
An Example of LOTOS Specification:

the Matrix Switch Problem

Hubert GARAVEL Carlos RODRIGUEZ

L.G.I.
I.M.A.G. Campus

BP 53X
38041 GRENOBLE cedex

FRANCE

e-mail: {hubert, crodrig}@imag.imag.fr
phone: +(33) 76 51 48 74

telex: 980 134 F
fax: +(33) 76 51 33 79

In this paper we give a possible methodology for specifying in Lotos. We
illustrate our approach with an example proposed at the FORTE’88 Conference:
the matrix switch problem. Starting with an informal specification, we explain
how to construct a corresponding Lotos description.

Introduction

The ISO specification language Lotos [ISO88] [BB88] is expressive enough to allow a wide
range of “specification styles” [Tur88]. As a consequence, for a given problem, many different
Lotos descriptions are possible. Faced to this situation, the ISO experts have defined
guidelines for the use of Lotos [ISO87].

From our own experience of Lotos, we suggest a specification style for Lotos which can
be used systematically and produces easily understandable descriptions. It is illustrated
by the matrix switch example, proposed at the session “FDTs on trial” of the FORTE’88
Conference, held in Stirling. By solving this problem, we describe a more general approach,
which has been used to specify in Lotos various examples, such as alternating bit protocol,
sliding-window protocol, token-ring protocol, systolic computations of convolution product,
and a VME bus arbiter.

This report is organized as follows. Section 1 gives the definition of the matrix switch
problem exactly as it was proposed during the conference. Since this informal description

1

is not complete, additional requirements are given in section 2. Sections 3 and 4 explain
how to modelize the control part whereas section 5 does the same thing for the data part.
An appendix gives the complete description in Lotos of our solution to the matrix switch
problem.

1 Informal description of the matrix switch problem

It is a real problem in telephony to define the combination of a concentrator, switch block,
and expander “switch” in which many routes through the switch are simultaneously active.
This also offers the problem of describing connections from many ports to many ports and of
defining simultaneously active routes. The system is made from two components: a square
“matrix switch” and a “concentrator”.

An “n × n switch” can make connections between two sets of n ports, A and B. Any port
in A can be connected to any port in B as long as ports are only connected in pairs, i.e., a
port may not be connected twice.

An “m into k concentrator” has m inputs and k outputs with m ≥ k. The concentrator
connects an input to a free output when requested.

The system is built from a m into k concentrator, connected to a k × k matrix switch,
connected to a n into k concentrator.

Requests for connections arrive concurrently from all m + n users.

2 Additional requirements

Since the definition given in section 1 is intentionally incomplete and ambiguous, we delib-
erately added the following constraints:

• ports in A are numbered 1, ... m. Users connected to these ports are called “port A

users” and are also numbered 1, ... m

• ports in B are numbered 1, ... n. Users connected to these ports are called “port B

users” and are also numbered 1, ... n

• any user can request either for connection or disconnection

• the data transmission phase — which would take place between connection and dis-
connection — will not be described

• the only purpose of the system is to create a route between port A users and port B

users. The users can not specify the number of the user they want to communicate
with — such information may appear as data transmission for further processing

• the system is fully symmetric with respect to A and B, save from the fact that A and
B don’t have the same number of ports

2

3 Control part: parallel architecture

The first design step is the definition of the overall architecture. The following methodology
must be recursively applied to the sub-systems of the system to describe, in order to follow
a top-down decomposition strategy.

• divide the system into components which are executed in parallel. Give names to these
concurrent entities by defining one Lotos process for each.

For the matrix switch the decomposition is obvious: the system is made from 3 con-
current processes: 2 concentrators and 1 matrix switch. As a design choice we define
these 3 sub-systems as different instances of the same process definition, the “generic
switch”, which is parametrized by the number of input and output users. For the
matrix switch these parameters are (k, k). For the concentrators they are respectively
(m, k) and (k, n).

• identify interaction points of each process. Modelize them by formal gate parameters.

