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Abstract. We present an experiment which has demonstrated that meth-
ods and tools developed in the context of black box conformance testing
of communication protocols can be efficiently used for testing the cache
coherency protocol of a hardware multi-processor architecture. We have
used the automatic conformance tests generator TGv developed by IN-
RIA to generate abstract tests and we have developed a software in order
to make them executable in the real test environment of Bull.

The TGV approach has been considered by the hardware testing com-
munity as a serious alternative to usual random test generation. It over-
whelms the well known debugging and coverage problems linked to this
kind of technic.

1 Introduction

In this paper, we are concerned with the so called conformance testing which
consists in testing whether an implementation of a system behaves as described in
its specification. According to the domain, there exists different kinds of methods
and tools dedicated to conformance testing. In some cases, one can find some
similitude between these different methods. This is the case for hardware off-line
testing and communication protocol conformance testing in the experiment we
are describing in this paper.

On one side of this end-to-end experiment done in the context of the VASY
(Validation of Systems) action within the Dyade / Bull-Inria R&D Joint Venture,
there were engineers of Bull using their usual methodology to develop a multi-
processor architecture called in the following the Bull’'s CC_.NUMA machine.
In hardware design the description of the system is often based on hardware
description languages such as VHDL [1] or VERILOG [2]. This is due to the
ability of these languages to describe various levels including hardware-related
details such as register-transfer, gate and switch levels. In the case that one is
particularly interested with high-level functionalities, such as Cache Coherency
Protocols, these details may lead to over-specification. Even though, there are
different abstraction levels (VHDL behavioral style), abstract synchronization
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mechanisms such as rendez-vous are not easily available. Moreover, the tools ap-
plied on the specifications (for verification, test generation,...) may be unusable
since they are needlessly complex. Therefore, one may wonder whether the for-
mal specification languages and associated tools designed in another analogous
domain (like computer network area) could be better suitable for the descrip-
tion and test of high-level functionalities [3]. We have chosen the LOTOS language
for the formal specification of the BuLL’s CC_NUMA architecture because its
underlying semantics model is based on the rendez-vous synchronization mech-
anism which is well suited for the specification of hardware entities [4] such as
processors, memory controllers, bus arbiters, etc. The communications between
these components by sending electrical signals on conductors are easily described
by interactions between LOTOS processes. Another reason of this choice is that
LOTOS is a standard language well known in computer network community and
often used for the description of communication protocols.

On another side, the prototype TGV has been developed by Inria-Rennes to
generate test cases for communication protocols using the black box conformance
testing approach. The main purpose of TGV is to fit as well as possible the
industrial practice of test generation. Given a formal specification of the system
to be tested and a formal description of a test purpose (which represents an
abstract form of the property to be tested), TGV generates an abstract test
case. It is a direct acyclic graph in which each path represents a test sequence
with associated verdict which indicates whether the implementation under test
(IUT) conforms with the specification or not [5]. A test case generated by TGV is
interactive because each sequence is series of interactions between the tester and
the IUT. and an output of the tester depends on what it has previously observed
from the IUT. Notice that this is not the case in hardware testing which is rather
“batch”: after stimulating the IUT, one observes its reactions and analyzes them
afterwards. TGV has been experimented on the Drex military protocol [6] and
on the SSCOP protocol [7]. The comparison of the hand written test cases with
those automatically generated by TGV, has shown its interest and efficiency.

The deal in the experiment described in this paper consists in demonstrating
that the TGV tool which has been developed for conformance testing of com-
munication protocols can also be efficiently used to generate tests for hardware
architectures. In a first step of this experiment, we have proved that the testing
activity done by hand can be automatically done using TGV approach [9]. The
main contribution of the results presented in this paper lies in the fact that in this
second and final step of our experiment, we have also demonstrated that: “the
interactive nature of conformance testing with TGV is advantageous for hardware
testing, because it improves the quality of the tests and the test coverage”.

