
Compilation and Verification of LOTOS Specifications

Hubert GARAVEL∗

VERILOG Rhône-Alpes

Centre HITELLA

46 avenue Félix Viallet

38031 GRENOBLE cedex

FRANCE

e-mail: hubert@imag.imag.fr

Joseph SIFAKIS†

L.G.I.

I.M.A.G. Campus

BP 53X

38041 GRENOBLE cedex

FRANCE

e-mail: sifakis@imag.imag.fr

The ISO specification language Lotos is a Formal Description Technique for concurrent
systems. This paper presents the main features of the Cæsar system, intended for for-
mal verification of Lotos specifications by model-checking. This tool compiles a subset
of Lotos into extended Petri Nets, then into state graphs, which can be verified by using
either temporal logics or automata equivalences. The design choices and the principles of
functioning of Cæsar are described and compared to those of other Lotos tools. The pa-
per also proposes ideas to deal with the state explosion problem arising in verification by
model-checking.

Introduction

System designers are often confronted with the verification problem, i.e., checking that a specification is
correct with respect to some requirements, and the implementation problem, i.e., deriving an executable
realization of a correct specification. In these areas, using automated tools to assist human work is
highly desirable. Formal Description Techniques, such as Lotos [ISO88] [BB88], are a prerequisite for
the development of automatic methods.

This paper presents an approach for the efficient compilation and verification of Lotos specifications.
Although this approach was originally intended for formal verification by model-checking, it is in fact
more general and can also be applied to interactive simulation, test generation and code generation
purposes.

The technique described here has been fully implemented in the Cæsar system. Cæsar belongs to the
Cesar family of verification tools for concurrent systems (Quasar [FSS83] for a CSP-like language
and Xesar [RRSV87] [GRRV89] for an Estelle dialect).

This paper is organized as follows. Section 1 discusses verification issues for Lotos. Section 2 presents
the general principles of the compilation technique used in Cæsar. The architecture of Cæsar and the
translation algorithms are described in section 3, although it is not possible to give here all technical
details (a formal presentation can be found in [Gar89a]). Finally, section 4 discusses the results and the
limitations of the Cæsar approach, and suggests solutions to cope with the state explosion problem
inherent to the model-checking approach.

1 Verification of LOTOS specifications

A first step in computer-aided analysis of Lotos specifications is debugging. Several simulators (i.e.,
interpreters) are available for Lotos, for instance Hippo [vE89] and UO-Lotos [GL88]. These tools
help designers discovering semantic errors by tracing and monitoring some possible execution sequences.

∗This work has been partially supported by I.N.R.I.A.
†This work has been partially supported by ESPRIT Basic Research Action “Spec”

1

However, the simulation approach is not always sufficient, since it does not allow to find all design
errors. Moreover, it is likely that Lotos specifications will often be changed and updated, as most
computer files and programs; the latest revision should always be verified, but the interactive aspects
of simulation make this rather difficult and cumbersome.

For these reasons, it is necessary to go beyond mere simulation and develop more powerful techniques
of automated analysis. Some simulators have been enhanced to deal with formal verification [SSC89];
it is not sure, however, that efficient verification can be carried out with the same techniques as those
developed for simulation.

1.1 Model-checking versus proof

The natural approach, for verifying formally programs written in a high-level language like Lotos,
would be based on source level analysis. This general idea relies on the intuition that properties can
be proven more easily at the highest abstraction level. As far as Lotos is concerned, this idea is even
more plausible, because Lotos is a functional language, using clean concepts borrowed from process
algebras and abstract data types, with a simple and well-defined semantics.

This should allow to develop formal methods taking advantage of the algebraic structure of Lotos
programs, considered as terms. For instance, there have been studies on the application of algebraic
transformations and theorem proving techniques to Lotos programs [AF88] [Boo89]. These approaches,
despite their “mathematical flavor” have major flaws:

• the efficiency of existing theorem provers is not sufficient, because of the intrinsic complexity
of the underlying decision algorithms and the inadequacy of current computer architectures for
symbolic computations.

• proof techniques used for sequential programs cannot be efficiently transposed to parallel pro-
grams, due to the fact that many useful properties cannot be verified in a “compositional” way,
since they rely on a knowledge of the system’s global state.

• the exploitation of these techniques strongly depends on user’s skills. Full automation is not
possible since most steps of the proof require inventive intervention from the user.

For these reasons, proof techniques have only been illustrated in small examples of limited practical
interest. An alternative solution is model-checking (also called exhaustive simulation or reachability
analysis). In this approach Lotos specifications are translated, when it is possible, into state/transition
models which describe, possibly modulo some abstractions, the execution sequences. There are strong
arguments in favor of model-checking:

• in the general case, the verification problem is not tractable, since properties expressing require-
ments to be verified may not be decidable. In fact, most significant properties of concurrent
systems (such as termination, liveness, deadlock freedom, fairness, ...) are not decidable in gen-
eral. However, if the system has only a finite set of states, every property is decidable. Under this
assumption, model-checking appears more appropriate than theorem proving, since it is practi-
cally more efficient.

• verifying properties at source level for high-level languages does no seem to be realistic, since
the set of language constructs is generally not minimal from a semantic point of view, due to
the existence of non-primitive constructs provided for expression convenience. It is therefore
preferable to carry out semantic analysis at some lower level. Most compilers, for instance, do
not perform static analysis and code optimization at source-level, even for high-level languages;
they generally operate on low-level forms: tuples, basic blocks, flow graphs, use-def chains, ...

• whatever verification method is chosen, one must evaluate properties on value expressions (such as
deciding whether a boolean guard is true or not, for instance). Model-checking techniques avoid
formal manipulation and comparison of algebraic terms, and the subsequent loss of efficiency,
because they only operate on closed terms, in which variables are bound to known values.

To get rid of symbolic variables in value expressions, value flattening is applied to first-order
terms: for a given variable, each possible value must be considered. For instance, given the Lotos

behavior “choice X:BOOL”, it is necessary to analyze both cases (X = false) and (X = true),
such that further occurrences of variable X can be replaced by a single value, false or true.