The generic (p, q) switch interacts with two groups of users: p users on port A and
q users on port B. Since p and q are parameters, it would not be possible for the
generic switch to have as many gates as users. For this reason we use a Lotos trick for
creating gate arrays: a single gate G can be expanded into p actually different gates
by using a discriminating offer G!1, ...G!p. Here the two ports of the generic switch
are represented by two gates, A and B which are respectively shared by p and q users.
Consequently the generic switch has the following header:

process GENERIC_SWITCH [A, B] (P, Q:NAT, ...) : noexit :=

...

endproc

• identify communications between these processes. Modelize synchronous communica-
tions by Lotos rendez-vous and asynchronous communications by defining buffering
Lotos processes. Compose all processes with parallel operators as to synchronize the
interaction points to be connected.

For the matrix switch example we use two internal gates, A0 which links the (m, k)
switch to the (k, k) switch and B0 which links the (k, k) switch to the (k, n) switch:

GENERIC_SWITCH [A, A0] (M, K, ...)

|[A0]|

GENERIC_SWITCH [A0, B0] (K, K, ...)

|[B0]|

GENERIC_SWITCH [B0, B] (K, N, ...)

Note that the “users” of a switch can be either switches or end-users.

• put suitable abstraction to mask the internal communications of the system, which are
irrelevant with respect to its specifications. Use the hiding operator of Lotos to hide
internal gates.

For the matrix switch example we have to mask gates A0 and B0:

3

hide A0, B0 in

(

GENERIC_SWITCH [A, A0] (M, K, ...)

|[A0]|

GENERIC_SWITCH [A0, B0] (K, K, ...)

|[B0]|

GENERIC_SWITCH [B0, B] (K, N, ...)

)

4 Control part: sequential components

The second step consists in describing the behaviour of each sequential component by a finite
state machine, and then expressing this machine in terms of Lotos behaviour expressions.

Before defining the behaviour of the generic switch, we have to agree upon the format of
messages. We decide that only two kinds of messages are used:

• A !CONNECT !x indicates that a connection request is sent by/to the user #x attached
to port A

• A !DISCONNECT !x indicates that a disconnection request is sent by/to the user #x

attached to port A

These rules also apply to port B. Here CONNECT and DISCONNECT are two values of an sort
named REQUEST.

The behaviour of the switch can be described as follows:

• when a connection request A !CONNECT !x is received, a connection indication
B !CONNECT !y is sent, provided that an empty channel y exists on port B. The
switch also remembers that a (x ↔ y) connection pair has been set

• when a disconnection request A !DISCONNECT !x is received, a disconnection indica-
tion B !DISCONNECT !y is sent, where y is such that a connection pair (x ↔ y) was
previously set. The switch also forgets the connection pair (x ↔ y)

Requests arriving on port B are symmetrically handled.

So it is necessary for the switch to keep trace of existing connection pairs. The easiest solution
is to record these informations into a state variable R of sort ROUTE, which is internal to the
switch. The following data operations on sort ROUTE are used:

• EMPTY: returns the empty route. The state variable of the switch is initialized to EMPTY

• CREATE (R, x, y): returns route R augmented by connection pair (x ↔ y)

• DELETE (R, x, y): returns route R deprived from connection pair (x ↔ y)

• USED (R): returns the number of connection pairs in route R

• PAIR B (R, x): returns y such that connection pair (x ↔ y) belongs to route R

4

• FREE B (R): returns some y such that no connection pair (x ↔ y) belongs to route R

The translation from such an automaton to an equivalent Lotos behaviour is straightfor-
ward:

• identify “loop states”, i.e., states which can be reached from themselves. For each loop
state, create a corresponding Lotos process, called here a “state process”.

In the switch example, there is only one loop state, the initial state. In fact it is possible
to create as many state processes as states in the automaton; this should be avoided
since it leads to unstructured specifications (the “goto” style)

• sequential composition is expressed by the “ ;” operator

• alternative composition is expressed by the “[]” operator

• for each state variable, add a corresponding value parameter to every state processes.