The following section describes the Bull’s CC_.NUMA machine, its architec-
ture, its cache coherency protocol, the test purposes and the hardware testing
methodology habitually used. In the third section, we present the approach used
to make possible the automatic generation of tests with TGv: formal specifica-
tion and verification of the CC_NUMA cache coherency protocol, formalization
of the test purposes. The tools developed in order to make executable the gen-
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erated tests in the real test environment of Bull are presented in section 4. This
is followed in section 5 by the description of the advantages brought by this ex-
periment to both of the two communities (network protocol conformance testing
and hardware testing) and a quantitative and qualitative analysis of the results.
The conclusion gives some ideas on current and future work.

2 The Bull’s CC_NUMA machine: architecture and
testing environment

2.1 The general architecture and the cache coherency protocol

The BuLr’s CC_NUMA architecture is a multiprocessor system based on a
Cache-Coherent Non Uniform Memory Architecture (CC-NUMA). It is derived
from Stanford’s DASH multiprocessor machine and consists of a scalable inter-
connection of up to 8 modules (see figure 1).
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Fig. 1. The BuLL’s CC_NUMA General Architecture

The memory is distributed among different modules. Each module contains a
set of up to 4 processors. The key feature of the BuLr’s CC_NUMA architecture
is its distributed directory based cache coherency protocol using a Presence Cache
and a Remote Cache in each module. The Presence Cache of a module is a
cached directory that maps all the blocks cached outside the module. The global
performance of the BuLL’s CC_NUMA architecture is improved through the
Remote Cache (RC) that locally stores the most recently used blocks retrieved
from remote memories. Remote memory block can be in one of the following
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status: uncached, shared, modified which correspond to the possible RC status:
(INV)alid, (SH)ared, (MOD)jified.

Thus, testing the Cache Coherency Protocol comes to verifying that the status
of the Presence Cache and Remote Cache are always correctly updated during
the execution of any transaction in the BuLL’s CC_NUMA architecture.

2.2 The test purposes

The experts of Bull including the designers of the BuLr’s CC_NUMA archi-
tecture who know its weak points have written a document called the “test
plan document”. It contains informal description (in the shape of tables with
comments) of the main test purposes to be applied to the BurLL’s CC_.NUMA
architecture. Seven Test Groups have been identified. In our experiment, we were
interested in two Test Groups (Group 3 and 4) concerning the test of the Cache
Coherency protocol. An example of test purpose describing an address colli-
sion situation is: “The Module#1 requests for a FLUSH transaction on the block
address A0. The block address A0 is in Module#0. Verify that the Module#0
accepts the incoming FLUSH transaction. The CPU#0 of Module#0 executes a
RWITM on the same address. Check the immediate address collision on block
AQ. Check also that the correct response is given by Module#0 and verify the
good completion of the FLUSH transaction.”

2.3 The current testing architecture

The testing environment of BuLL’s CC_NUMA architecture used in this ex-
periment is called SIM1 environment and is described in Figure 2. It consists
of 3 modules, connected on a Remote Interconnection Network. Each module is
composed by Processor Behavioral Models (MPB Bus Model), Memory Array
and Memory Controller, Arbiter and I/O Block, Coherency Controller, Remote
Cache Tag that contains the Tag of Remote Cache and the Presence Cache. The
simulation environment is composed of the description of the system (the 3 mod-
ules), the kernel event simulator (VSS kernel: VHDL Synopsys Simulator) and a
front end human interface (VHDL Debugger). The MPBgen application converts
the MPB input commands format (input files) into the expected intermediate
format (input tables) readable by the MPBs. The probe VHDL module is then
in charge of down-loading the desired (among the observed) output events; the
VSS writes them in a file (PROBE.OUT file).

From testing point of view, the system under test (called SUT on the figure 2)
is seen as a black box. Thus, testing in this environment consists in specifying
the input files and analyzing the probe output files.

