
Defect Report concerning ISO International Standard 8807

and Proposal for a Correct Flattening

of LOTOS Parameterized Types

Hubert Garavel∗ Mihaela Sighireanu

INRIA Rhône-Alpes

VERIMAG — Miniparc-ZIRST

rue Lavoisier

38330 MONTBONNOT ST MARTIN

FRANCE

July, 17, 1995

Abstract

We report a defect in the definition of Lotos (ISO/IEC standard IS-8807). We show that the
standard semantics for parameterized and actualized types — although it is consistent in itself
— is not satisfactory in case of multiple instantiations of the same generic type, and leads to
strange behaviours in existing Lotos tools.

We indicate how to avoid this problem when writing formal specifications in Lotos, and we
also propose a modification of the flattening mechanism defined in IS-8807 in order to solve this
problem.

1 Proposed changes in the International Standard 8807

We propose two modifications of [ISO88], Section 7.3.4.3 (page 42).

1.1 Modification 1

In the following text:

∗This work has been supported in part by the European Commission, under project ISC-CAN-65 “EUCALYPTUS-2:
A European/Canadian Lotos Protocol Tool Set”.

1



gs(< s, t >)
= < si, Tj >

if < s, t >∈ FS 1

and s = s′i (1 ≤ i ≤ p)
where 1 ≤ j ≤ n and < si, Tj >∈ S2

= < s, Tj >

if < s, t >∈ FS 1

and s 6= s′i (1 ≤ i ≤ p)
where 1 ≤ j ≤ n and < s, Tj >∈ S2

= < si, T >

if < s, t >∈ S1 − FS1

and s = s′i (1 ≤ i ≤ p)

= < s, t >

if < s, t >∈ S1 − FS1

and s 6= s′i (1 ≤ i ≤ p)

= undefined otherwise

replace the piece of text contained in the frame box by the following piece of text:

= < s, T >

if t = T0

and < s, T0 >∈ S1 − FS1

and s 6= s′i (1 ≤ i ≤ p)
= < s, t >

if t 6= T0

and < s, t >∈ S1 − FS 1

and s 6= s′i (1 ≤ i ≤ p)

1.2 Modification 2

In the following text:

gop(<< op, t >, args, res , pos >)
= << opi, Tj >, gs(args), gs(res), pos >

if << op, t >, args, res , pos >∈ FOP1

and op = op ′
i (1 ≤ i ≤ q)

where 1 ≤ j ≤ n and << op i, Tj >, gs(args), gs(res), pos >∈ OP2

= << op, Tj >, gs(args), gs(res), pos >

if << op, t >, args, res , pos >∈ FOP1

and op 6= op ′
i (1 ≤ i ≤ q)

where 1 ≤ j ≤ n and << op , Tj >, gs(args), gs(res), pos >∈ OP 2

= << opi, T >, gs(args), gs(res), pos >

if << op, t >, args, res , pos >∈ OP1 − FOP1

and op = op ′
i (1 ≤ i ≤ q)

= << op, t >, args , res, pos >

if << op, t >, args, res , pos >∈ OP1 − FOP1

and gs(args) = args and gs(res) = res
and op 6= op ′

i (1 ≤ i ≤ q)

2



= << op, T >, gs(args), gs(res), pos >

if << op, t >, args, res , pos >∈ OP1 − FOP1

and gs(args) 6= args and gs(res) 6= res
and op 6= op ′

i (1 ≤ i ≤ q)
= undefined otherwise

replace the piece of text contained in the frame box by the following piece of text:

= << op, T >, args , res, pos >

if t = T0

and << op, t >, args , res, pos >∈ OP 1 − FOP1

and gs(args) = args and gs(res) = res
and op 6= op ′

i (1 ≤ i ≤ q)
= << op, t >, args , res, pos >

if t 6= T0

and << op, t >, args , res, pos >∈ OP 1 − FOP1

and gs(args) = args and gs(res) = res

2 Rationale of the proposed changes

In this section, we explain the motivations underlying the proposed changes. We first recall the basic
notations and concepts used in [ISO88]. Then we give two examples of the problems raised by the
existing semantics (one example for sorts and the other for operations).

Then we suggest a way to avoid this undesirable problem, still remaining in the framework of Lotos

standard semantics. Finally, we intuitively justify the proposed changes in the semantics.

2.1 Notations and concepts

The following definitions, taken from [ISO88], will also be used in the sequel of the present document.

A signature is a tuple < S,OP >, where S is a set of sorts and OP is a set of operations. In a
signature, a given sort is represented by a 2-tuple:

< sort identifier, definition type >

and a given operation is represented by a 4-tuple:

<< operation identifier, definition type >, args , res, pos >

where:

• args is the tuple of the sorts the arguments,

• res is the sort of the result,

• pos have infix or prefix values.

