
On the Introduction of Exceptions in E-LOTOS∗

Hubert Garavel, Mihaela Sighireanu
Inria Rhône-Alpes, Verimag, Miniparc-Zirst, rue Lavoisier,
F-38330 Montbonnot Saint-Martin, France
E-mail: Hubert.Garavel@imag.fr, Mihaela.Sighireanu@imag.fr

Abstract
The advantages of exception handling are well-known and several sequential or
parallel programming languages provide exception handling mechanisms. Unfortu-
nately, none of the three standardized Formal Description Techniques (Estelle,
Lotos, and Sdl) supports exceptions. In 1992, Quemada and Azcorra pointed
out the need for structuring protocol descriptions with exceptions and proposed to
extend Lotos with a so-called “generalized termination and enabling” mechanism.
In this article, we show that their proposal is not fully appropriate for a composi-
tional description of complex systems. We propose a simpler exception mechanism
for Lotos, for which we provide a syntactic and semantic definition. We show that
this exception mechanism is very primitive, as it allows several existing Lotos
operators to be expressed as special cases. We also suggest additional operators,
such as symmetric sequential composition and iteration, which can be derived from
the exception mechanism.

Keywords
Exceptions, Exception handling, E-Lotos, Formal Description Techniques,
Lotos, Process Algebra, Protocols.

1 INTRODUCTION

The Formal Description Technique Lotos [ISO88] is intended for the unambiguous
definition of the functional behaviour of information processing systems. Lotos
combines sound semantics concepts (borrowed from the theories of algebraic data
types and process algebras) with software engineering features intended for the
design of complex systems. It provides a rich set of specification styles. Robust
tools are now available, which support design, verification, and code generation.

Lotos is currently considered for revision by Iso. This revision process should
lead to an enhanced standard language named E-Lotos (for Extended Lotos).
The E-Lotos Committee is working actively to elaborate this revised standard,
which should increase substantially the expressiveness and user-friendliness of

∗This work has been supported in part by the European Commission, under project
ISC-CAN-65 “EUCALYPTUS-2: An European/Canadian Lotos Protocol Tool Set”.

Lotos. In this article, we propose to extend Lotos with an exception handling
mechanism, which we consider as a fundamental concept providing powerful struc-
turing capabilities.

Exceptions are generally recognized as a desirable programming feature. They
provide a structured way of dealing with errors and other “abnormal” situations
in computer programs. Because the notion of “abnormal” is highly subjective,
exceptions are often used as a plain programming paradigm, even for processing
“normal” situations. Although the details may vary from one computer language to
another, the different exception mechanisms present strong similarities: exceptions
are usually named using identifiers; they can be raised when an error or an abnormal
situation occurs, which aborts the execution of the program part that caused the
exception; when raised, they can be caught, meaning that another program part
(called the exception handler) is activated in place of the aborted one.

Exception handling is supported by many modern sequential programming lan-
guages, either algorithmical (e.g. Ada), functional (e.g. Ml), or object-oriented
(e.g. C++, Eiffel, Java). As regards parallel languages, the importance of ex-
ceptions (combined with concurrency) has been pointed out by Berry in the frame-
work of the synchronous language Esterel [Ber93]. Berry’s proposal was adapted
to the framework of asynchronous process algebras by Nicollin and Sifakis in their
Algebra of Timed Processes Atp [NS94].

Unfortunately, none of the three standardized Formal Description Techniques
(Estelle, Lotos, and Sdl) supports exceptions. More often than not, commu-
nication protocols are described in terms of communicating state machines, which
leads, in some cases, to poorly structured descriptions. This problem was identi-
fied by Quemada and Azcorra [QA92], who suggested that protocol descriptions
could be better structured by expliciting interrupts between protocol phases. They
proposed to enhance Lotos with a mechanism providing a (limited) form of ex-
ception handling. Building upon their work, we propose an exception mechanism
for Lotos, which, we believe, is simpler and more expressive.

This article assumes some basic knowledge of Lotos. It is organized as follows.
Section 2 presents the protocol example used in [QA92] to illustrate the need for
exceptions; from this example, a list of technical requirements is given, which an
appropriate exception mechanism for Lotos should satisfy; then, the proposal of
[QA92] is presented and assessed with respect to the aforementioned requirements.
Section 3 presents our proposal and its applications to the protocol example given
in Section 2. Section 4 gives some algebraic properties of our proposed exception
mechanism. Section 5 shows that several existing Lotos operators can be expressed
in terms of exceptions, and suggests to introduce new operators defined as short-
hand notations (i.e., syntactic sugar) above our proposed exception mechanism.
Finally, Section 6 gives some concluding remarks and lists open issues for further
research.

