an application queue is triggered but not dis-
abled, then there exists always a path to execute it.

• P4: if the CPU sends a RESET command to the BDisp,
then the BDisp can still read one node but not two.

• P5: property expressing the absence of deadlock.

The property evaluation results are given in Table 1. The
evaluation of all the properties for all the reduced LTS took
about 45 seconds. Most of the results were as expected, in
particular:

• The scenarios AQn do not satisfy property P5 (no
deadlock), because the BDisp stops normally when all
application queues are completely executed, and the
VTG is disabled.

• The property P1 is false when a reset is possible. In-
deed, if the reset occurs after CQ1 triggering but before
AQ1 triggering, then AQ1 is executed first.

However, one would have expected properties P2 and P3
to be satisfied by all scenarios AQn and CQ1AQn, but for
instance P2 does not hold for scenario CQ1AQ1. The diag-
nostic generated by Evaluator exhibited a scheduling lead-
ing to a wrong behavior of the BDisp. Indeed, if the CPU
is scheduled too often before the BDisp, the latter may miss
an event notification, and thus not execute properly. Us-
ing an interactive SystemC scheduler, we noticed that this
scheduling is reproducible on the untimed version of the
SystemC/TLM model (i.e., replacing delayed notifications
by immediate notifications), but not on the timed version
(nor on the actual circuit itself). We proposed a modifica-
tion of the SystemC/TLM model so that the property holds
also in an untimed context.

9. Conclusion and future work

We presented an approach to apply model checking to
SystemC/TLM models. In our approach a large part of the
C++ code present in these models is reused, while the re-
maining part of the SystemC/TLM code is translated into
LOTOS according to the systematic rules of [3]. Contrary to
other approaches, our approach avoids the complete trans-
lation of the SystemC/TLM model into the particular input
language of the model checker considered. Thus, formal
verification is better integrated in the design flow, the trans-
lation effort is reduced, and the confidence in the results is
increased.

We applied this approach to a large industrial case study,
namely the BDisp designed by STMicroelectronics. Al-
though we were not able to explore the entire state space
of the whole system, we managed to analyze large subsets
of it and to prove several correctness properties on realis-
tic verification scenarios. Using the verification tools of
CADP [4], we discovered an issue that makes the original
timed SystemC/TLM model incompatible with a semantics
for untimed TLM models (e.g., the one of [3]).

As regards future work, a first line of research would be
to elaborate guidelines to write SystemC/TLM models so as
to reduce the amount of work required to obtain a verifiable
LOTOS model. For instance, to enable partial order reduc-
tions and compositional verification of the LOTOS model,
it seems that the SystemC/TLM models should be split into
many small processes rather than a big monolithic one.

As a second line of research, we are currently develop-
ing a LOTOS/SystemC library that helps reusing even more
of the original C++ code, including SystemC/TLM specific
code.

Acknowledgments.
We are grateful to L. Ducousso, D. Hermitte, and R. Herse-
meule (STMicroelectronics) for providing us with the
BDisp case study and for their help with this work.

References

[1] SystemC v2.2.0 Language Reference Manual (IEEE
Std 1666-2005), OSCI, http://www.systemc.org/.

[2] F. Ghenassia, Ed., Transaction-Level Modeling with
SystemC. TLM Concepts and Applications for Embed-
ded Systems. Springer, June 2005.

[3] O. Ponsini and W. Serwe, “A schedulerless seman-
tics of TLM models written in SystemC via translation
into LOTOS,” in FM’08, LNCS 5014. Springer, 2008.

[4] H. Garavel, F. Lang, R. Mateescu, and W. Serwe,
“CADP 2006: A toolbox for the construction and
analysis of distributed processes,” in CAV’2007,
LNCS 4590, pp. 158–163. Springer, Jul. 2007.

[5] C. Helmstetter, F. Maraninchi, L. Maillet-Contoz, and
M. Moy, “Automatic generation of schedulings for im-
proving the test coverage of systems-on-a-chip,” FM-
CAD, pp. 171–178, 2006.

[6] S. Kundu, M. Ganai, and R. Gupta, “Partial order
reduction for scalable testing of SystemC TLM de-
signs,” in DAC’08, pp. 936–941. ACM, 2008.

[7] N. Blanc and D. Kroening, “Race analysis for Sys-
temC using model checking,” in ICCAD 2008, pp.
356–363. IEEE, 2008.

[8] C. Helmstetter, F. Maraninchi, and L. Maillet-Contoz,
“Test coverage for loose timing annotations,” in
FMICS’06. Springer, August 2006.

[9] R. Drechsler and D. Große, “Reachability analysis for
formal verification of systemc.” in DSD, pp. 337–340.
IEEE Computer Society, 2002.

[10] D. Große and R. Drechsler, “CheckSyC: an efficient
property checker for RTL SystemC designs,” in IS-
CAS, vol. 4, pp. 4167–4170, May 2005.

[11] B. Niemann and C. Haubelt, “Formalizing TLM with
communicating state machines,” in FDL’06, pp. 285–
292, September 2006.

[12] D. Kroening and N. Sharygina, “Formal verification
of SystemC by automatic hardware/software partition-
ing,” in MEMOCODE’05, pp. 101–110. IEEE, 2005.

[13] M. Moy, F. Maraninchi, and L. Maillet-Contoz,
“LusSy: an open tool for the analysis of systems-on-
a-chip at the transaction level,” Design Automation
for Embedded Systems, 2006.

[14] C. Traulsen, J. Cornet, M. Moy, and F. Maraninchi, “A
SystemC/TLM semantics in Promela and its possible
applications,” in SPIN Workshop, LNCS, July 2007.

[15] C. Helmstetter and O. Ponsini, “A comparison of two
SystemC/TLM semantics for formal verification,” in
MEMOCODE’08, Jun. 2008.

[16] ISO/IEC, “LOTOS — a formal description technique
based on the temporal ordering of observational be-
haviour”, Genève, International Standard 8807, 1989.

[17] T. Bolognesi and E. Brinksma, “Introduction to the
ISO specification language LOTOS,” ISDN 14(1), pp.
25–59, 1988.

[18] H. Ehrig and B. Mahr, Fundamentals of Algebraic
Specification 1 — Equations and Initial Semantics,
ser. EATCS Monographs on Theoretical Computer
Science, vol. 6. Springer, 1985.

[19] STMicroelectronics - SPG, “TAC Package,” 2004,
http://www.greensocs.com/projects/TACPackage.

[20] R. Mateescu and D. Thivolle, “A model checking
language for concurrent value-passing systems,” in
FM’08, LNCS 5014, pp. 148–164. Springer, 2008.