These general principles are applied in Cæsar, but not in a too restrictive way. For example, Cæsar
performs source level transformations during the expansion phase (see section 3.2) and allows the user
to prevent value expansion, whenever it can be avoided (see section 4.3).

1.2 The graph model

When verification is performed by model-checking, the choice of the appropriate model relies on the
dynamic semantics of the language. The control part of Lotos is based on a process algebra. The
terms of this algebra (behavior expressions) denote parallel computations. The rules of Lotos opera-
tional semantics [ISO88] define a mapping from behavior expressions to labelled transition systems, i.e.,
automata, called here graphs since they can also be viewed as directed labelled graphs.

It is therefore quite natural to choose graphs as the low-level model on which verification is done.
Fortunately, this well-known model supports a wide range of analysis techniques: graph algorithms,
automata theory results, comparison by using equivalence relations, and evaluation of temporal logic
formulas.

The graph model is described by:

• a finite set of states

• an initial state,

• a finite set of edges, each edge consisting of:

– an origin state,

– a destination state,

– a gate, which can be either a visible gate (i.e., a gate parameter of the Lotos specification,
declared just after the “specification” keyword), or “i” (i.e., either a gate “i” in the Lotos
source text, or a internal gate declared by the “hide” operator),

– an offer, which is a list of closed Lotos value expressions (this list is always empty if the
gate is “i”).

2 Compilation of LOTOS specifications

To verify Lotos specifications by model-checking, it is necessary to perform some kind of translation
from behavior expressions to graphs. In fact, this translation is also needed whenever one wants to
execute Lotos specifications. The translation can be more or less explicit, automatical, and complete,
according to the purposes sought:

• for model-checking verification, it is necessary to compute every possible evolution of the system
and generate all the states reachable from the initial state. Finite termination requires detection
of circuits: this is usually done by storing all states in memory and by comparing every new state
to previously encountered ones.

• for interactive simulation, it is not necessary to keep track of all accessible states. It is often
sufficient to store the current state or, if backtracking is allowed, the states which belong to the
path followed from the initial state. If several evolutions are possible from the current state, the
choice is either interactive (by the user) or automatical (according to some selection criteria).

• for test generation, only states on the current path should be kept, but it may be necessary to
visit states more than once.

• for sequential code generation, the Lotos specification must be translated into a sequential pro-
gram which interacts with an environment. At run-time, only the current state is needed. In case
of non-determinism, random or interactive choices are made to select an evolution among others.

To summarize, all these activities, despite their apparent differences, share a common task: translating
a Lotos specification into a graph, even if the whole graph is not built. They mainly differ in two
points: the choice of states which are kept in memory, and the choice of successor states to be explored
from the current state.

It is therefore likely that an efficient translation technique from behavior expressions into graphs can
lead to significant progress in model-checkers, simulators, test generators, and code generators for
Lotos.

2.1 Compilation versus interpretation

The reference definition of Lotos [ISO88] describes the semantics of behavior expressions by means of
a derivation system, which defines how the labelled transition system corresponding to a given Lotos
specification can be generated. It provides a set of rewrite rules that specify the initial state, as well
as every possible transition from a given state.

This dynamic semantics of Lotos is operational: it can be interpreted by some machine to generate the
graph corresponding to a Lotos specification. Some Lotos tools take advantage of this, by giving these
rules to a term-rewriting engine, which can be either general [AF88] [Boo89] [NQS89], or specifically
designed for Lotos [MdM88]; some other tools rely on Prolog [BC88] [GL88]. These approaches
are straightforward and directly ensure the correctness of the translation, but they suffer from lack of
efficiency:

• the determination of possible evolutions from a given state is slowed down by the fact that no
efficient technique exists to find redexes in a Lotos algebraic term.

• a state of the graph is naturally represented by a behavior expression, which is a term of the Lotos
process algebra. This generally requires large amounts of memory, even if only the current state
is stored. Depending on the size of the Lotos specification, it may not be possible to keep many
states in memory.

• to detect circuits in the graph, in the case of model-checking, it is necessary to compare the current
state to the previous ones. Determining whether two syntactically different behavior expressions
denote the same state is undecidable; therefore, any comparison criterion can be only a sufficient
condition. Simulators usually rely on syntactical identity [GL88], which is probably not strong
enough. It seems not easy, anyway, to give a comparison criterion, both precise and practically
efficient, which operates at the level of behavior expressions.

The performances of this approach may be found sufficient for interactive simulation, but not for
verification, which has much stronger requirements. For this reason, Cæsar does not use the reference
semantics of Lotos as a basis for direct implementation. It does not use rewrite techniques either. It
is based on a completely different translation scheme, which provides a common and efficient algorithm
for simulation, verification, test and code generation purposes.

For achieving significant performance gains, the basic idea is to discover computations performed many
times that could be done only once. This naturally leads to replacing the interpretation scheme by
a compilation scheme: graph generation should be divided into compile-time and run-time phases.
Whenever possible, computations should be performed statically (at compile-time), and not dynamically
(at run-time). This means that computations executed several times at run-time should be shifted to
compile-time and would have their results saved in memory to be available at run-time.

These differences appear clearly, for instance, in the way rendez-vous are handled. The aforementioned
Lotos tools follow the interpretation scheme, having only a run-time phase relying on rewriting tech-
niques: at each step, it is necessary to determine possible rendez-vous, although these computations
may have already been done at previous steps. On the opposite, Cæsar is based on a compilation
scheme: a significant part of rendez-vous computations is done only once, at compile-time.

2.2 The network model

According to the compilation principle, Lotos specifications should not be directly translated into
graphs; stepwise transformations should be generated instead. It is therefore necessary to design an

intermediate-level semantic model between Lotos and the graph model in the translation process.
Translation from Lotos to this model corresponds to compile-time, whereas translation from this
model to the graph is run-time. This model should satisfy the following properties:

• first of all, it should allow to store information determined at compile-time (pre-computed rendez-
vous, for example).

• it should be expressive enough to represent all behaviors that can be described in Lotos, or at
least a large subset of them, sufficient in practice.