2 MOTIVATIONS AND RELATED WORK

2.1 A protocol specification problem

The Abracadabra protocol is a sample protocol that exhibits typical features
of Osi communication protocols. This protocol has been used to illustrate how
the standardized Formal Description Techniques can be applied to real proto-
cols. A formal description of this protocol in standard Lotos can be found in
[ISO91, Tur93]. However, it was pointed out by Quemada and Azcorra [QA92] that
the Abracadabra could be described in a better way if Lotos was extended with
a new feature, close to an exception mechanism, which they called generalized ter-
mination and enabling. Using this proposed extension, they produced a description
of the Abracadabra protocol that is shorter and better structured than other
descriptions in standard Lotos.

The behaviour of an Abracadabra protocol entity is abstracted on Figure 1
in the form of a block diagram, where the rectangular blocks represent the various
protocol phases (which some refinement allowing certain blocks to be nested in
other blocks) and where the dotted arrows going out from the blocks represent the
exceptions that can be raised during the corresponding phases of the protocol.

ConnPhase

DataPhase

DiscIndication

DisconnectPhase DiscAcknowledge

DataPh

DiscPh

DiscIn

DiscAck

Init Init

Init

Figure 1 Abracadabra protocol

The Abracadabra protocol entity starts with the ConnPhase, which signals
its termination by raising the DataPh exception, which enables the DataPhase.
From any of these two phases, three exceptions can be raised: DiscIn enables the
DiscIndication phase, DiscAck enables the DiscAcknowledge phase and DiscPh

enables the DisconnectPhase. The DiscIndication phase itself can be terminated

by a DiscPh exception enabling the DisconnectPhase. The Init exception can be
raised from ConnPhase, DiscAcknowledge, and DisconnectPhase: it restarts the
protocol entity.

Although the Abracadabra protocol entity can be fully described in standard
Lotos [Tur93], the use of an exception mechanism clearly improves the readability
and structure of the description. The same remark also apply to algorithmic pro-
gramming languages, such as Ada, where exceptions provide a structured mean to
avoid cascades of “if...then...else” tests.

2.2 Requirements for an exception mechanism

From the Abracadabra example, we can list several important requirements that
a proper exception mechanism for Lotos should satisfy:

• (R1) The same behaviour may raise several exceptions: for example, the
ConnPhase can raise Init, DataPh, DiscIn, DiscAck and DiscPh exceptions.
Consequently, we need a mechanism which allows multiple exceptions to be
caught.

• (R2) Exception handling should be done hierarchically, with different levels of
nesting. In the Abracadabra protocol, we see four levels of exception handling:
one for the DataPh, one for DiscIn, one for DiscPh and DiscAck, and the last one
for Init; we also notice that exception DiscPh can be raised from two different
levels.

• (R3) Sequential composition should be a particular form of exception handling,
in which one behaviour terminates by raising an exception, which enables an-
other behaviour. This is the case with the ConnPhase, which terminates with
exception DataPh, thus enabling the DataPhase.

We can add two other requirements, although they do not show up in the
Abracadabra example:

• (R4) Exceptions should be statically scoped, meaning that an exception could
not propagate outside the scope of its definition (a problem that exists in Ml,
for instance).

• (R5) Exceptions should be allowed to carry data: it should be possible, when
raising a exception, to specify values that will be passed to the corresponding
exception handler.

Although the Abracadabra protocol entity is a purely sequential behaviour,
we should also mention additional requirements, which relate exception handling
and parallel composition.

• (R6) It should be possible to synchronize exceptions in parallel composition,
meaning that several concurrent behaviours could agree to raise an exception if
and only if all of them are ready to do so. This is implied by requirement (R3)

and the need for compatibility with standard Lotos, in which the termination
of concurrent behaviours is always synchronous: all behaviours have to terminate
simultaneously by executing an “exit” statement, which corresponds to a rendez-
vous on the special gate “δ”.