The input files: There is one input file per MPB and an input file describes a
sequence of transactions to be executed by one CPU. The input files are currently
written by hand according to the informal test purposes specified in the test plan
document. The main difficulty in describing these files is the synchronization of
the CPUs. The synchronization of all the transactions which are to be executed
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Fig. 2. The usual SIM1 testing environment

by one CPU, is achieved by using a “barrier” (the SYNC_CYC transaction)
for any subsequent operation issued by the same CPU. In the situation where
transactions are executed by several CPUs, the way to achieve synchronization
between these CPUs consists in using an operation in which one specifies a
delay 0 after which each transaction (one input file to its corresponding CPU)
will be executed by turns on the bus. The main difficulty of this synchronization
mechanism is the estimation of § which is currently done empirically.

The probe output files: A probe output file is generated at each clock cycle if
significant events happen (see Figure 2). It contains for each module the sequence
of actions which has been effectively executed in the system together with the
Presence Cache and Remote Cache status. One line of this file describes one
action with a stamp corresponding to the starting time of its execution and has
the following form:

PROBE #0 ---> L_Bus 620 burst rwitm A0 Tag 00 addr=014000AA00
Pos_Ack Resp_Rerun at time 660 NS

This line means that the probe of Module#0 observes at time 660 NS a RWITM
transaction on the local bus 620.

2.4 The current testing methodology

Currently, the input tables are written “by hand” and the analysis of the output
file is also done “by hand” using some empirical rules. It consists in comparing
each line of the probe file with what was specified in the test purpose which is
informally described in the test plan document. The main problem here is the



VI

analysis task which is completely based on informal specifications and informal
notion of conformance. This implies the problem of the correctness of these tests,
and therefore the problem of the confidence to put in the associated verdicts.
The approach using TGV brings a solution to this problem since all the objects
(specification, test purposes,...) are formally specified.

3 Automatic tests generation with TGV

The prototype TGV we have developed in the Pampa team at Inria-Rennes in
collaboration with the Spectre team of the Verimag laboratory at Grenoble is
dedicated to automatic generation of conformance tests for protocols based on
their formal specification. Given a formal specification of the system to be tested
and a formal description of a test purpose (which represents an abstract form
of the property to be tested), TGV generates an abstract test case. It is a direct
acyclic graph in which each path represents a test sequence with associated
verdict which indicates whether the implementation under test (IUT) conforms
with the specification or not. Details on TGV algorithms can be found in [5-7].
We present here only the elements (described in Figure 3) which participate in
the generation of a test case for the BuLrL’s CC_NUMA architecture.

Formal specification
CC_NUMA_spec.lotos

caesar .adt

caesar -open ‘ TGV Libraries

FERMDET_OPEN: abstraction and
determinization

CC_NUMA _spec.c
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Fig. 3. TGV General Architecture using LOTOS entry

The first main entry of TGV is the formal specification of the system. The
CAESAR.ADT compiler of the CADP toolbox [8] is used to compile the data part
of the specification. The CAESAR compiler produces the C file corresponding to
the control part, including the functions (Init, Fireable, Compare,. . .) needed by
TGV to manipulate “on-the-fly” the state graph of the system (without gen-
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erating it) [5]. Then, the C compiler produces the corresponding object-file
(CC_NUMA _spec.o in Figure 3).

Depending on the properties to be tested, some observable interactions de-
scribed in the LOTOS specification can be judged not important for the testing
activity. Those interactions must be considered unobservable. This is done in
TGV by a hiding mechanism (CC_NUMA _spec.hide in Figure 3) which contains
all the interactions to be considered internal to the system. The semantics of
LOTOS (so do the CAESAR compiler) does not make distinction between input
and output because interactions between processes are synchronization events.
But, TGV needs to distinguish controllable events (from tester to implementa-
tion) from observable events (from implementation to tester) in the generated
test cases. We introduce in TGV a renaming mechanism to resolve this problem.