Here we add a third value parameter, R of sort ROUTE, to process GENERIC SWITCH

Here is the partial specification of process GENERIC SORT; requests received on port B should
be handled symmetrically:

process GENERIC_SWITCH [A, B] (P, Q:NAT, R:ROUTE) : noexit :=

(* connection request from port #X on gate A *)

[USED (R) lt Q] ->

A !CONNECT ?X:NAT;

(

let Y:NAT = FREE_B (R) in

B !CONNECT !Y;

GENERIC_SWITCH [A, B] (P, Q, CREATE (R, X, Y))

)

[]

(* disconnection request from user #X on gate A *)

A !DISCONNECT ?X:NAT;

(

let Y:NAT = PAIR_B (R, X) in

B !DISCONNECT !Y;

GENERIC_SWITCH [A, B] (P, Q, DELETE (R, X, Y))

)

[]

...

endproc

Note that our approach is compatible with the constraint-oriented style. In the matrix switch
example, one can see that the generic switch trusts the users: for instance an end-user is
allowed to send two connection requests with no disconnection request between. Safety
properties could be enforced by synchronizing the matrix switch with a constraint process
which would prevent users from doing so.

5

5 Data part

The last step in the specification is the description of data types. Experience shows that
sorts and operations should only be specified when control part is completely determined
and stable.

• list all sorts and operations used in behaviour descriptions. Group them in types to
obtain a hierarchical and modular structure. For each type T , fill the “ sorts” and
“opns” parts.

For the matrix switch, one obtains the following Lotos type definitions:

type REQUEST is

sorts REQUEST

opns CONNECT : -> REQUEST

DISCONNECT : -> REQUEST

endtype

type ROUTE is NATURALNUMBER

sorts ROUTE

opns EMPTY : -> ROUTE

CREATE : ROUTE, NAT, NAT -> ROUTE

DELETE : ROUTE, NAT, NAT -> ROUTE

USED : ROUTE -> NAT

PAIR_B : ROUTE, NAT -> NAT

FREE_B : ROUTE -> NAT

...

eqns

...

entype

For type REQUEST there are no equations. For type ROUTE, operators associated with
requests received on port B are not defined here

• for each type T , fill the “ eqns” according to the following methodology. For each sort
S of T , divide operations which return results of sort S in two classes:

– constructors: they are primitive operations which can not be eliminated; any value
of sort S has a normal form term with only constructor operations. The meaning
of constructors operations needs not to be defined by equations.

For the switch, the constructors are EMPTY and CREATE. Any set of connection
pairs can be expressed only in terms of EMPTY and CREATE.

– non-constructors: they are non-primitive operations, i.e., any term containing
non-constructors can be replaced by an equivalent term containing only construc-
tors. Non-constructors have to be defined by induction on the structure of their
arguments.

For the switch, DELETE is a non-constructor operation which is defined as follows:

forall R, R0:ROUTE, X, X0, Y, Y0:NAT

(X eq X0) and (Y eq Y0) =>

6

DELETE (CREATE (R0, X0, Y0), X, Y) = R0;

(X ne X0) and (Y ne Y0) =>

DELETE (CREATE (R0, X0, Y0), X, Y) =

CREATE (DELETE (R0, X, Y), X0, Y0);

• for each type T , for each sort S, operations which do not return results of sort S are
defined by induction on the structure of their arguments.

For instance, the USED and PAIR B operations can be defined as follows:

forall R, R0:ROUTE, X, X0, Y0:NAT

USED (EMPTY) = 0;

USED (CREATE (R0, X0, Y0)) = SUCC (USED (R0));

X eq X0 =>

PAIR_B (CREATE (R0, X0, Y0), X) = Y0;

X ne X0 =>

PAIR_B (CREATE (R0, X0, Y0), X) = PAIR_B (R0, X);

By following this methodology based on case analysis (sometimes called “constructor disci-
pline”), the specifier can convince himself that no equation is missing and that no equation
is redundant (which would otherwise raise the confluency problem).

Moreover it is possible to derive concrete implementations from abstract data type specifica-
tions written according to constructor discipline. For instance the Cæsar.adt tool [Bar88]
[Gar89b] automatically translates such Lotos sorts and operations into corresponding C
types and functions. The translation is fast and the generated code efficient since run-time
execution is fully deterministic.