• it should provide a compact representation of control and data flow, unlike the graph model
whose complexity may be very high, since all possible execution sequences are represented. This
implies in particular that the expansion theorem (i.e., Lotos algebraic rules which express par-
allel composition in terms of sequential composition and non-deterministic choice), as well as
value flattening (described above), must be applied only at run-time, but not when building the
intermediate model.

A brief examination of existing models and languages for concurrency, with respect to these criteria,
leads to the following conclusions:

• formalisms making use of shared memory (such as semaphores, monitors, critical sections, ...)
seem to be inappropriate for Lotos.

• extended communicating automata (also called abstract machines) are not powerful enough to
meet both the second and the third of the above criteria, about the expression of parallel compo-
sition. They are well-adapted to languages such as CSP or Estelle, which describe the parallel
execution of sequential processes, but not to Lotos where any combination of sequential opera-
tors (i.e., sequential composition, non-deterministic choice, ...) and parallel operators is allowed.
Problems arise when communicating automata are used as an intermediate model for Lotos:
either behaviors like “B1 [] (B2 ||| B3)” cannot be compiled [Dub89], or the expansion the-
orem must be used in order to compute the product automaton corresponding to “B2 ||| B3”
in which case the complexity of the intermediate model can grow exponentially [NQS89].

• using Petri Nets solves this problem, since they allow to combine sequentiality, parallelism and
non-determinism in a compositional way. A Petri Net is generally much smaller than the cor-
responding graph, since it allows to avoid the interleaving expansion. Moreover it appears that
Lotos rendez-vous can be directly expressed with Petri Nets synchronization features. Several
algorithms have been proposed for translating the control part of Lotos into standard Petri Nets
[ML88] [BvB90], but they do not take variables and value expressions into account. A survey of
the relationships between process algebras, automata and Petri Nets can be found in [Tau90].

• of course, standard Petri Nets are not powerful enough for Lotos, since they only describe control
aspects. To handle values, it is necessary to extend the Petri Net model by adding a data part, for
defining and manipulating variables. The intermediate model used in Cæsar has global variables,
and its transitions are labelled by conditions and actions on these variables.

This intermediate model, called network, is described by:

• a finite set of variables,

• a finite set of Petri Net places,

• an initial place,

• a finite set of Petri Net transitions, each transition consisting of:

– a set of input places,

– a set of output places,

– a gate, which can be either a visible Lotos gate, or “τ”, or “ε”,

– an offer, which is a list whose items have either the form “!V ”, where V is a value expression,
or the form “?X:S”, where X is a variable and S a sort (this list is always empty if the gate
is “τ” or “ε”),

– an action, which is any sequential or collateral composition of primitive actions. A primitive
action can be:

∗ either the null action “none”,

∗ or a (vectorial) assignment “X0, ...Xn:=V0, ...Vn” of value expressions V0, ...Vn to vari-
ables X0, ...Xn respectively,

∗ or a condition (also called guard) “when V ” where V is a boolean value expression,

∗ or an iteration “for X0 among S0” of variable X0 over the domain of sort S0.

• a set of units, which determines a partition of the set of places. Intuitively each unit is a subset of
places which represents a sequential behavior. A unit can also be hierarchically refined into sub-
units to express that the corresponding behavior is composed of several concurrent sub-behaviors.

For instance, the following network N contains three sequential components running in parallel: a
server computes a function Y = F (X) alternatively for two clients, which send computations to the
server and receive results. Places and transitions are represented by circles and rectangles, according
to Petri Net graphical conventions; dashed boxes are used to represent units.

Q 0

ε
none

Q 5

ε
N:=1

Q 6

SEND !1 !X 1

(when N=1) ; (X:=X 1)
SEND !2 !X 2

(when N=2) ; (X:=X 2)

Q 7

ε
Y :=F (X)

Q 8

RECV !1 !Y
(when N=1) ; (Y 1:=Y)

RECV !2 !Y
(when N=2) ; (Y 2:=Y)

Q 9

ε
N:=3−N

(to Q 6)

Q 1

INPUT1 ?X 1:NAT
none

Q 2

Q 10

INPUT2 ?X 2:NAT
none

Q 11

Q 3 Q 12

Q 4

OUTPUT1 !Y 1

none

Q 13

OUTPUT2 !Y 2

none

The rules for translating a Lotos specification into a network are given in section 3.3. Those for
translating a network into a graph are presented in section 3.5.

The network model is characterized by a static control structure: it describes a fixed set of tasks,
with a fixed set of variables, communicating via a fixed set of gates. It is obvious that some dynamic

features (e.g., dynamic creation and destruction of tasks, variables, and gates) cannot be expressed in
this framework. It is therefore not possible to translate any Lotos specification into this model. The
following syntactic restrictions, named static control constraints, must be satisfied: it is not allowed
that a process recursively instantiates itself (even transitively), either on the left- or right-hand side of
an operator “|[...]|”, or in an operator “par”, or on the left-hand side of an operator “>>” or “[>”.

3 Architecture of the CÆSAR system

The Cæsar system translates Lotos specifications to networks and graphs by using successive steps.
Its functional architecture can be described as follows:

LOTOS spec.

analysis

LOTOS tree

expansion

SUBLOTOS tree

generation

network

simulation

graph

optimisation

 compile-time

 run-time

. .

. .

. .

3.1 The analysis phase

The front-end part of the tool performs syntactic analysis, by using the compiler-generator SYNTAX1

and full static semantic analysis. It conforms, as much as possible, to the definition of Lotos given
in the ISO Draft International Standard. As a result of this analysis phase, an abstract syntax tree is
built.

3.2 The expansion phase

The translation from Lotos to the network model is divided into two successive phases, named expan-
sion and generation, communicating via an intermediate form, called SubLotos, which can be seen as
a subset of Lotos.

The expansion phase translates Lotos behavior expressions into SubLotos ones in a bottom-up way,
according to syntax-directed rules defined by structural induction on Lotos behavior expressions:

1SYNTAX is a trademark of I.N.R.I.A.

• all occurrences of Lotos operators “par” and “choice” on gates are replaced by equivalent
expressions in terms of “[]” and “|[...]|”, respectively.