An algebraic specification is a 3-tuple SPEC = < S,OP , E >, where < S,OP > is a signature,
and E is a set of conditional equations.

A data-presentation pres = < S ′,OP ′, E′ > is an algebraic specification < S,OP , E > whose
sorts, operations and equations are labelled by the identifier of the type in which they are
defined.

3



A parameterized data-presentation ppres = < fpres , tpres > is a pair of data-presentations
consisting of a formal data-presentation fpres and a target data-presentation tpres , where the
formal data-presentation is included component-wise in the target data-presentation.

2.2 An example of the problem arising with the sorts

We consider the example of a generic list type, which is actualized twice to obtain a list of booleans
and a list of naturals.

type GENERIC LIST is

formalsorts ITEM
sorts LIST
opns

NIL : -> LIST
CONS : ITEM, LIST -> LIST

endtype

type LIST BOOL is GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
endtype

type LIST NAT is GENERIC LIST actualizedby NATURAL using

sortnames NAT for ITEM
endtype

According to Section 7.3.4.3 of [ISO88], the parameterized presentations obtained after applying the
“flattening” algorithm to this example are:

• for the type GENERIC LIST:

ppres = <<< ITEM, GENERIC LIST >, 6©, 6© >,

< {< ITEM, GENERIC LIST >, < LIST, GENERIC LIST >},
{<< NIL, GENERIC LIST >, 6©, LIST, prefix >,

<< CONS, GENERIC LIST >, < ITEM, LIST >, LIST, prefix >}, 6© >

• for the type LIST BOOL:

ppres = ppresBOOLEAN

∪ <<>,

<< LIST, GENERIC LIST >,

{<< NIL, GENERIC LIST >, 6©, LIST, prefix >,

<< CONS, LIST BOOL >, < BOOL, LIST >, LIST, prefix >}, 6© >

• for the type LIST NAT:

ppres = ppresNATURAL

∪ <<>,

<< LIST, GENERIC LIST >,

{<< NIL, GENERIC LIST >, 6©, LIST, prefix >,

<< CONS, LIST NAT >, < NAT, LIST >, LIST, prefix >}, 6© >

Two problems arise:

4



1. There is a “semantic clash” between different objects. In the presentation, it is not possible
to distinguish between the sort LIST defined in type GENERIC LIST, the sort LIST obtained
by actualization in type LIST BOOL, and the sort LIST obtained by actualization in type
LIST NAT. Indeed, according to [ISO88] semantics, these three objects have the same name
LIST and the same definition type GENERIC LIST.

2. Due to this clash, there are four different operations returning a result of sort LIST:

< NIL, GENERIC LIST >

< CONS, GENERIC LIST >

< CONS, LIST BOOL >

< CONS, LIST NAT >

This leads existing Lotos tools dealing with parameterized types (e.g., TOPO [ndM88]) to
implement these three different sorts as a single one.

2.3 Another example of the problem arising with the operations

A symmetric problem exists for operations, as illustrated by the following example:

type NEW GENERIC LIST is GENERIC LIST, BOOLEAN
opns

CAR : LIST -> ITEM
OK : LIST -> BOOL

eqns

forall I: ITEM, L: LIST
ofsort BOOL
CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;

endtype

type NEW LIST BOOL is NEW GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
endtype

type NEW LIST NAT is NEW GENERIC LIST actualizedby NATURAL using

sortnames NAT for ITEM
endtype

According to [ISO88], the parameterized presentations for this three types are:

• for the type NEW GENERIC LIST:

ppres = ppresGENERIC LIST

∪ ppresBOOLEAN

∪ <<>,

< 6©, {<< CAR, NEW GENERIC LIST >, < LIST >, ITEM, prefix >,

<< OK, NEW GENERIC LIST >, < LIST >, BOOL, prefix >},
{ forall I: ITEM, L: LIST

CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;} >>

5



• for the type NEW LIST BOOL:

ppres = ppresBOOLEAN

∪ <<>,

< 6©, {<< CAR, NEW LIST BOOL >, < LIST >, BOOL, prefix >,

<< OK, NEW GENERIC LIST >, < LIST >, BOOL, prefix >},
{ forall I: BOOL, L: LIST

CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;} >>

• for the type NEW LIST NAT:

ppres = ppresBOOLEAN

∪ ppresNATURAL

∪ <<>,

< 6©, {<< CAR, NEW LIST NAT >, < LIST >, NAT, prefix >,

<< OK, NEW GENERIC LIST >, < LIST >, BOOL, prefix >},
{ forall I: NAT, L: LIST

CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;} >>

The static semantics rules for actualization allow to distinguish between the operation CAR defined
in type NEW GENERIC LIST, the operation CAR defined in type NEW LIST BOOL and the oper-
ation CAR defined in type NEW LIST NAT. This is due to the fact that the profile of the operation
CAR defined in type NEW GENERIC LIST contains the formal sort ITEM.