The other main entry of TGV is the formal test purpose from which we have
to generate a test case. It is formalized (see an example of formalization in
section 3.2) by an automaton in Aldebaran format. The libraries FERMDET_OPEN
and TGV_OPEN contain the functions which realize “on-the-fly” all the operations
(abstraction, reduction, determinization and test case synthesizing) leading to
the generation of the test case. This is a solution to the combinational explosion
problem which makes most of tools unable to generate test cases for complex
systems. Linking the object file together with the two libraries (FERMDET_OPEN
and TGV_OPEN), produces an executable (tgv_CC_NUMA in Figure 3).

Given a formal test purpose (txx_obj.aut) and the specialization files (de-
scribed with two files CC_NUMA _spec.rename and CC_NUMA _spec.hide) as pa-
rameters of this executable, TGV generates the corresponding test case in form of
a “decorated” DAG (Direct Acyclic Graph). Each path of this DAG represents
a test sequence.

3.1 Formal specification of the cache coherency protocol

The formal specification is composed of 3 modules and consists of about 2000
Lotos lines where one half describes the control part (13 processes) and the other
half defines the ADT (Abstract Data Types) part. As this formal specification
is considered by TGV as the reference model of the system, it has to be strictly
debugged and verified. This has been done with appropriate formal verification
techniques [8]. In the following, the 3 modules are called MO, M1 and M2. Each
module contains one processor called P0O. There are two block addresses in the
system called A0 and A1, and two data DO and D1. These blocks are physically
located in module M0. Two main reasons bring us to make some abstractions:

e The first reason is due to the size and the complexity of the BuULL’S
CC_NUMA architecture, with as direct consequence the state explosion problem
even though TGV works “on-the-fly”. Thus, some causally dependent operations
concerning the same transaction are collapsed. In a remote transfer for example,
an event from the sending agent is followed by an event for the receiving agent.
In order to reduce the complexity, these two transactions are collapsed in one
event and modeled in the Lotos specification by a gate.
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e The second reason is that in this work, we are interested in tests generation
for the Cache Coherency Protocol. So, we make abstractions needed to hide all
other operations which do not concern with this protocol. For example the local
response transaction always follows a local bus transaction in an atomic way
(although if the real system can do something else between this two actions).
These two transactions are collapsed in the Lotos specification, as well as all
events between bus operation and response.

Notice here that these abstractions do not change the semantics, since during
the execution we also do appropriate corresponding abstractions on the probe
output files (see later the TRANSLATOR application in section 4).

3.2 Formalization of the test purposes

In TGV, a test purpose describes an abstract view of the test case and it is
modeled by a labeled automaton in the Aldebaran syntax [8]. The format of a
transition is: (from_state, label, to_state). A label is a LOTOS gate followed by a
list of parameters. As an example, we give hereafter (see Figure 4) the automaton
which formalizes the informal test purpose described in section 2.2.

des (0,8,7)

(0,"?BUS_TRANS !M1 'FLUSH '!'AO 'PROCESSOR !FALSE",1)

(1,"*"’1)

(1,"BUS_TRANS !MO !'FLUSH 'AO !'RCC_INQ !FALSE",2)

(2,"?BUS_TRANS !MO 'RWITM '!'AO 'PROCESSOR !FALSE",3)

(3,"LMD_GET !MO !'0OUTQIO 'AO 'A0 !'RCC_INV !FLAG(FALSE, FALSE) !BCK_COLL",4)
(4,"LOC_RESP !MO !'ARESP_RETRY",5)

(5,"*",5)

(5,"PACKET_TRANSFER !MO !M1 !RESP_PACKET_TYPE !NIL_DATA !NETRESP_DONE
10UTQIO",6)

ACCEPT 6

Fig. 4. An example of formalized test purpose

As said before, TGV needs to distinguish between input and output actions
of the system. This is achieved simply by the first occurrence of “?” (for input)
or “I” (for output) in the label. One can easily recognize the transitions corre-
sponding to the actions described in the informal test purpose. For example, the
first transition indicates that the Module#1 requests for a FLUSH transaction
on the block address AO.