• all occurrences of Lotos operators “|||”, “exit”, “>>...accept” are replaced by equivalent forms
making use of parallel composition, hiding, and rendez-vous, where the role of the termination
gate “δ” is explicited.

• non-recursive Lotos processes are developed “in-line”, i.e., process instantiations are replaced
by process definitions, with appropriate substitution of actual gate parameters to formal ones.
This transformation is correct with respect to Lotos semantics, except if several actual gate
parameters are identical, in which case Cæsar issues a warning diagnostic; fortunately, this
situation seldom occurs in practical examples.

• recursive Lotos processes are also developed “in-line”, until actual gate parameters are found to
be identical to formal ones. This transformation always terminates if static control constraints
are assumed.

Expansion ensures that all SubLotos gates are “constants”, i.e., SubLotos dynamic semantics is free
from gate relabelling notion.

3.3 The generation phase

The generation phase translates SubLotos behavior expressions into corresponding network fragments
by bottom-up synthesis. The translation rules are defined by structural induction on SubLotos behav-
ior expressions. Given a SubLotos behavior expression B and a place Q0, these rules allow to construct
the network corresponding to B with Q0 for initial place. This network is graphically represented as
follows:

Q 0

B

The network corresponding to a behavior B is recursively built from the sub-networks corresponding
to the sub-behaviors contained in B:

• the generation algorithm for sequential operators “stop”, “;”, and “[]” is similar to non-
deterministic automaton construction for regular expressions [ASU86, p. 121–125].

– the network corresponding to “stop” has only one place, Q0, and no transition (see figure 1).

– the network corresponding to “G O1, ...On [V0] ; B0” is obtained by creating a new place
Q1, generating the network corresponding to B0 with Q1 for initial place, and creating a
transition from Q0 to Q1, whose gate is G, whose offer is O1, ...On and whose action is
“when V0” (see figure 2). The translation is slightly more complex when the operator “;”
comes from the expansion of an operator “>>” or “exit”.

– the network corresponding to “B1 [] B2” is obtained by generating both networks corre-
sponding to B1 and B2 with Q0 for initial place (see figure 3).

figure 1 figure 2 figure 3

Q 0

G O 1 ...On

when V 0

Q 1

B 0

Q 0

Q 0

B 1 B 2

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

• operators “->”, “let”, and “choice” on values, are translated into ε-transitions whose actions
are, respectively, conditions, assignments, and iterations.

– the network corresponding to “[V0] -> B0” is obtained by creating a new place Q1, gener-
ating the network corresponding to B0 with Q1 for initial place, and creating an ε-transition
from Q0 to Q1 whose action is “when V0” (see figure 4).

– the network corresponding to “let X0:S0=V0 in B0” is the same as the former, but the
action of the ε-transition is “X0:=V0” (see figure 5). If the “let” operator defines several
variables, the action is the collateral composition of the corresponding assignments.

– the network corresponding to “choice X0:S0 [] B0” is the same as the former, but the
action of the ε-transition is “for X0 among V0” (see figure 6). If the “choice” operator
defines several variables, the action is the collateral composition of the corresponding itera-
tions.

figure 4 figure 5 figure 6

Q 0

ε
X 0:=V 0

Q 1

B 0

Q 0

ε
when V 0

Q 1

B 0

Q 0

ε
for X 0 among S 0

Q 1

B 0

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

• translation of parallel operators is performed in two steps. First, concurrency is expressed by
creating a fork transition, i.e., an ε-transition which starts several concurrent behaviors. Then
synchronization and communication are expressed by merging all transitions which may engage
in rendez-vous.

The network corresponding to “B1|[G0, ...Gn]|B2” is obtained by creating two places Q1 and
Q2, generating the networks corresponding to B1 and B2 with Q1 and Q2 for initial places, and
creating a fork ε-transition with action “none” from Q0 to Q1 and Q2. Two units are also created
to encapsulate the places of the networks corresponding to B1 (including Q1) and B2 (including
Q2) respectively; this implies that the decomposition of a network into units is not determined
by process definitions, but according to parallel composition operators.

Q 0

ε
none

Q 1

B 1

Q 2

B 2

Two transitions T1 and T2, respectively contained in the networks corresponding to B1 and B2,
must be merged if they have the same gate G belonging to {G0, ...Gn} and offers of the same sort.
Merging transitions T1 and T2 is done by replacing them by a single transition T from the input
places of T1 and T2 to the output places of T1 and T2, whose gate is G. The offer and action of
T are defined as follows, depending on the respective offers O1 and O2 and actions A1 and A2 of
T1 and T2:

– for value matching, i.e., when O1 has the form “!V1” and O2 has the form “!V2”, the offer
of T is O1 and the action of T is the condition “when V1=V2” followed by the collateral
composition of A1 and A2.

Q 1

G !V 1

A 1

Q′1

Q 2

G !V 2

A 2

Q′2

becomes

Q 1 Q 2

G !V 1

(when V 1=V 2) ; (A 1 & A 2)

Q′1 Q′2

– for value passing, i.e., when O1 has the form “?X1:S” and O2 has the form “!V2”, the
offer of T is O2 and the action of T is the assignment “X1:=V1” followed by the collateral
composition of A1 and A2. A symmetrical scheme is applied when O1 has the form “!V1”
and O2 has the form “?X2:S”.

Q 1

G ?X 1:S
A 1

Q′1

Q 2

G !V 2

A 2

Q′2

becomes

Q 1 Q 2

G !V 2

(X 1:=V 2) ; (A 1 & A 2)

Q′1 Q′2

– for value generation, i.e., when O1 has the form “?X1:S” and O2 has the form “?X2:S”, the
offer of T is O2 and the action of T is the assignment “X1:=X2” followed by the collateral
composition of A1 and A2.

Q 1

G ?X 1:S
A 1

Q′1

Q 2

G ?X 2:S
A 2

Q′2

becomes

Q 1 Q 2

G ?X 2:S
(X 1:=X 2) ; (A 1 & A 2)

Q′1 Q′2

This scheme is general enough to handle all features of Lotos rendez-vous. It can be easily
generalized to the case where T1 and T2 have zero or more than one offers. The n-ary rendez-vous
is naturally handled by repeatedly applying this scheme to each parallel operator.