• (R7) Conversely, it should also be possible not to synchronize exceptions in par-
allel composition, thus allowing the execution of a set of concurrent behaviours
to be aborted as soon as one of these behaviours raises an exception (which will
enable some continuing behaviour). The practical need for such asynchronous
termination has been already pointed out in [QA92].
Moreover, when considering constraint-oriented specification style [VSS88], one
can also imagine situations in which synchronized and non-synchronized excep-
tions are both necessary. For instance, let us consider the situation in which a
behaviour B is refined into two parallel sub-behaviours B1 and B2. Each sub-
behaviour Bi raises two exceptions: X and Xi. The exception X is synchronized:
B1 and B2 have to agree to raise X. On the other hand, exceptions X1 and
X2 are non-synchronized: they can be raised independently, they have different
handlers, and they disrupt the whole behaviour B. More generally, synchronized
exceptions correspond to an and -like composition, whereas non-synchronized ex-
ceptions correspond to an or -like composition; this presents strong similarities
with the way constraints are composed together in Lotos, with an obligation
to synchronize or to interleave on a given gate.

• (R8) We are convinced that exceptions should be the same concept as Lotos
gates. We therefore follow the same approach as in Esterel [Ber93], where ex-
ceptions are nothing but a special case of signals. In a first attempt to introduce
exceptions in Lotos [Que96, Annex F, part 2], we proposed to create two differ-
ent syntactic categories for gates and exceptions. This approach led to a number
of syntactic and semantic complications, among which: (1) the need for having a
new operator to raise exceptions; (2) the need for extending the general parallel
composition operator with a list of exceptions to be synchronized (in addition
to the list of gates to be synchronized that already exists in Lotos); (3) the
need for extending process definitions and process instantiations with a list of
exception parameters (in addition to the lists of gate parameters and value pa-
rameters); (4) the need for introducing a notion of “exception typing”, similar
but different from the notion of “gate typing” [Gar95]; (5) the need for having
two different kinds of transitions in the operational semantics (those labelled
with a gate and those labelled with an exception); (6) the problem of deciding
whether the “δ” gate used for sequential composition in Lotos should be rep-
resented as a gate or as an exception. Moreover, a syntactic separation between
gates and exceptions leads to a loss of expressiveness and convenience: for in-
stance, it prevents from executing an exception handler as soon as a given gate
occurs in a behaviour. Also, the specifier has to make an early design choice to
decide whether an action has to be implemented by a gate or by an exception.

2.3 Discussion of the proposal by Quemada and Azcorra

The solution proposed in [QA92] can be evaluated with respect to the requirements
listed in the previous section:

• It does not satisfy requirement (R8), because a distinction is made between
the concepts of gates and exceptions (which are called terminations in [QA92]).
Although gates and terminations are distinct, they can be combined together by
means of a product operator noted “G v1...vn ?X”, which expresses that a Lotos
action with gate G and value offers v1, ..., vn happens as the same time as a
termination X. This notion of simultaneous occurrence of gates and terminations
is meant to solve the intermediate state problem mentioned in [Bri88], but at
the price of introducing compound events, which require deep semantic changes.
As gate typing strongly reduces the need for other forms of compound events
[Gar95], it is not sure whether compound events are desirable for E-Lotos.

• It satisfies requirement (R3): a generalized enabling operator, noted
“B1 >X> B2” is introduced with the following meaning: B1 executes and, as
soon as it performs the termination X, it is aborted and the control is trans-
ferred to B2. This operator is an extension of the existing enabling operator “>>”
in Lotos.

• It satisfies requirement (R4), because “B1 >X> B2” declares a termination X
that is only visible in B1. If raised, this termination will be necessarily caught
and will not escape outside of its scope (i.e., B1).

• It satisfies requirement (R5): although a termination cannot carry data, the gate
to which it is combined (using the “?” operator) can carry value offers, which
gives more or less the expected effect.

• It satisfies requirements (R6) and (R7), as the parallel composition operator of
Lotos is extended with a list of terminations to be synchronized.

• It satisfies requirements (R1) and (R2), but with strong limitations due to the
fact that the generalized enabling “B1 >X> B2” is a binary operator handling
a single exception. This operator cannot handle multiple exceptions at the same
level, and therefore lacks compositionality.
For instance, let us consider a simple example in which a behaviour B can
raise two exceptions X1 and X2 having for respective exception handlers
B1 and B2. According to the proposal made in [QA92], there are two pos-
sible ways of specifying this situation, either “(B >X1> B1) >X2> B2” or
“(B >X2> B2) >X1> B1”. None of these solutions is satisfactory, because some
arbitrary nesting of the binary operators has to be fixed, which does not model
accurately the situation. The first solution declares X2 to be visible in B and
B1; the second solution declares X1 to be visible in B and B2. In both cases,
this is not the expected control flow, as X1 and X2 should only be visible in B.
In the Abracadabra protocol entity example, the same situation occurs with
the exceptions DiscAck and DiscPh raised by the ConnPhase and the DataPhase.
Although these exceptions are raised at the same level and should be handled at
the same level, the solution proposed by [QA92] establishes an artificial hierarchy

between them, by nesting the “>DiscPh>” operator inside the left-hand side of
the “>DiscAck>”.

