
Compositional Verification using SVL Scripts

Frédéric Lang

Inria Rhône-Alpes - Vasy

655, avenue de l’Europe - F-38330 Montbonnot, France
Frederic.Lang@inria.fr

1 Introduction

User-friendliness of complex software has traditionally been enhanced in two
complementary ways: graphical user interfaces and scripting languages. The
Cadp toolbox1 [3, 5] is a complex software suite integrating numerous verifi-
cation tools. Since 1995, it has been equipped with Eucalyptus, a graphical
user interface. However, a dedicated scripting language to automate repetitive
verification tasks was still lacking, resulting in ad hoc shell scripts and Make-

files used for this purpose. The main problem was that they were usually too
verbose and lacked built-in features to support model-based verification. This has
motivated the definition and implementation of the scripting language Svl2 [4].

An Svl script is a sequence of statements, which describe verification oper-
ations (such as comparison modulo various equivalence relations, deadlock and
livelock detection, verification of temporal logic formulas, etc.) performed on be-

haviors. Basic behaviors are either Labeled Transition Systems (Ltss) described
in a number of formats, networks of communicating Ltss, Lotos descriptions,
or particular processes in Lotos descriptions. Behaviors can be combined us-
ing operations such as parallel composition, label hiding, label renaming, Lts

generation, minimization, and abstraction w.r.t. an interface. Svl has also meta-

operations implementing higher-order strategies for compositional verification.
To execute Svl scripts, a compiler (7, 000 lines) has been developed. As

depicted in Figure 1, it translates an Svl script into an executable Bourne
shell script, which is run to perform the requested operations by calling either
the Cadp or the Fc2 [1] tools (e.g., Aldébaran, Bcg Min, or Fc2Min for
minimization). Svl is particularly useful in compositional verification, which we
illustrate in this paper with two unpublished examples.

2 Basic Compositional Verification

Compositional verification intends to avoid state explosion by using divide-and-
conquer techniques. When verifying a network of concurrent processes, it con-
sists in replacing each process by an abstraction (e.g., a minimization modulo
an appropriate equivalence relation) simpler than the original process but still
preserving the properties to be verified on the whole system.
1

Cadp web site: “http://www.inrialpes.fr/vasy/cadp”.
2

Svl on-line user-manual: “http://www.inrialpes.fr/vasy/cadp/man/svl.html”.

messages

SVL Compiler

Input Files

SVL Script Bourne Shell
Script Shell Interpreter

Output Files

Verification log

Error/warning

Fig. 1. The Svl tool

G0
BR

CMM1

CMM2

MS1

MS2

DCM1

DCM2

G1

G2

G3

G4

Fig. 2. Architecture of the HAVi Protocol

We illustrate compositional verification with a case study [8] concerning the
leader election protocol used in the HAVi standard for home audio/video net-
works. Figure 2 depicts this protocol modelled in file “HAVi.lotos” as a network
of seven concurrent processes (BR, DCM1, etc.) communicating on gates G0 to G4.
Due to its complexity, the state space cannot be generated directly, but can
be generated compositionally using the following Svl script, which replaces the
85-line Makefile developed by Judi Romijn for the same task:

% DEFAULT_LOTOS_FILE="HAVi.lotos"

"HAVi.exp" = leaf strong reduction of (* 1 *)

(BR |[G0, G4]|

((DCM1 ||| DCM2)

|[G1, G2, G3, G4]|

((CMM1 |[G0]| CMM2) |[G0, G4]| (MS1 |[G0]| MS2))));

"HAVi.bcg" = strong reduction of "HAVi.exp"; (* 2 *)

In step (1), the Ltss of the seven processes are generated and minimized
for strong bisimulation (as specified by the “leaf reduction” meta-operation),
then composed in parallel to form a network of Ltss named “HAVi.exp”. In
step (2), the Lts corresponding to “HAVi.exp” is generated, minimized for strong
bisimulation, and stored in file “HAVi.bcg” (5, 107 states and 18, 725 transitions).
The verification takes 5 minutes on a standard 450 MHz Linux PC.

R31

T

R2

R1 R3

GET, CRASHGET, CRASH GET, CRASH

RT_1 RT_2 RT_3

R13

R32R21

R12 R23

Fig. 3. Architecture of the rel/REL Protocol

3 Refined Compositional Verification

The basic compositional verification approach presented in Section 2 may fail
because generating the Lts of each process separately may lead to state explo-
sion, whereas the generation of the whole system of concurrent processes might
succeed if processes constrain each other when composed in parallel [6, 7]. To
overcome this problem, processes may be restricted w.r.t. so-called interfaces

expressing the behavioral restrictions imposed on each process by synchroniza-
tion with its neighbor processes.

Technically, an expression written “B -|[GL]| I”, where I is the interface
(an Lts), B the behaviour to restrict, and GL a set of gates named synchro-

nization set, denotes the biggest sub-Lts of B of which states and transitions
can be reached following observable execution sequences of I , where actions on
gates in GL only are considered observable. “B -|| I” is a shorthand notation
for “B -|[GL]| I”, where GL is the set of gates occurring in I . Interfaces can
be given by the user (in which case their correctness must be checked) or gen-
erated automatically. The “?” symbol, possibly placed before the interface (see
below), indicates that correctness of the interface w.r.t. the environment must
be checked during state space construction.