The translation is somewhat different if the parallel operator comes from the expansion of an
operator “>>”. Although sequential composition appears in Lotos as a particular case of parallel
composition, it is not necessary, in such case, to create a fork transition, nor units. Merging
transitions with the termination gate “δ” is sufficient to express sequentiality.

• translation of the hiding operator does create neither places nor transitions, but it modifies the
gates, the offers, and the actions of the transitions to be hidden, which prevents these transitions
to be merged at some later stage.

The network corresponding to “hide G0, ...Gn in B0” is obtained by generating the network
corresponding to B0 with Q0 for initial place. Then, for each transition T with a gate G belonging
to {G0, ...Gn}, with an offer O and an action A, the following transformation is applied:

– if O has the form “!V ”, the gate of T is replaced by τ , its offer is removed and its action
remains unchanged.

Q

G !V
A

Q′

becomes

Q

τ
A

Q′

– if O has the form “?X:S” the gate of T is replaced by τ , its offer is removed and its action
is replaced by the iteration “for X among S” followed by A. This expresses flattening of
all possible input values for X .

Q

G ?X :S
A

Q′

becomes

Q

τ
(for X among S) ; A

Q′

• translation of the disabling operator “[>” is done by creating ε-transitions from the places of
the disrupted behavior to the initial place of the disrupting behavior. The scheme becomes more
complex when the disrupted behavior contains concurrent sub-behaviors, but it remains feasible
under static control assumptions.

• translation of process instantiation depends on the fact that the instantiation is recursive or not.
If not, a new place Q1 is created and the network corresponding to the behavior of the instantiated
process is generated with Q1 for initial place. Otherwise, this network has already been generated
and let also Q1 be its initial place. In both cases, an ε-transition from Q0 to Q1 is created, whose
action is a vectorial assignment of the actual value parameters to formal ones.

3.4 The optimization phase

Networks generated from SubLotos behavior expressions are generally not optimal (i.e., they do not
have a minimal number of places, transitions, and variables), because they are built in a systematical
and compositional way. The optimization phase solves this problem by applying a list of optimizing
transformations on networks. These transformations take into account both control and data flow
aspects:

• as for control, local Petri Net optimizations are applied in order to reduce the number of places,
transitions, and units. Special efforts are made to remove as much ε-transitions as possible, which
greatly improves speed at run-time.

• as for data, global data-flow analysis techniques are used to perform standard optimizations, such
as removing unused variables, eliminating useless assignments, folding constants, and evaluating

constant guards statically. Cæsar can also find sufficient conditions proving that two variables
are equal, or that the value of a variable is constant, which reduces the number of variables.

All these optimizations are practically effective, due to the fact that the network model is simple enough
to allow efficient and precise static analysis. This is even more true in the case of networks generated by
Cæsar, which have interesting properties, as they are obtained from descriptions written in a high-level
functional language.

3.5 The simulation phase

The run-time phase, called simulation in the Cæsar terminology, generates the graph corresponding to
a network, by performing reachability analysis. This is done by building a C program, called simulator,
then by compiling and running it. The simulator mainly consists of three components, which are
respectively in charge of the following tasks:

• determination of the “next state” relation, i.e., computation for a given state of the outgoing
edges and successor states (according to the operational semantics of the network defined below),

• management of a fast-access extensible hash table, in which all encountered states are searched
and inserted,

• breadth-first exploration and construction of the graph, starting from the initial state. As the
execution progresses, the states and edges of the graph are written to a file.

During expansion and generation, value expressions are handled symbolically. At run-time, however,
evaluation of expressions cannot be delayed any more. It is not done by using rewriting techniques,
to avoid the subsequent overhead; instead, the user has to provide appropriate C types and functions
to implement Lotos sorts and operations. This concrete implementation of abstract data types can
be either written by hand, or automatically generated by an auxiliary tool, Cæsar.adt [Gar89b].
Correspondence between Lotos and C identifiers is expressed by inserting special comments into the
Lotos source text.

The execution rules defining the operational semantics of the network model can be summarized as
follows:

• each state of the graph denotes a global configuration of the network. It consists of a pair 〈M, C〉
where M is a marking and C a context :

– a marking represents the control part of a state. According to standard Petri Net semantics,
it is the subset of places that are currently marked with a token. For instance, {Q0},
{Q1, Q5, Q10}, and {Q2, Q5, Q10} are markings for network N . In the Cæsar network
model, there can be several tokens simultaneously, but each place may contain at most one
token (due to static control constraints; otherwise the number of tokens per place could be
unbounded, and each token should carry context information).

– a context represents the data part of a state. It contains the current values of each variable,
i.e., the global memory state of the network. Formally, a context is a partial application
which maps each variable to its value, or to the undefined value “⊥” if the variable is not
initialized yet. For instance, {N ; ⊥, X ; ⊥, X1 ; ⊥, X2 ; ⊥, Y ; ⊥, Y1 ; ⊥, Y2 ; ⊥}
and {N ; 1, X ; ⊥, X1 ; 0, X2 ; ⊥, Y ; ⊥, Y1 ; ⊥, Y2 ; ⊥} are contexts for network
N ; as a shorthand, they will be noted {} and {N ; 1, X1 ; 0} by omitting uninitialized
variables. In the Cæsar network model, variables have a global scope and can be assigned
several times. These imperative features aim at efficiency. They contrast with the the
functional characteristics of Lotos, where each variable is local and bound to a single value.
However, since networks are generated from Lotos descriptions, a variable can never be
used before it is assigned.

• the initial state of the graph is defined to be the pair 〈M0, C0〉, where M0 is the marking containing
only the initial place of the network, and C0 the context with no variable initialized.

• deciding whether two states are identical is done by comparing their respective markings and
contexts.

• rules to determine whether a transition T can be fired from the current state 〈M, C〉 and to
compute the resulting state(s) 〈M ′, C ′〉 take into account both marking and context information:

– with respect to markings, standard Petri Nets evolution laws apply: T can be fired only if
all its input places are in M ; then M ′ will be defined as M , from which all input places of T

have been removed, and to which all output places of T have been added. In network N , for
example, a transition can be fired from marking {Q0}, leading to marking {Q1, Q5, Q10}.