3 INTRODUCING EXCEPTIONS IN LOTOS

3.1 Notations

The following notations hold for the remainder of the article.
G, G1, G2, ... denote observable gates (i.e., gates different from the invisible gate

“i”); we note “δ” the special gate generated by the “exit” operator of Lotos.
B, B1, B2, ... denote behaviour expressions.
S, S1, S2, ... denote sorts, i.e., data domains (also called types in this article).
V, V1, V2, ... denote variables.
~V , ~V1, ~V2, ... denote variable declarations, i.e., (possibly empty) lists of the form

“(V1 : S1, ..., Vn : Sn)”, where each variable Vi is declared to have the sort Si.
E, E1, E2, ... denote value expressions, i.e., algebraic terms that may contain vari-

ables.
e, e1, e2, ... denote ground terms of the initial algebra, i.e., canonical representa-

tives of the quotient algebra. Ground terms are a subset of value expressions: they
do not contain variables and play the role of “constant” value expressions.

~e, ~e1, ~e2, ... denotes ground term lists, i.e., (possibly empty) lists of the form
“(e1, ..., en)”.

“[~e/~V] B” denotes the behaviour expression B in which all variables of ~V are

replaced with the corresponding values of ~e (~V and ~e should have identical number
of elements and the types of their elements should be pairwise compatible).

3.2 Definition of the “trap” operator

To extend Lotos with an exception mechanism that satisfies requirements (R1)
to (R8), we introduce a new behaviour operator, whose syntax is the following:

trap

G1
~V1 -> B1

...

Gn
~Vn -> Bn

in

B
endtrap

In this operator, B correspond to the “normal” behaviour; G1, ..., Gn are gates
representing exceptions that can be raised from B; a list of formal parameters ~Vi

and an exception handler Bi is attached to each Gi. The fragment of text between
the “trap” and “in” keywords will be called the handling part. As regards static
semantics, we have the following rules:

• The occurrences of gate identifiers Gi in the handling part are definition-
occurrences∗. The gates Gi declared in the handling part are only visible in
B. These gates must be pairwise distinct and different from the invisible gate
“i”. One of the gates Gi can be equal to “δ” (in order to handle the successful
termination of Lotos). The gates Gi are typed according to the proposal for
gate typing [Gar95]: when a gate Gi is used in B, its list of offers should be

compatible, in number and types, with the list of variables ~Vi. To keep things
simple, the gate overloading feature [Gar95] is not allowed for gates declared in
the handling part of a “trap” operator.

• The occurrences of variable declarations ~Vi attached to gates Gi are definition-
occurrences: the variables declared in each ~Vi are only visible in the correspond-
ing behaviour expression Bi.

Many languages (e.g. Ada, Ml, Atp, Esterel) place the handling part after
the normal behaviour, because they lay the emphasis on the normal processing
rather than on the abnormal one. To ensure symmetry with the “let” and “hide”
operators of Lotos, we have chosen the opposite solution, because we want the
definitions of gates Gi to precede their uses in B.

Informally, the “trap” operator behaves like a “watchdog”. The “normal” be-
haviour B is executed. When B performs any action of the form “Gi ~e” (where gate
Gi is declared in the handling part), then B is aborted and the exception handler
Bi associated to Gi is executed, after values ~e have been assigned to the formal
parameters ~Vi of Gi.

Formally, the dynamic semantics of Lotos is given by means of a Labelled Tran-
sition System.. A transition is a triple (B1, L, B2), where B1 and B2 are behaviour
expressions and L is label of the form “G ~e”. We keep the same definition of label
equality as in Lotos: two labels are equal if they have the same gate G and carry
the same values ~e.

The transition relation for the “trap” operator is defined by the following rules:

B
G ~e
−→ B′ ∧ G 6∈ {G1, ..., Gn}

trap

G1
~V1 -> B1

...

Gn
~Vn -> Bn

in

B
endtrap

G ~e
−→

trap

G1
~V1 -> B1

...

Gn
~Vn -> Bn

in

B′

endtrap

∗also called binding occurrences in [ISO88]

B
Gi ~e
−→ B′ ∧ [~e/~Vi] Bi

L
−→ B′

i

trap

G1
~V1 -> B1

...