The statement ACCEPT 6 indicates to TGV that the state 6 is the acceptance
state of the test purpose. When the Module M0 sends a response (noted NE-
TRESP_DONE) to Module#1 which notifies the good completion of the trans-
action, TGV should consider that the test purpose is reached. This is mentioned
in the test purpose with the last transition. The label “*” stands for otherwise.
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With the transition (1,”*”,1), TGV takes other intermediate observations into
account until it observes the specified observations (from state 1).

We do not describe here the complete test purpose including the refusal state
which indicates to TGV to not consider the labels of transitions which lead to that
state while generating the test case. In our example, there are 36 transitions like
this which are repeated for all the 5 non-final states of the test purpose. This
can seem complicated but we have developed a software which automatically
generates these transitions.

3.3 Generated abstract test cases

We are not going to describe all the generated test case (it contains 20 transitions
and 20 states) starting from the formal test purpose described in section 3.2 cor-
responding to the informal one of section 2.2. Notice that most of the generated
test cases contain more than 400 states and transitions. Due to their complexity,
such test cases are difficult to obtain by hand even by experts. We give here and
comment some of the first significant lines of the test case:

des (0, 20, 20)

(0,"!BUS_TRANS !M1 !FLUSH !'AO !'PROCESSOR !FALSE",1)

(1,"RCT_GET 7M1 !QUTQIO 'AQ !'AQ !'RCC_INV !NO_COLL",2)

(2,"LOC_RESP ?M1 !'ARESP_NULL",3)

(3,"PACKET_TRANSFER 7M1 !MO !'FLUSH 'AO !'REQ_PACKET_TYPE !NIL_DATA

'NETRESP_NIL !0UTQIO !M1 !'QUTQIO !C0",4)

(4,"LMD_GET ?MO !INQIO 'AO !'AO0 !'RCC_INV !FLAG(FALSE, FALSE) !NO_COLL",5)

(5,"BUS_TRANS ?MO !FLUSH 'A0 !'RCC_INQ !'FALSE",6)

(6,"LOC_RESP ?MO !ARESP_RETRY",7)

(7,"!'BUS_TRANS !MO !'RWITM !'AQ !'PROCESSOR !FALSE",8)

(8,"LMD_GET ?MO !OUTQIO '!'AO !'AO !'RCC_INV !'FLAG(FALSE, FALSE) !BCK_COLL",9)

(9,"LOC_RESP ?MO !ARESP_RETRY",10)

(10,"BUS_TRANS ?MO !'FLUSH 'AO 'RCC_INQ !FALSE",11)

(11,"LOC_RESP ?MO !ARESP_NULL",12)

(12,"PACKET_TRANSFER 7MO !'M1 !'RESP_PACKET_TYPE !NIL_DATA !NETRESP_DONE
'0UTQIO, (PASS)",13)

In addition to other intermediate actions generated by TGV, one can recognize
the reverse form (output becomes input) of actions described in the formal test
purpose. Thus, the first transition is the first stimuli of the tester and consists of a
FLUSH transaction requested by module M1. This is expected to be a remote op-
eration as the target of this transaction is the address location AQ (local to MO).
The transition (5,”BUS_TRANS ?MO0 !FLUSH !A0 'RCC_INQ !FALSE” 6) indi-
cates that the FLUSH operation is correctly arrived on Module#0 and has been
run on local bus of Module#0. So, at that point every local operations of Mod-
ule#0 on the same address AQ (in the example: (7,”!BUS_TRANS IM(Q 'RWITM
A0 'PROCESSOR !FALSE”,8)) leads to a block collision: (8,”LMD_GET ?MO0
IOUTQIO 'A0 !A0 !RCCINV IFLAG (FALSE, FALSE) !BCK_COLL”,9). At
that point, in conformity with the specification, the local operation is retried



X

until the remote operation has completely accomplished: (9,”LOC_RESP ?M0
!ARESP RETRY”,10). The remote operation on module Module#0 ends with
a DONE remote response on remote link: (18,” PACKET_TRANSFER ?M0 M1
'RESP_PACKET_TYPE INIL_DATA INETRESP_DONE !OUTQIO0, (PASS)”,19).
The other transitions of this test case correspond to other orders of execution of
the operations previously described.