On the opposite hand, this constructive approach may very well lead to over-specification,
i.e., loss of generality. We illustrate this point with the FREE B operation; it can be given
the following definition:

forall R:ROUTE

FREE_B (R) = FREE_B (R, R, 0);

where FREE B : ROUTE, ROUTE, NAT -> NAT is an auxiliary operation defined by:

forall R, R0:ROUTE, X, X0, Y0:NAT

FREE_B (R, EMPTY, X) = X;

X eq X0 =>

FREE_B (R, CREATE (R0, X0, Y0), X) = FREE_B (R, R, SUCC (X));

X ne X0 =>

FREE_B (R, CREATE (R0, X0, Y0), X) = FREE_B (R, R0, X);

In other terms, by providing a constructive definition of FREE B, we lose non-determinism:
FREE B R always returns the smallest y such that no connection pair (x ↔ y) exists in R. A
general solution would be to change the definition of process GENERIC SWITCH and replace:

let Y:NAT = FREE_B (R) in

B !CONNECT !Y;

by:

B !CONNECT ?Y:NAT [FREE_B (R, Y)]

where FREE B (R, y) returns true if and if only no connection pair (x ↔ y) exists in R.

7

Conclusion

In this paper, we propose a “reasonable” specification style in Lotos, based on communi-
cating automata for the control part and constructor discipline for the data part. In this
approach we only use static control structures and we make plain use of data structures to
express dynamism.

A good specification should avoid over-specification, in order not to prevent implementation
on various kinds of machines, architectures and environments. On the other hand, it would be
a mess to design a specification which is too far from any realistic implementation; otherwise
any implementor would have to translate it into a lower level specification: these redundant
and error-prone efforts should be avoided.

A good specification should be automatically verified since its complexity is likely to exceed
human capabilities. See for instance [PG88] which shows, by exhibiting several incompatibil-
ities between standardized transport protocol T.70 and transport services X.213 and X.214,
that even best international experts can very well make mistakes. The specification style
proposed here allows the use of tools, such as Cæsar [Gar89a] [GS90] to compile and verify
Lotos specifications.

Dynamic control features (i.e., for Lotos, recursion in parallel composition as well as re-
cursion on the left of the enabling and disabling operators) should be avoided, since they
are often difficult to understand, to implement efficiently and to verify automatically. Note
that the debate on dynamic control is not new and also arose for sequential languages:
self-modifying (non-reentrant) programs, dynamic procedure calls, ...

Acknowledgements

The authors are grateful to Susanne Graf, Laurent Mounier and Jacques Voiron for their
helpful comments and suggestions.

Appendix: Full specification of the matrix switch

specification SWITCH [A, B] (M, K, N:NAT) : noexit

library BOOLEAN endlib

library NATURALNUMBER endlib

type REQUEST is

sorts REQUEST

opns CONNECT (*! constructor *) : -> REQUEST

DISCONNECT (*! constructor *) : -> REQUEST

endtype

8

type ROUTE is NATURALNUMBER

sorts ROUTE

opns EMPTY (*! constructor *) : -> ROUTE

CREATE (*! constructor *) : ROUTE, NAT, NAT -> ROUTE

DELETE : ROUTE, NAT, NAT -> ROUTE

USED : ROUTE -> NAT

PAIR_B : ROUTE, NAT -> NAT

PAIR_A : ROUTE, NAT -> NAT

FREE_B : ROUTE -> NAT

FREE_B : ROUTE, ROUTE, NAT -> NAT

FREE_A : ROUTE -> NAT

FREE_A : ROUTE, ROUTE, NAT -> NAT

eqns

forall R, R0 : ROUTE,

X, X0, Y, Y0 : NAT

ofsort ROUTE

(X eq X0) and (Y eq Y0) =>

DELETE (CREATE (R0, X0, Y0), X, Y) = R0;

(X ne X0) and (Y ne Y0) =>

DELETE (CREATE (R0, X0, Y0), X, Y) =

CREATE (DELETE (R0, X, Y), X0, Y0);

ofsort NAT

USED (EMPTY) = 0;

USED (CREATE (R0, X0, Y0)) = SUCC (USED (R0));

ofsort NAT

X eq X0 =>

PAIR_B (CREATE (R0, X0, Y0), X) = Y0;

X ne X0 =>

PAIR_B (CREATE (R0, X0, Y0), X) = PAIR_B (R0, X);

ofsort NAT

Y eq Y0 =>

PAIR_A (CREATE (R0, X0, Y0), Y) = X0;

Y ne Y0 =>

PAIR_A (CREATE (R0, X0, Y0), Y) = PAIR_A (R0, Y);

ofsort NAT

FREE_B (R) = FREE_B (R, R, 0);

ofsort NAT

FREE_B (R, EMPTY, X) = X;