Gn
~Vn -> Bn

in

B
endtrap

L
−→ B′

i

[i ∈ {1, ..., n}]

The first rule defines the normal execution of B. The remaining rules (for i ∈
{1, ..., n}) describe exception handling (for a “trap” operator with gates G1, ..., Gn,
there are n such rules; the number of such rules for a given extended Lotos
description is always finite). The handling of an exception Gi involves an atomic
control passing, meaning that no transition labelled either by Gi or by the invisible
gate “i” is performed before the first transition L of the exception handler Bi is
executed.

3.3 An application example

Using the proposed “trap” operator, we can describe the Abracadabra example
mentioned in Section 2 (the “...” notation is used as a shorthand for the other gate
parameters (not related with exceptions) and value parameters used in [QA92]):

process AbracadabraProtocolEntity [...] :=

trap

Init -> AbracadabraProtocolEntity [...]

in

trap

DiscPh -> DisconnectPhase [Init, ...] (...)

DiscAck -> DiscAcknowledge [Init, ...]

in

trap

DiscIn -> DiscIndication [DiscPh, ...]

in

trap

DataPh -> DataPhase [DiscIn, DiscPh, DiscAck, ...]

in

ConnPhase [Init, DataPh, DiscIn, DiscPh, DiscAck, ...]

endtrap

endtrap

endtrap

endtrap

endproc

4 ALGEBRAIC PROPERTIES OF THE “TRAP” OPERATOR

In this Section, we give some algebraic properties of the “trap” operator with
respect to the strong bisimulation equivalence [Par81] (which is noted “∼” below).
For concision, we note H the handling part of a “trap” operator and we omit the
“endtrap” keyword. The proofs are given in [GS96].
When adding the “trap” operator to Lotos, strong bisimulation remains a con-
gruence:

(B′ ∼ B′′) =⇒ (trap H in B ′) ∼ (trap H in B ′′) (1)

(B′

i ∼ B′′

i) =⇒ (trap ...Gi
~Vi -> B′

i... in B) ∼ (trap ...Gi
~Vi -> B′′

i ... in B) (2)

The “trap” operator distributes over non-deterministic choice:

(trap H in (B1 [] B2)) ∼ (trap H in B1) [] (trap H in B2) (3)

Under certain conditions, the “trap” operator commutes with action-prefix:

(∀i G 6= Gi) =⇒ (trap ...Gi
~Vi -> Bi... in (G ~e ; B)) ∼ (G ~e ; trap ...Gi

~Vi -> Bi... in B)(4)

(∃i G = Gi) =⇒ (trap ...Gi
~Vi -> Bi... in (G ~e ; B)) ∼ ([~e/~Vi] Bi) (5)

The following laws allow simplifications for “stop”:

(trap H in stop) ∼ stop (6)

(G 6= δ) =⇒ (trap (G ~V -> stop) H in B) ∼ (trap H in (B |[G]| F(B))) (7)

where F(B) denotes a behaviour expression compatible with the functionality
of B [ISO88, § 7.3.2.4], i.e., either “stop” if B has functionality “noexit” or
“exit (any S1, ..., any Sn)” if B has functionality “exit (S1, ..., Sn)”.

5 OPERATORS DERIVED FROM THE “TRAP” OPERATOR

This section explains how the proposed “trap” operator allows to express several
existing Lotos operators as derived cases (shorthand notations) and to introduce
new operators of practical interest (including the generalized enabling defined in
[QA92]). The detailed proofs that the existing Lotos operators are equivalent to
their proposed translation in terms of “trap” can be found in [GS96].

5.1 Enabling operator

The “>>” operator of Lotos has the following equivalent translation:

B1 >> [accept ~V in] B2 ∼

trap

δ ~V -> i ; B2

in

B1

endtrap

In Lotos, the “>>” operator is a primitive one, since it cannot be exactly ex-
pressed using parallel composition and hiding. The reason for this is the problem
to give different names to the δ gate in case of nested “>>” operators (see [Gar89,
chapter 2] for a discussion). Introducing the “trap” operator solves this problem
elegantly: it is not necessary to hide “δ”, because no δ-action can be observed from
the outside, due to the fact that exception handling is atomic.

5.2 Disabling operator

The “[>” operator of Lotos has the following equivalent translation:

B1 [> B2 ∼

trap

ξ -> B2

in

B1 ||| (F(B1) [] ξ ; stop)
endtrap

where ξ is a special gate identifier (not used in B1). This definition deserves a few
comments:

• The gate ξ is not synchronized by the parallel operator and, therefore, can be
spontaneously triggered at any time; if so, the execution of B1 is aborted and
the control flow is transferred to B2. However, B1 can also execute normally;
if B1 reaches an “exit” statement (also proposed by the right operand of the
parallel process), then the δ gate is triggered and propagated outside, because
it is not caught by the “trap” operator.