4 Making the generated test cases executable in the
SIM1 environment

An abstract test case generated by TGV is a direct acyclic graph in which each
branch describes a sequence of interactions between the tester and the system
under test. This way of generating test cases is suitable to network protocols
conformance testing where the testing activity is “interactive”. Even though
some tests would better be executed in an interactive way, we have seen (see
section 2.3) that the usual testing activity in SIM1 environment is rather off-line
(“batch”) as it consists in 3 independent steps: (a) stimulating the system, (b)
collecting all the observations, (c) analyzing and emitting a verdict.

Our first deal was to demonstrate that this usual manual testing approach can
be done automatically. So, we have implemented a batch testing environment for
the execution of interactive abstract tests. Figure 5 shows the overall structure
of the tester package we have developed. It consists of three applications called
EXCITATOR, TRANSLATOR and ANALYSOR. A complete example of how
these applications fit together to execute batch tests is described in [9]. Notice
that the main difference with the interactive approach described hereafter is
that in the batch approach, the launching by turns of the 3 applications (first
EXCITATOR, second TRANSLATOR and third ANALYSOR as indicated in
figure 5) is done by hand and once for each test case. Moreover some tests
(which needs interactivity) cannot be efficiently executed. After this, we have
proposed and implemented also an interactive testing environment in order to
keep the gain brought by the interactive nature of the tests generated by TGV.

4.1 The interactive version of the tester package: an example

Let us now consider the informal test purpose corresponding to an address col-
lision situation described in section 2.2. In this case, the test case is clearly
interactive because after the FLUSH transaction (requested by Module#1), the
RWITM operation (requested by Module#t0) can be initiated only after the ob-
servation of the FLUSH operation on the local bus of Module#0, which means
that the operation is accepted by the Presence Cache of Module#0.

We are not going to describe all the steps of the interactive execution of this
test case. The most important point here is to show through some significant
steps how the 3 applications (EXCITATOR, TRANSLATOR and ANALYSOR)
fit together for interactive testing.
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Fig. 5. The BuLL’s CC_NUMA SIM1 testing environment using TGV tests

Both EXCITATOR and TRANSLATOR take into account some Implemen-
tation eXtra Informations for Testing (called IXIT_FILE X in Figure 5). These
informations describe the mapping between the abstract data values of the for-
mal specification and the real data values of the system under test.

The EXCITATOR application deals with the conversion of stimuli included
in the test case (called TEST_CASE X.AUT in Figure 5) described in the Alde-
baran format of TGV into a format readable by the MPBs. Once the conversion
is done, the EXCITATOR proceeds to the stimulation of the MPBs. At the ini-
tial clock cycle of the simulation, EXCITATOR is invoked to extract the first
stimulus from the test case (the FLUSH requested by Module#0) and proceeds
to the stimulation of the MPBs. Then, the VSS kernel generates the probe out-
put line given below (called PROBE_OUT_X in Figure 5). This line describes
the requested transaction effectively observed from the system under test.

*%kkk*k Launching the simulation:
# run 10000
**¥kxx first excitator action: START!!
* ok ok ok ok ok Kk K K K Kk ok % k k k k k k k Kk Kk Kk ¥k ¥ ¥ * * * * *k *
* MPB/620 Bus, Behavioral Model PseudoCompiler *
* Jan 29, 1998 *
* ok ok ok ok ok Kk K K Kk Kk ok k% k k k k k k k Kk Kk Kk ¥ ¥ ¥ * * * * *k *
End of run
command detected MPB num.: 8 command : word(h0000, [] ,z000FFC020000
000000000001000000000000000000000000, [1) .
PROBE # 1 ---> L_Bus 620 16 byte flush A0 Tag 00 addr=0000000000
Pos_Ack Resp_Null at time 580 NS
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The TRANSLATOR application is then in charge of translating the probe
outputs into a trace in the specification model. This translation is necessary
to make possible the analysis of the observation according to what has been
foreseen in the specification. At the next clock cycle, TRANSLATOR converts
the probe output line into the Aldebaran format using appropriate abstractions
corresponding to those done in the formal specification (see section 3.1). The
result is submitted to the ANALYSOR application.