X eq X0 =>

FREE_B (R, CREATE (R0, X0, Y0), X) =

FREE_B (R, R, SUCC (X));

X ne X0 =>

FREE_B (R, CREATE (R0, X0, Y0), X) =

FREE_B (R, R0, X);

ofsort NAT

FREE_A (R) = FREE_A (R, R, 0);

ofsort NAT

FREE_A (R, EMPTY, Y) = Y;

Y eq Y0 =>

9

FREE_A (R, CREATE (R0, X0, Y0), Y) =

FREE_A (R, R, SUCC (Y));

Y ne Y0 =>

FREE_A (R, CREATE (R0, X0, Y0), Y) =

FREE_A (R, R0, Y);

endtype

behaviour

hide A0, B0 in

(

GENERIC_SWITCH [A, A0] (M, K, EMPTY)

|[A0]|

GENERIC_SWITCH [A0, B0] (K, K, EMPTY)

|[B0]|

GENERIC_SWITCH [B0, B] (K, N, EMPTY)

)

where

process GENERIC_SWITCH [A, B] (P, Q:NAT, R:ROUTE) : noexit :=

(* connection request from port #X on gate A *)

[USED (R) lt Q] ->

A !CONNECT ?X:NAT;

(

let Y:NAT = FREE_B (R) in

B !CONNECT !Y;

GENERIC_SWITCH [A, B] (P, Q, CREATE (R, X, Y))

)

[]

(* connection request from user #Y on gate B *)

[USED (R) lt P] ->

B !CONNECT ?Y:NAT;

(

let X:NAT = FREE_A (R) in

A !CONNECT !X;

GENERIC_SWITCH [A, B] (P, Q, CREATE (R, X, Y))

)

[]

(* disconnection request from user #X on gate A *)

A !DISCONNECT ?X:NAT;

(

let Y:NAT = PAIR_B (R, X) in

B !DISCONNECT !Y;

GENERIC_SWITCH [A, B] (P, Q, DELETE (R, X, Y))

)

[]

(* disconnection request from user #Y on gate B *)

B !DISCONNECT ?Y:NAT;

10

(

let X:NAT = PAIR_A (R, Y) in

A !DISCONNECT !X;

GENERIC_SWITCH [A, B] (P, Q, DELETE (R, X, Y))

)

endproc

endspec

References

[Bar88] Christian Bard. CÆSAR.ADT Reference Manual. Laboratoire de Génie Informa-
tique — Institut IMAG, Grenoble, August 1988.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Lan-
guage LOTOS. Computer Networks and ISDN Systems, 14(1):25–29, January
1988.

[Gar89a] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de
Doctorat, Université Joseph Fourier (Grenoble), November 1989.

[Gar89b] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Description
Techniques FORTE’89 (Vancouver B.C., Canada), pages 147–162, Amsterdam,
December 1989. North-Holland.

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS Spec-
ifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceedings of the
10th International Symposium on Protocol Specification, Testing and Verification
(Ottawa, Canada), pages 379–394, Amsterdam, June 1990. IFIP, North-Holland.

[ISO87] ISO. Guidelines for the Application of Estelle, LOTOS and SDL. PDRT 10167,
International Organization for Standardization, Genève, December 1987.

[ISO88] ISO. LOTOS — A Formal Description Technique Based on the Temporal Order-
ing of Observational Behaviour. International Standard 8807, International Orga-
nization for Standardization — Information Processing Systems — Open Systems
Interconnection, Genève, September 1988.

[PG88] Marc Phalippou and Roland Groz. Using ESTELLE for Verification: An Ex-
perience with the T.70 Teletex Transport Protocol. In Kenneth J. Turner, edi-
tor, Proceedings of the 1st International Conference on Formal Description Tech-
niques FORTE’88 (Stirling, Scotland), pages 185–199, Amsterdam, September
1988. North-Holland.

11

[Tur88] Kenneth J. Turner. A LOTOS-Based Development Strategy. In Kenneth J.
Turner, editor, Proceedings of the 1st International Conference on Formal De-
scription Techniques FORTE’88 (Stirling, Scotland), pages 157–174, Amsterdam,
September 1988. North-Holland.

12