• Omitting the “F(B1)” alternative on the right hand-side of the parallel oper-
ator would prevent B1 from terminating successfully, as the “δ” gate is always
synchronized in parallel composition.

• Of course, the very useful watchdog construct “(B1 [> B2) >> B3” can still
be obtained as a particular form of “trap”. But the “trap” operator allows
more general forms of watchdogs, in which several actions, leading to different
behaviours, can be used to terminate the normal behaviour (in Lotos, only the
“δ” action can be used).

5.3 Generalized enabling

The generalized enabling operator proposed in [QA92] can be derived from the
“trap” operator (we do not consider here the concept of compound events discussed
in Section 2.3):

B1 >X> B2 ∼ trap X -> B2 in B1 endtrap

The proposed “trap” operator is more expressive than the “>X>” proposed in
[QA92], since it allows multiple gates to be handled at the same level. For instance,
the problem mentioned in Section 2.3 can be solved by writing simply:

trap

X1 -> B1

X2 -> B2

in

B
endtrap

5.4 Another sequential composition operator

In addition to the definition of “>>” as a shorthand notation, we suggest to intro-
duce another sequential composition operator, noted “;”, inspired from the sequen-
tial composition of Acp [BK84]. A restricted form of this operator, without value
passing, can be defined as follows:

B1 ; B2 ∼def

trap

δ -> B2

in

B1

endtrap

This sequential operator is more primitive than the existing operator “>>” of
Lotos, since we have “B1 >> B2 ∼ B1 ; i ; B2”. Moreover, this new operator has
several nice properties: (a) it is associative, as a consequence of the fact that “trap”
removes gates when they are caught; (b) it admits “exit” for neutral element
(on its left-hand and right-hand sides), whereas the “>>” operator has no neutral
element; (c) it admits “stop” for absorbing element on its left-hand side; (d) it
implements a fully atomic and invisible sequential composition, on the opposite
of the “>>” operator, which generates an internal action “i” when continuation
passing occurs (this has the unpleasant effect of increasing the sizes of the labeled
transition systems generated from Lotos programs, thus contributing to state
explosion without any practical benefit from the specifier’s point of view).

An extended form of this operator can be defined, which enables B1 to pass a list
of values to B2 using the “exit” statement (this is similar to the “accept” clause
of the “>>” operator):

B1 ; accept ~V in B2 ∼def

trap

δ ~V -> B2

in

B1

endtrap

5.5 Choice operator

The “[]” operator of Lotos has the following equivalent translation:

B1 [] B2 ∼

trap

G1 -> B1

G2 -> B2

in

(G1 ; stop ||| G2 ; stop)
endtrap

where G1 and G2 are two new gate identifiers not used in B1 or B2. Intuitively,
this translation can be justified as follows: according to the semantics of the inter-
leaving operator “|||”, one gate Gi is triggered non-deterministically and caught
by the “trap” operator, which aborts the parallel composition and enables the
execution of the corresponding exception handler Bi.

5.6 Choice-over-values operator

The “choice” operator of Lotos has the following equivalent translation:

choice V1 : S1, ..., Vn : Sn [] B0 ∼

trap

G (V1 : S1, ..., Vn : Sn) -> B0

in

G ?V ′

1 : S1 ... ?V ′

n : Sn ; stop

endtrap

where G is a new gate identifier not used in B0. Intuitively, this translation relies
on the semantics of the Lotos clause “?V : S”, which performs a non-deterministic
selection of a value in the domain of sort S and assigns this value to the variable
V . The resulting behaviour is B0 in which variables V1, ..., Vn are bound to non-
deterministically generated values.

5.7 Iteration operator

Many reactive systems exhibit cyclical behaviours that, in most computer lan-
guages, can be described using either iteration or recursion. In Lotos, however,
only recursion is available: all cyclical behaviours have to be described using re-
cursive processes. We therefore propose to introduce a “functional” iterator in
E-Lotos, which is merely a shorthand notation, defined using an auxiliary recur-
sive process, together with the “trap” operator.