– with respect to contexts, firing rules depend on the action attached to the transition: T

can be fired only if each condition of its action evaluates to true. If so, C ′ is the result-
ing context obtained after the execution of its action in C. Assignments and iterations
have their intuitive meaning: they allow to modify the value of variables, either by assign-
ing them a single value, or by enumerating all values in the domain of a sort (in which
case several contexts C ′ must be considered: this is value flattening). For example, ap-
plying action “(when N=1) ; (X:=X1)” to context {N ; 1, X1 ; 0} leads to context
{N ; 1, X ; 0, X1 ; 0}, whereas applying action “(when N=2) ; (X:=X2)” does not
lead to any context, since the guard is false.

• there is a direct relationship between network transitions and graph edges:

– firing a transition with a visible gate creates a corresponding edge labelled by the gate and
the offer of the transition.

– similarly, firing a transition with a “τ” gate creates a corresponding edge labelled by “i”.

– on the contrary, firing a transition with an “ε” gate does not create an edge in the graph. The
ε-transitions of the network model have no edge counterpart in the graph model. They have
been introduced to allow compositional construction of networks and behave like ε-transitions
in the theory of non-deterministic automata. As for automata, their semantics is based on
an ε-closure algorithm [ASU86, p. 118–120]. However, the standard ε-closure algorithm is
not sufficient for Lotos, because automata describe sequential behaviors whereas networks
represent concurrent ones. More precisely, the ε-closure only preserves language equivalence
(i.e., trace equivalence) but not strong equivalence [Mil80]. For this reason, an auxiliary
rule is added to the standard closure algorithm, which aims at preserving the atomicity of
ε-sequences.

Simulation always terminates in finite time: either normally, or because there is not enough memory
to store all states of the graph. In the latter case, Cæsar displays a warning message and stops, but
obviously cannot decide if the translation failed because the graph is infinite, or finite but too large
(this question is equivalent to the halting problem).

From this operational semantics, one can understand why generating an intermediate-level model
presents several advantages over the usual interpretative approach:

• states can be represented in a more efficient way than with the usual interpretative approach:
storing a pair 〈marking, context〉 takes much less memory than storing the corresponding behavior
expression.

• searching, from a given state, which transitions can be fired is much faster than determining which
rewrite rules can be applied. This is even more true because a significant amount of computations,
especially the determination of rendez-vous possibilities, has been done at compile-time.

• networks generated from Lotos specifications are structured by units, which define a hierarchy
of communicating sequential processes. It is possible to take advantage of units for:

– compressing marking representation, since two places in the same unit cannot have a token
simultaneously;

– displaying graphically the architecture of the Lotos specification, in terms of boxes (repre-
senting units) connected by communication channels (representing rendez-vous transitions
between units);

– producing parallel code, where each unit is implemented by a distributed task, possibly with
concurrent sub-tasks. The network model seems to provide an interesting base for parallel
code generation, but this problem has not been tackled yet.

4 Discussion

4.1 Results

The algorithm for translating Lotos specifications into graphs constitutes an original implementation-
oriented semantics for Lotos. The practical interest of replacing the usual interpretation scheme by a
compilation scheme is clearly illustrated by the performance measurements of Cæsar.

The current version of the tool is made up of approximately 25 000 lines of C code. It allows to build
large graphs (the largest graph generated on a SUN 4 workstation with 8 megabytes of main memory
has 800 000 states and 3 500 000 edges) within reasonable time (the average speed ranges from 40 to
500 states per second, depending on the complexity of the specifications).

These performances appear to be satisfactory when compared to those of another model-checker for
Lotos [BC88], and also to simulators using the interpretation scheme. Significant gains are still
possible: it is likely, for instance, that extending the optimization phase and computing ε-closures at
compile-time instead of run-time would sometimes lead to major improvements in speed.

The graphs generated by Cæsar can be verified by using several techniques. A first approach consists
in reducing a protocol graph, or comparing a protocol graph to a service graph, modulo various equiv-
alences relations defined for automata or process algebra, e.g., strong equivalence [Mil80], branching
equivalence [GV90], observational equivalence [Mil80], testing equivalence [NH84], trace equivalence, ...
A second approach makes use of temporal logics: requirements to be verified are expressed as formulas
which are evaluated on the graph model [RRSV87] [Gar89a].

Cæsar does not embody verification algorithms: it only translates Lotos specifications into graphs.
However, it smoothly interfaces with various existing verification systems, most of which performing
graph reduction, namely Aldébaran (LGI-IMAG), Auto (INRIA), Mec (Univ. of Bordeaux),
Pipn (LAAS/VERILOG), Scan (ADI/BULL) and Squiggles (Univ. of Pisa). Connection to
Xesar (LGI-IMAG) is also possible; formulas of the temporal logic LTAC [Rod88] can therefore be
evaluated on the graphs generated by Cæsar.

Cæsar could be easily extended to deal with simulation, test generation and sequential code generation.
This would only require to adjust the simulation phase not to generate and store all states of the graph;
all other phases of Cæsar would remain unchanged. The performances could even be better than for
verification, since the overhead of state table management would be avoided.

4.2 Limitations

Unfortunately, the proposed technique does not apply to all Lotos specifications. There are two
different restrictions:

• due to the verification technique by model-checking, Lotos specifications must translate into
finite graphs. Such constraint is reasonable, because a Lotos specification leading to an infinite
graph often describes, in fact, a set of finite implementations. Practically, the user has to put
upper bounds on some parameters of the system, e.g., the number of concurrent processes, the
number of values in the domain of a sort, ...

• due to the compilation technique used in Cæsar, Lotos specifications must satisfy static control
constraints, which are also assumed by many other Lotos tools. These constraints are acceptable,
since they do not prevent useful Lotos specification styles, such as implementation-oriented or
process-oriented styles. They only forbid the use of control structures to describe infinite or
unbounded data structures (e.g., queues, stacks, ...); for this purpose, abstract data types should
be used instead [Led87].