The obtained trace is analyzed by ANALYSOR according to the test case
(called TEST_CASE_X.AUT) generated by TGV (see Section 3.3). Hereafter is
the output of the ANALYSOR which describes the part of the test case which
has been traversed.

—————————————————— ANALYSER phase...

TC traversed part...

(0," BUS_TRANS !M1 !FLUSH !'AO !'PROCESSOR !FALSE",2)
(2,"LOC_RESP !M1 !'ARESP_NULL",3)

done

The probe output file generated at each next clock cycle, is converted and
analyzed until one of the following conditions handles in the test case traversed
synchronously by ANALYSOR:

— a verdict is found (an end of the test case is reached): it is then emitted,
the following probe lines generated by the VSS kernel are ignored, and the
simulation is interrupted,

— another stimulus is found: the EXCITATOR is then invoked to submit it to
the VSS kernel, and a new turn of test cycle begins (simulation continues),

— no corresponding transition is found: a verdict FAIL is emitted indicating
that the implementation doesn’t conform to the specification (w.r.t. to the
corresponding test purpose).

Let us jump now to the step of the simulation where the second stimulus
(RWITM) is detected by the EXCITATOR. The collision in the home module
(Module#0) is effectively obtained:

—————————————————— EXCITATOR ACTION..
-- Input file for Proc. O
RWITM WT ADDR=0000000000 TARGET=0
command detected MPB num.: 0 command : word(h0000, [] ,z000FFC360000000
000000001000000000000000000000000, [1) .
RCC # 0 ---> out_qg_behavior.vhd: L_Respout_Retry for Collision detected
dbg_info= 000 at time 2240 NS
RCC # 0 -———> out_q_entry.vhd: freeing QUT_Q # 02
dbg_info= 000 at time 2260 NS
PROBE # 0 ---> BLINK SID=2 fm 0000 to part 0010 R_tag=05 R_Done
at time 2300 NS
PROBE # 0 ---> L_Bus 620 burst rwitm 80 Tag 00 addr=0000000000
Pos_Ack Resp_Retry at time 2320 NS
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At the last analysis phase, a PASS verdict is detected by the ANALYSOR
(see below). This verdict states that the behavior of the IUT is conform to
the specification w.r.t the test purpose. It means that the FLUSH operation
terminates correctly, passing all the check-points despite the colliding RWITM
transaction.

—————————————————— ANALYSER phase...

TC traversed part...

(9,"PACKET_TRANSFER !MO !M1 !'RESP_PACKET_TYPE !NIL_DATA !NETRESP_DONE
!0UTQIO, (PASS)",1)

=>IUT(0) ,TC(9) : ****x PASS ...

skkckiokkkkkx End of Test Case sskkskkskikkiokkksk

The main difference with the batch testing is that all this steps are chained
up automatically using the clock cycles and as many times as possible until the
end of the test case. This allows the execution of tests in which more than one
stimulus are necessary and the next stimulus depends on the reactions of the
system observed after the previous stimulus, as the case with tests generated by
TGV. By the way, this approach also increases the test coverage.

5 Results of the experiment and analysis

Through the different steps of this experiment described in the following, we
indicate how we have resolved the different problems encountered, how much
does it cost, what are its significant results, etc.