We note “θ” a special gate identifier, which (informally) expresses a branch to

the loop entry. We then introduce two new operators, “continue” and “loop”
defined as follows (square brackets “[...]” denote optional elements):

continue [(E1, ..., En)] ∼def θ [!E1 ... !En] ; stop

and:

loop [V1 : S1 := E1, ..., Vn : Sn := En in]
B0

endloop

 ∼def P [G] [(E1, ..., En)]

where G denotes the set of gates visible in the behaviour expression B0 and where
P is a new process identifier whose definition is:

process P [G] [(V1 : S1, ..., Vn : Sn)]
trap

θ [(V ′

1 : S1, ..., V
′

n : Sn)] -> P [G] [(V ′

1 , ..., V ′

n)]
in

B0

endtrap

endproc

The “loop” operator is used to repeat infinitely a given behaviour B0. Optionally,
it allows values to be computed in the loop and passed from one iteration to the next
one. These values are stored in variables V1, ..., Vn whose initial values are E1, ..., En

respectively. In the loop body B0, the occurrence of a “continue [(E1, ..., En)]”
operator has the effect of assigning the values of E1, ..., En to V1, ..., Vn respectively,

and to start a new iteration† by triggering the θ gate. Finally, the “exit” operator
of Lotos can be used to go out of the loop (it triggers the “δ” gate, which is not
caught by the “trap” operator).

For instance, the following behaviour reads a stream of values on its INPUT gate
until the sum of these values exceeds 1000 (in which case, it returns the number of
values which have been read):

loop COUNT:NAT := 0, SUM:REAL := 0 in

INPUT ?Xi:REAL;

if (SUM + Xi > 1000) then

exit (COUNT + 1)

else

continue (COUNT + 1, SUM + Xi)

endloop

†This operator has the same effect as the “continue” instruction of the C language (value as-
signment excepted)

6 CONCLUSION AND OPEN ISSUES

As pointed out in [QA92], the description of communication protocols and ser-
vices can be improved by the use of an exception mechanism. Although exceptions
are available in many computer languages, they do not exist in any of the three
standardized Formal Description Techniques (Estelle, Lotos, Sdl).

Our work builds upon a previous proposal for extending Lotos with a generalized
termination and enabling mechanism [QA92]. Noticing that this proposal was not
fully appropriate for a compositional description of multiple exceptions, we have
defined a different, simpler mechanism, consisting of a new “trap” operator, for
which we have given a syntax, a static semantics and a dynamic semantics. We
have shown that our proposal generalizes the previous one by [QA92] in several
ways, notably by allowing several exceptions to be handled at the same level.

We have proved that our proposal is a consistent extension of Lotos, so that
strong bisimulation remains a congruence after the “trap” is added to Lotos. We
have also studied some algebraical properties of the “trap” operator.

We have shown that the complexity added by the “trap” operator is greatly
compensated by simplifications, as several existing Lotos operators (“‘>>”, “[>”,
“[]”, “choice”) can be obtained as shorthand notations. Moreover, our proposal
allows to extend Lotos with a symmetric, atomic sequential composition operator
and a loop iterator, which are both missing in the language.

At this point, it seems that consensus exists in the E-Lotos Committee to
introduce such a “trap” operator into E-Lotos. However, a number of issues are
still open, which are currently under study:

• The E-Lotos Committee has decided to replace the Lotos abstract data types
with a functional data language (see [JGL+95] for a discussion about this topic).
This data language should include an exception handling mechanism similar at
the one of Ml. It is therefore desirable to design a common exception handling
for the behaviour part and the data part of E-Lotos, so that exceptions gener-
ated in the data part (during evaluation of expressions) can be handled in the
behaviour part.

• The E-Lotos Committee has decided to extend Lotos with the concept of
quantitative time (an example of such a proposal can be found in [LL93]). In this
article, we have based the definition of our “trap” operator upon the existing,
untimed Lotos semantics. Adapting the “trap” operator to a timed semantics
may require further work.
In addition to the known reasons for introducing time in Lotos, we foresee a
particular advantage in using a timed semantics. Because the proposal for the
“trap” operator given here remains into the asynchronous framework of Lotos,
it can only model may-interruptions, not must-interruptions [Ber93]. Using a
timed semantics would improve the expressiveness of our exception mechanism,
as the notion of urgent actions proposed in [LL93] allows must-interruptions
(this is already the case with Atp [NS94], where exceptions are modelled by
urgent actions).

• The E-Lotos Committee is also considering various proposals for a “suspend-

resume” operator, which would provide for interrupts with return. One may
wonder whether the “trap” operator, which models interrupt without return,
could not be merged with a “suspend-resume” operator. Another possible
approach would consist in defining a general coroutine mechanism, from which
the “trap” and “suspend-resume” operators could be derived as special cases.