There is a tight relationship between both restrictions:

• static control constraints are a sufficient condition for generating finite graphs, when each sort S,
to which value flattening applies, has a finite domain. The domain of S must be finite only if ex-
haustive enumeration of all values of sort S is necessary, i.e., if S occurs either in a “choice X:S”
clause, or in a “G ?X:S” clause that does not match a “G !V ” clause, or in a “exit (any S)”
clause that does not match a “exit (V)” clause, where V is any value expression. Practically,
even if the domain of a sort is theoretically infinite, only a subset of it, chosen by the user, will
be enumerated.

• conversely, Lotos specifications that do not satisfy static control constraints generally lead to
infinite graphs and therefore cannot be verified. It seems that there is a single case of practical
interest where the non-respect of static control restrictions still generates finite graphs: using
recursion in parallel composition to start a finite number of concurrent processes. In such case,
the user has to write by hand as many process instantiations as necessary, which is tedious but
feasible.

There seems to be an “efficiency versus expressiveness” tradeoff for Lotos: restriction to a well-chosen
subset of Lotos allows good performances that could probably not be achieved for the whole language.
Compared to other approaches for compiling and verifying Lotos specifications, the limitations of
Cæsar are mild: Cæsar handles the data part, unlike some translators [BC88] [ML88] that only
deal with basic Lotos; static control constraints are much weaker than those of another compiling
algorithm for Lotos [Dub89]; non-guarded recursion is allowed by Cæsar, whereas it is forbidden by
most simulators.

4.3 Prospects

The major drawback of model-checking techniques is state explosion [GRRV89]. Model-checkers gen-
erate large graphs and reduce them later, according to the properties to verify. Problems arise when
the graphs are too large, either to be generated, or to be reduced. Clearly, the generated graphs con-
tain more information than actually needed for verification. A solution would consist in improving
model-checking to generate directly “already reduced” graphs.

Given a Lotos specification, Cæsar produces a graph which is strongly equivalent to the labelled
transition system defined by the operational semantics of Lotos. This graph is then minimized (e.g., by
using Aldébaran [Fer88] [Fer90]) modulo some equivalence weaker than strong equivalence. It would
be much better to generate a graph reduced, partially or even completely, modulo this equivalence.

The stepwise translation technique of Cæsar seems to provide an adequate framework for doing this.
The basic idea is to perform such reduction not only after run-time, as it is the case when equivalences
are applied to the graph model, but also before run-time, on the network model. This general principle
has been practically experimented in two directions:

• the current version of Cæsar implements a reduction technique named safety reduction, which
applies an abstraction criterion to the network. During the optimization phase, it replaces all
gates “τ” by “ε”. Then, the simulation phase of Cæsar generates the graph corresponding to the
reduced network. This transformation is optional, since it does generally preserve neither strong
nor observational equivalence (the resulting graph has no edge labelled “i”). However it preserves
safety equivalence [Rod88], which is stronger than trace equivalence, and compatible with safety
properties expressed in temporal logic.

This approach has been applied satisfactorily to various examples. For instance, it gives significant
results on the Lotos specification of the token-ring scheduler [Mil80] with N cyclers. Without
reduction the graph generated by Cæsar has O(2×3N) states (state explosion occurs for N ≥ 12).
By using safety reduction, Cæsar directly produces a graph with only N + 1 states (this graph
is also, as a matter of fact, the smallest graph observationally equivalent to the complete graph).

• the other reduction technique implemented in Cæsar aims at preventing the undesirable effects
of value flattening, which often generates a large number of “meaningless” states. More precisely,
when a graph is reduced modulo some equivalence, many states are generally found to be equiva-
lent, since they only differ with respect to the value of some variable of no interest for verification.
In fact, the set of variables in a specification can be split into two classes:

– there are variables whose value is needed, either to determine the flow of control (e.g.,
variables used in boolean guards), or to evaluate the properties to be verified (e.g., variables
used in temporal formulas). For these variables, value flattening is necessary.

– for other variables, value flattening should be avoided since the knowledge of the actual
values of such variables is not essential to graph generation and verification. It would be
better to handle these variables symbolically, by performing abstract interpretation.

A general approach to verification should therefore involve both symbolic computations and value
flattening. Cæsar judiciously combines symbolic computations (at compile-time) and value flat-
tening (at run-time). This ensures efficiency, still taking advantage of syntactic transformations
on algebraic terms (especially during the optimization phase).

Moreover, in the current version of Cæsar, the user can prevent value flattening. This is simply
done by providing appropriate concrete implementations for abstract data types. For each Lotos
sort, the user has to provide a C iterator which enumerates all concrete values in the domain of
the sort; limiting this enumeration to a single value suppresses value flattening.

This technique has been successfully used for a number of examples. It is well-adapted to com-
munication protocols, whose behaviors are determined by message headers, but are independent
of message contents: value flattening is only applied to headers, whereas contents are handled
symbolically. It has also been used to verify several specifications in Lotos of systolic arrays com-
puting the convolution product [Gar89a]: in these examples abstract data types are implemented
by character strings representing algebraic terms, instead of being implemented by numeric types;
the input values of the networks are not flattened, and the output values are symbolic expressions
in terms of the input values.

A more elaborated approach would automatically determine which variables can be handled
symbolically, by performing data flow analysis on the network model to find out variables whose
value is never (transitively) used in a condition attached to a transition.

As a conclusion, it is likely that full verification of complex systems can be carried out in the model-
checking framework. It is necessary, however, to combine model generation with reduction techniques,
because “brute force” approach is in general not tractable. Such reductions on the network model
have already been experimented with Cæsar and seem to be fairly promising. Small reductions, at
the network level, often lead to large ones, at the graph level. Moreover, they can be performed
automatically, with no or little participation from the user. Developing other powerful reductions
should be possible, since the network model used in Cæsar is sufficiently simple and clean to allow
accurate control and data flow analysis.

Acknowledgements

The authors are grateful to Susanne Graf, Daniel Pilaud, Carlos Rodriguez, Jacques Voiron, and the
anonymous referees for their helpful comments and suggestions.