Formal specification The first work was to obtain a formal specification of the
Bull’s cC_NUMA architecture as suitable as possible for describing hardware
and for test generation using TGV. The justifications of the choice of LOTOS
language are given in section 3.1. In fact, good abstractions were also done
in order to avoid needless complicated aspects of system in the specification
(see section 3.1). As this specification is considered as a reference by TGV, it
was important to guarantee that it is error-free. This work was done by Bull
and took about 8 manxmonths to have the first version. Modifications were
done until the end of the experiment. Starting from the formal specification
used for verification it took 1 manxmonth to adapt it for test generation
purpose. By the way, notice that some bugs have been detected during this
formal specification.

Improvements of TGV The first version of TGV (before this experimenta-
tion) accepts only specifications in SDL or Aldebaran language. Because LO-
TOS language have been chosen for the specification, we were obliged to make
TGV taking into account specifications described in this language. Different
problems and corresponding solutions developed are explained in section 3.
Other improvements of TGV dedicated to refine the generated test cases were
needed and implemented during the experiment such as:

— the introduction of refusal states in the test purposes which reduce the
part of the specification traversed,
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— the generation of loops in the test cases (this was not the case before
this experiment) leading to fewer Inconclusive verdicts; this allows the
test of more functionalities.

These works were done by Inria-Rennes and costs about 8 manxmonths.
The main benefit is that this experiment is the first one showing the interest
of the on-the-fly generation available in TGV. In fact, it was impossible to
obtain the state graph of the Bull’s cC_NUMA specification. So, the only way
to obtain tests is to work on-the-fly.

Abstract test cases generation We have formally specified all the test pur-
poses described in the Test Groups 3 and 4 (see section 2.2) including
those requiring an interactive behavior of the system. This work costs about
15 manxdays. For each test purpose, we have generated the corresponding
abstract test case using TGV. He who can do more can do less, we have also
generated test cases for some basic operations. A total of 75 tests have been
generated and cost 1 manxmonth. The main problem here concerns with
the time cost of the test generation with TGV: from less than 1 second for
some test to about 12 hours for others. This is due to the complexity of the
Burr’s CC_NUMA architecture specification which required us sometimes
to refine the test purposes in order to speed up the test generation with TGv.

Developing the tester package The main difficulty in executing the test cases
was in the fact that the format of the test cases is different from the probe
output format. It costs about 5 manxmonths to Inria-Rennes to develop the
tester package which brings solution to this problem.

Since the applications which constitute this tester package are generic and
automatically produced using classical compiler generators, they can be
reused to test other systems without major effort.

Using the tester package All the test cases generated by TGV have been ex-
ecuted in the testing SIM1 environment using the tester package. For each
test case and the corresponding probe output file, no sensible overhead is
charged to the simulation time due to the presence of the tester package.
An estimation of maximal time spent to execute all the 75 tests is less than
20 hours (1 day full time basis) corresponding to 1000 cycles per test, 0.6
second per cycle, 5 minutes for environment loading.

Results and analysis The main benefit in using the TGV approach is that we
only have to formally specify the system to test and the test purposes, then
all the testing activity would be completely automated. The time spent in
specifying the BuLr’s CC_NUMA architecture, formalizing test purposes
and generating the test cases with TGV is completely paid by the better
correctness and the confidence to put in the implementation. This approach
permitted to detect 5 bugs concerning principally the address collision, and
problems of test coverage (some situations were not tested): the update of
the Presence Cache and Remote Cache directory sometimes are not done in
the same order as described in the specification.
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6 Conclusion

In this paper, we have presented an end-to-end industrial experiment which
demonstrates that the prototype TGV which was developed for conformance
testing of communication protocols can also be efficiently used to test hardware
architectures. In fact and this is the main result of this experiment, the approach
have permitted to improve the quality of the tests and the test coverage: we have
detected bugs which were not detected manually by experts of hardware testing,
using interactive approach. It brings also some significant improvements in both
of the conformance test generation with TGV at Inria-Rennes and off-line testing
in hardware at Bull: this approach will be used for another architecture under
construction at Bull.

Now, we are on the way to improve again our test coverage using more general
test purposes and living TGV to decide the actions to do on the system to cover
a particular situation.
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