ACKNOWLEDGEMENTS

The authors are grateful to Xavier Nicollin, Radu Mateescu, the four anonymous
referees, and all the members of the Iso/Iec Jtc1/Sc21/Wg7 E-Lotos Com-
mittee chaired by Juan Quemada, for their helpful comments and suggestions.

REFERENCES

[Ber93] Gérard Berry. Preemption and Concurrency. In Proceedings of FSTTCS 93,
volume 761 of Lecture Notes in Computer Science, pages 72–93. Springer Verlag,
1993.

[BK84] J. A. Bergstra and J. W. Klop. Process Algebra for Synchronous Commu-
nication. Information and Computation, 60:109–137, 1984.

[Bri88] Ed Brinksma. On the Design of Extended LOTOS, a Specification Language
for Open Distributed Systems. PhD thesis, University of Twente, November 1988.

[Gar89] Hubert Garavel. Compilation et vérification de programmes LOTOS. Thèse
de Doctorat, Université Joseph Fourier (Grenoble), November 1989.

[Gar95] Hubert Garavel. On the Introduction of Gate Typing in E-LOTOS. In Piotr
Dembinski and Marek Sredniawa, editors, Proceedings of the 15th IFIP Interna-
tional Workshop on Protocol Specification, Testing and Verification (Warsaw,
Poland). IFIP, Chapman & Hall, June 1995.

[GS96] Hubert Garavel and Mihaela Sighireanu. On the Introduction of Exceptions
in LOTOS. In Reinhard Gotzhein and Jan Bredereke, editors, Proceedings of the
Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, and Protocol Specification, Testing, and
Verification FORTE/PSTV’96 (Kaiserslautern, Germany), pages 469–484. IFIP,
Chapman & Hall, October 1996.

[ISO88] ISO/IEC. LOTOS — A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. International Standard 8807, Inter-
national Organization for Standardization — Information Processing Systems —
Open Systems Interconnection, Genève, September 1988.

[ISO91] ISO/IEC. Guidelines for the Application of Estelle, LOTOS and SDL.
Technical Report 10167, International Organization for Standardization — Open
Systems Interconnection, Genève, 1991.

[JGL+95] Alan Jeffrey, Hubert Garavel, Guy Leduc, Charles Pecheur, and Mihaela
Sighireanu. Towards a proposal for datatypes in E-LOTOS. Annex A of ISO/IEC
JTC1/SC21 N10108 Second Working Draft on Enhancements to LOTOS. Output

document of the edition meeting, Ottawa (Canada), July, 20–26, 1995, October
1995.

[LL93] Luc Léonard and Guy Leduc. An Enhanced Version of Timed LOTOS
and its Application to a Case Study. In Richard L. Tenney, Paul D. Amer,
and M. Umit Uyar, editors, Proceedings of the 6th International Conference on
Formal Description Techniques FORTE’93 (Boston, MA, USA), pages 483–498.
North-Holland, October 1993.

[NS94] Xavier Nicollin and Joseph Sifakis. The Algebra of Timed Processes ATP:
Theory and Application. Information and Computation, 114(1):131–178, 1994.

[Par81] David Park. Concurrency and Automata on Infinite Sequences. In Peter
Deussen, editor, Theoretical Computer Science, volume 104 of Lecture Notes in
Computer Science, pages 167–183. Springer Verlag, March 1981.

[QA92] J. Quemada and A. Azcorra. Structuring Protocols with Exception in a
LOTOS Extension. In Proceedings of the 12th IFIP International Workshop on
Protocol Specification, Testing and Verification (Orlando, Florida, USA). IFIP,
North-Holland, June 1992.

[Que96] Juan Quemada, editor. Revised Working Draft on Enhancements to LO-
TOS (V3). ISO/IEC JTC1/SC21/WG7 N1053 Project 1.21.20.2.3. Output doc-
ument of the Liège meeting, March 1996.

[Tur93] Kenneth J. Turner, editor. Using Formal Description Techniques – An
Introduction to ESTELLE, LOTOS, and SDL. John Wiley, 1993.

[VSS88] C. Vissers, G. Scollo, and M. van Sinderen. Architecture and Specifica-
tion Style in Formal Descriptions of Distributed Systems. In S. Aggarwal and
K. Sabnani, editors, Proceedings of the 8th International Workshop on Protocol
Specification, Testing and Verification (Atlantic City, NJ, USA), pages 189–204.
IFIP, North-Holland, 1988.