References

[AF88] Sukhvinder S. Aujla and Matthew Fletcher. The Boyer-Moore Theorem Prover and LO-
TOS. In Kenneth J. Turner, editor, Proceedings of the 1st International Conference on For-
mal Description Techniques FORTE’88 (Stirling, Scotland), pages 169–183. North-Holland,
September 1988.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1986.

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, January 1988.

[BC88] Tommaso Bolognesi and Maurizio Caneve. SQUIGGLES: A Tool for the Analysis of LOTOS
Specifications. In Kenneth J. Turner, editor, Proceedings of the 1st International Conference
on Formal Description Techniques FORTE’88 (Stirling, Scotland), pages 201–216. North-
Holland, September 1988.

[Boo89] Rob Booth. An Evaluation of the LCF Theorem Prover using LOTOS. In Son T. Vuong,
editor, Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE’89 (Vancouver B.C., Canada). North-Holland, December 1989.

[BvB90] Michel Barbeau and Gregor v. Bochmann. Deriving Analysable Petri Nets from LOTOS
Specifications. Publication 707, Département IRO, Université de Montréal, January 1990.

[Dub89] Eric Dubuis. An Algorithm for Translating LOTOS Behavior Expressions into Automata
and Ports. In Son T. Vuong, editor, Proceedings of the 2nd International Conference on
Formal Description Techniques FORTE’89 (Vancouver B.C., Canada). North-Holland, De-
cember 1989.

[Fer88] Jean-Claude Fernandez. ALDEBARAN : un système de vérification par réduction de pro-
cessus communicants. Thèse de Doctorat, Université Joseph Fourier (Grenoble), May 1988.

[Fer90] Jean-Claude Fernandez. An Implementation of an Efficient Algorithm for Bisimulation
Equivalence. Science of Computer Programming, 13(2–3):219–236, May 1990.

[FSS83] Jean-Claude Fernandez, J. P. Schwartz, and Joseph Sifakis. An Example of Specification and
Verification in CESAR. In G. Goos and J. Hartmanis, editors, The Analysis of Concurrent
Systems, volume 207 of Lecture Notes in Computer Science, pages 199–210. Springer Verlag,
September 1983.

[Gar89a] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse de Doctorat,
Université Joseph Fourier (Grenoble), November 1989.

[Gar89b] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T. Vuong, ed-
itor, Proceedings of the 2nd International Conference on Formal Description Techniques
FORTE’89 (Vancouver B.C., Canada), pages 147–162. North-Holland, December 1989.

[GL88] Renaud Guillemot and Luigi Logrippo. Derivation of Useful Execution Trees from LOTOS
Specifications by Using an Interpreter. In Kenneth J. Turner, editor, Proceedings of the 1st
International Conference on Formal Description Techniques FORTE’88 (Stirling, Scotland),
pages 311–327. North-Holland, September 1988.

[GRRV89] Susanne Graf, Jean-Luc Richier, Carlos Rodŕıguez, and Jacques Voiron. What are the
Limits of Model Checking Methods for the Verification of Real Life Protocols? In Joseph
Sifakis, editor, Proceedings of the 1st Workshop on Automatic Verification Methods for
Finite State Systems (Grenoble, France), volume 407 of Lecture Notes in Computer Science,
pages 275–285. Springer Verlag, June 1989.

[GV90] Jan Friso Groote and Frits Vaandrager. An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. CS-R 9001, Centrum voor Wiskunde en Informatica, Amster-
dam, January 1990.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. International Standard 8807, International Organization for Stan-
dardization — Information Processing Systems — Open Systems Interconnection, Genève,
September 1988.

[Led87] G. J. Leduc. The Intertwining of Data Types and Processes in LOTOS. In Harry Rudin
and Colin H. West, editors, Proceedings of the 7th International Symposium on Protocol
Specification, Testing and Verification (Zurich). North-Holland, May 1987.

[MdM88] J. A. Manas and T. de Miguel. From LOTOS to C. In Kenneth J. Turner, editor, Proceedings
of the 1st International Conference on Formal Description Techniques FORTE’88 (Stirling,
Scotland), pages 79–84. North-Holland, September 1988.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer Verlag, 1980.

[ML88] Saturnino Marchena and Gonzalo Leon. Transformation from LOTOS Specs to Galileo
Nets. In Kenneth J. Turner, editor, Proceedings of the 1st International Conference on For-
mal Description Techniques FORTE’88 (Stirling, Scotland), pages 217–230. North-Holland,
September 1988.

[NH84] R. De Nicola and M. C. B. Hennessy. Testing Equivalences for Processes. Theoretical
Computer Science, 34:83–133, 1984.

[NQS89] Elie Najm, Jose Queiroz, and Ahmed Serhrouchni. Pre-Implementing and Verifying Pro-
cess Algebras. In Son T. Vuong, editor, Proceedings of the 2nd International Conference
on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada). North-Holland,
December 1989.

[Rod88] Carlos Rodŕıguez. Spécification et validation de systèmes en XESAR. Thèse de Doctorat,
Institut National Polytechnique de Grenoble, May 1988.

[RRSV87] Jean-Luc Richier, Carlos Rodŕıguez, Joseph Sifakis, and Jacques Voiron. Verification in
XESAR of the Sliding Window Protocol. In Harry Rudin and Colin H. West, editors,
Proceedings of the 7th International Symposium on Protocol Specification, Testing and Ver-
ification (Zurich). IFIP, North-Holland, May 1987.

[SSC89] Pierre de Saqui-Sannes and Jean-Pierre Courtiat. From the Simulation to the Verification
of ESTELLE∗ Specifications. In Son T. Vuong, editor, Proceedings of the 2nd Interna-
tional Conference on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada).
North-Holland, December 1989.

[Tau90] Dirk Taubner. Finite Representations of CCS and TCSP Programs by Automata and Petri
Nets, volume 369 of Lecture Notes in Computer Science. Springer Verlag, 1990.

[vE89] Peter van Eijk. The Design of a Simulator Tool. In Peter van Eijk et al., editors, The
Formal Description Technique LOTOS. North-Holland, 1989.