Unfortunately, this is not the case for operation OK, the profile of which does not contain
the sort ITEM. There is a semantic clash, since only a single operation OK, defined in type
NEW GENERIC LIST, can be distinguished.

Moreover, there are six equations attached to this unique operation OK ! These equations are the
following:

forall I: ITEM, L: LIST
CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;

forall I: BOOL, L: LIST
CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;

forall I: NAT, L: LIST
CAR (L) eq I => OK (L) = true;
CAR (L) ne I => OK (L) = false;

2.4 A way to avoid these problems when using standard LOTOS

The problems described in Sections 2.2 and 2.3 happen as soon as a parameterized type is actualized
twice without renaming its local sorts and operations with the “for” clause.

Thus, the problem can be avoided if, in all actualizations, “for” clauses are systematically used to
rename all sorts and operations defined in the parameterized type.

For example, a correct version of the example given in Section 2.2 would be:

6



type GENERIC LIST is

(* unchanged *)
endtype

type LIST BOOL is GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
BLIST for LIST (* this was added *)

endtype

type LIST NAT is GENERIC LIST actualizedby NATURAL using

sortnames NAT for ITEM
NLIST for LIST (* this was added *)

endtype

By doing so, there is no clash between sorts LIST, BLIST, and NLIST, since each of them is given a
unique identifier.

Similarly, a correct version of the example given in Section 2.3 would be:

type NEW GENERIC LIST is

(* unchanged *)
endtype

type NEW LIST BOOL is NEW GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
opnnames BOK for OK (* this was added *)

endtype

type NEW LIST NAT is NEW GENERIC LIST actualizedby NATURAL using

sortnames NAT for ITEM
opnnames NOK for OK (* this was added *)

endtype

However, if the user forgets to use the “for” clause, the static semantic rules of [ISO88] might lead
to semantic clashes, without any error or warning messages.

2.5 Justification of the proposed changes

The changes proposed in Section 1 have an intuitive justification.

The underlying idea is the following one: every time that a clause “X for Y” is not explicitly given
for a sort Y or an operation Y local to the parameterized type, the modified semantics implicitly
adds a clause of the form “Y for Y”.

By example, the actualization of parameterized type GENERIC LIST with booleans (2.2 (p. 4)):

type LIST BOOL is GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
endtype

is strictly equivalent, under our modified semantics, to:

7



type LIST BOOL is GENERIC LIST actualizedby BOOLEAN using

sortnames

BOOL for ITEM
LIST for LIST

endtype

Similarly, the actualization of parameterized type NEW GENERIC LIST with booleans (2.3 (p. 5)):

type NEW LIST BOOL is NEW GENERIC LIST actualizedby BOOLEAN using

sortnames BOOL for ITEM
endtype

is equivalent to:

type NEW LIST BOOL is NEW GENERIC LIST actualizedby BOOLEAN using

sortnames

BOOL for ITEM
CAR for CAR
OK for OK

endtype

Practically, adding implicitly a “Y for Y” clause has the effect of declaring a new object (sort or
operation) Y in the actualized type.

This new object Y does not clash with the object Y already defined in the parameterized type, because
they do not have the same definition type. Thus, the semantic clashes exhibited in Section 2.2 and 2.3
are avoided.

It is worth noticing that our modified semantics is close to the one originally proposed in the Draft
International Standard for Lotos [ISO87]. For instance, in the case of type LIST BOOL, the def-
inition of the LIST sort obtained after actualization is LIST BOOL (as in the DIS-8807 semantics)
instead of GENERIC LIST (as in IS-8807 semantics).

However, our modified semantics is more advanced than the DIS-8807 semantics, because it accept the
renaming of non-formal sorts and operations during actualization (a feature introduced in IS-8807).

Conclusions

We have exhibited a problem in IS-8807 related to the actualization of abstract data types.

We have shown that this problem leads existing tools (such as TOPO) to generate meaningless code.

We have proposed a specification discipline to avoid this problem, still keeping IS-8807 unchanged.

We have also proposed a simple and intuitively appealing change in Lotos static semantics to solve
this problem.

We believe that it is easy to adapt existing tools in order to incorporate our modified semantics.

References

[ISO87] ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. Draft International Standard 8807, International Organization

8



for Standardization — Information Processing Systems — Open Systems Interconnection,
Genève, July 1987.

[ISO88] ISO. LOTOS — A Formal Description Technique Based on the Temporal Ordering of Ob-
servational Behaviour. International Standard 8807, International Organization for Stan-
dardization — Information Processing Systems — Open Systems Interconnection, Genève,
September 1988.

[ndM88] J. A. Ma nas and T. de Miguel. From LOTOS to C. In Kenneth J. Turner, editor, Pro-
ceedings of the 1st International Conference on Formal Description Techniques FORTE’88
(Stirling, Scotland), pages 79–84, Amsterdam, September 1988. North-Holland.

9