To illustrate how Svl supports refined compositional verification, we use
the reliable atomic multicast protocol [2] example presented in [7]3. Figure 3
describes a protocol configuration consisting of one transmitter (process T) and
three receivers (processes R1, R2, R3). This protocol can be represented by the
following Lotos and Svl like parallel composition expression:

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in

3
Svl supersedes the Des2aut tool described in [7]; see [4] for a comparison.

((R1 |[R12, R21, R13, R31]| (R2 |[R23, R32]| R3))

|[R_T1, R_T2, R_T3]| T)

Direct generation of this behaviour would lead to state explosion. Instead,
user-given interfaces “r1.lotos”, “r2.lotos”, and “r3.lotos” are used to re-
strict each receiver, and T is also used as an interface to restrict intermediate
compositions. Verification is specified using the following Svl script :

% DEFAULT_LOTOS_FILE="rel_rel.lotos"

"T.bcg" = strong reduction of T; (* 1 *)

"rel_rel.exp" = leaf strong reduction of (* 2 *)

hide R_T1, R_T2, R_T3, R12, R13, R21, R23, R31, R32 in

((((R1 -||? "r1.lotos")

|[R12, R21, R13, R31]|

(((R2 -||? "r2.lotos") |[R23, R32]| (R3 -||? "r3.lotos"))

-|[R_T2, R_T3]| "T.bcg"))

-|[R_T1, R_T2, R_T3]| "T.bcg")

|[R_T1, R_T2, R_T3]| "T.bcg");

"rel_rel.bcg" = strong reduction of "rel_rel.exp" (* 3 *)

In step (1), process T of “rel rel.lotos” is generated and minimized for
strong bisimulation. In step (2), for each Ri an Lts is generated using the pro-

jector tool of [7], by taking into account the restrictions specified by the cor-
responding “ri.lotos” interface. The resulting three Ltss are then minimized
for strong bisimulation, composed in parallel (following the restrictions speci-
fied by T), and finally minimized for strong bisimulation. This produces an Lts

which is composed in parallel with T to form (after hiding internal gates) a net-
work of Ltss named “rel rel.exp”. Note that since R T1 does not occur in R2

and R3, it obviously does not appear in the synchronization set of the restric-
tion w.r.t. T of the R2 and R3 composition. In step (3), the Lts corresponding
to “rel rel.exp” is generated and minimized for strong bisimulation. During
the state space construction, the correctness of interfaces preceded by “?” is
checked automatically. The final Lts (150, 911 states and 1, 249, 375 transitions)
is obtained in 15 minutes on a 450 MHz Linux PC.

4 Other Forms of Scripted Verification

Besides compositional verification, Svl is also convenient to perform other forms
of verification (e.g., those based on bisimulations or temporal formulas) permit-
ted by the Cadp tools. For instance, the following script verifies that it is always
possible to perform the “S !1” action from any state of the Lts “f.bcg”. This
is checked by hiding all labels but “S !1”, then comparing modulo branching
equivalence the resulting Lts to another Lts with a single state and a single
looping transition labeled “S !1”, contained in file “r.bcg”.

"d.seq" = branching comparison

(total hide all but "S !1" in "f.bcg") == "r.bcg";

By combining Svl with Bourne shell features, it is also possible to introduce
parameterization in verification scenarios. The following script uses a “for” loop
to verify eight temporal logic properties (contained in files “prop1.mcl”, . . . ,
“prop8.mcl”) on the Lts “f.bcg”. Lines starting with “%” are meant to be
Bourne shell. Other shell control structures (“if...fi”, “case...esac”, func-
tion definitions, etc.) can be used similarly.

% for N in 1 2 3 4 5 6 7 8; do

verify "prop$N.mcl" in "f.bcg";

% done

5 Conclusion

Scripting languages will certainly play a growing role in advanced verification
tool sets. The Svl scripting language added recently to Cadp makes composi-
tional verification simpler than ever by interconnecting many verification tools
and file formats transparently. Although very recent, Svl is already used in both
academic and industrial projects, e.g., at the University of Twente (The Nether-
lands) and Ericsson (Sweden). Practical experiments (19 out of the 29 Cadp

demos have been rewritten in Svl) indicate that Svl leads to more readable,
shorter, and safer scripts than equivalent Makefiles and shell scripts.

References

1. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset
for the Verification of Concurrent Systems. In CAV’96, LNCS vol. 1102.

2. S. Bainbridge and L. Mounier. Specification and Verification of a Reliable Multicast
Protocol. Technical Report HPL-91-163, HP Labs, Bristol, 1991.

3. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP (CÆSAR/ALDEBARAN Development Package): A Protocol Validation
and Verification Toolbox. In CAV’96, LNCS vol. 1102.

4. H. Garavel and F. Lang. SVL: a Scripting Language for Compositional Verification.
In FORTE’01 (Kluwer) and INRIA Research Report RR-4223.

5. H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. INRIA Technical
Report RT-0254, 2001.

6. S. Graf and B. Steffen. Compositional Minimization of Finite State Systems. In
CAV’90, LNCS vol. 531.

7. J.-P. Krimm and L. Mounier. Compositional State Space Generation from LOTOS
Programs. In TACAS’97, LNCS vol. 1217.

8. J. Romijn. Model Checking the HAVi Leader Election Protocol. Technical Report
SEN-R9915, CWI, Amsterdam, 1999.

