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ABSTRACT
On-the-fly verification of concurrent finite-state systems
consists in constructing and analysing their underlying state
spaces in a demand-driven way. This technique is able
to detect errors effectively in large systems; however, its
performance can still be increased by reducing the state
spaces incrementally in a way compatible with the verifica-
tion problem. In this paper, we propose algorithms for three
on-the-fly reductions of Labeled Transition Systems (Ltss),
which preserve weak equivalence relations: τ -compression
(collapsing of strongly connected components made of τ -
transitions), τ -closure (transitive reflexive closure over τ -
transitions), and τ -confluence (a form of partial order re-
duction). Each algorithm is described as a reductor mod-
ule taking as input the successor function of an Lts and
returning the successor function of the reduced Lts. The
three reductors were implemented within the Cadp toolbox
using the generic Open/Cæsar environment, which makes
them directly available for any on-the-fly verification tool
connected to Open/Cæsar and compatible with the under-
lying reduction. Our experiments show that these reductors
can improve significantly the performance of on-the-fly Lts
generation, model checking, and equivalence checking.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods, Model checking; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verifica-
tion

General Terms
Algorithms, Design, Verification

Keywords
bisimulation, equivalence checking, graph exploration, la-
beled transition system, model checking, mu-calculus, par-
tial order reduction
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1. INTRODUCTION
The verification of concurrent finite-state systems is con-

fronted in practice with the well-known state explosion prob-
lem (prohibitively large size of the underlying state spaces),
which occurs for systems containing many parallel processes
and complex data structures. The so-called on-the-fly ver-
ification technique attempts to combat state explosion by
constructing the state space in a demand-driven manner:
this allows to detect errors even when the state space of
the system is too large to fit entirely in a computer mem-
ory. However, the performance of on-the-fly verification can
be further improved by reducing the state space incremen-
tally, provided that the reduction is compatible with the
verification problem. A suitable notion of compatibility re-
lies upon the rich theory of behavioural equivalences defined
in the context of Labeled Transition Systems (Ltss): a re-
duction that preserves an equivalence relation between Ltss
also preserves the set of temporal logic properties adequate
w.r.t. that relation. In practice, a reduction preserving a
weak equivalence relation, such as branching [26], observa-
tional [19], τ∗.a [6], or safety [4] equivalence, is likely to
be effective for those Ltss containing many invisible transi-
tions (labeled by the action τ ), i.e., an important amount
of internal behaviour, which is abstracted away by a weak
equivalence.

In this paper, we consider three on-the-fly reductions com-
patible with weak equivalence relations on Ltss. The first
reduction, called τ -compression, consists in replacing each
strongly connected component containing only τ -transitions
(τ -Scc) by one of its states, considered as representative
for all the other states of the τ -Scc. It preserves branch-
ing equivalence and provides significant reductions for Ltss
containing cycles of τ -transitions, which may be caused ei-
ther by the cyclic interconnection of parallel processes (e.g.,
leader election protocols on ring networks), or by abstrac-
tion (hiding of actions in the Lts). The second reduction,
called τ -closure, consists in computing the transitive reflex-
ive closure over τ -transitions. It preserves τ∗.a equivalence
and can provide important reductions for Ltss containing a
high percentage of τ -transitions (e.g., when only a few ac-
tions are needed to be observable during verification). The
third reduction, called τ -confluence, consists in keeping only
the confluent τ -transitions (the execution of which does not
change the observable behaviour of the system) going out
of a state s, all the other transitions going out of s being
deleted [12]. This form of partial order reduction preserves
branching equivalence and can lead to significant reductions
for Ltss containing loosely-coupled parallel processes.



For each of these reductions, we propose an algorithm
working on-the-fly, i.e., using a forward traversal of the
Lts to compute the successors of a state modulo the cor-
responding reduction. Each algorithm was implemented as
a separate reductor module within the Cadp toolbox [9] us-
ing the generic Open/Cæsar environment [8] for on-the-fly
manipulation of Ltss. Therefore, each reductor module is
language-independent (it can be applied to every language
equipped with a compiler generating Ltss compliant with
the Open/Cæsar interface) and application-independent (it
can be inserted in front of every on-the-fly verification tool
compatible with the corresponding reduction). We applied
these reductors in conjunction with three on-the-fly veri-
fication tools of Cadp: the Lts builder Generator, the
model checker Evaluator [18], and the equivalence checker
Bisimulator [17, 2]. The experiments carried out on vari-
ous Ltss taken from the Cadp distribution have shown that
the reductors can enhance the capabilities of these verifica-
tion tools significantly.

Related work
The reduction of state spaces with the goal of improving
the performance of verification has been investigated in var-
ious contexts. Lts reductions driven by the properties be-
ing checked were proposed in [1], modulo specific equiva-
lence relations derived from the syntactic structure of prop-
erties; to facilitate the extraction of relevant information,
properties are formulated in a selective variant of the modal
µ-calculus, which makes explicit the set of Lts actions use-
ful for the verification of a property. The reductions we con-
sider in this paper are somewhat orthogonal to those pro-
posed in [1]: they preserve standard equivalence relations
between Ltss, and exploit the adequacy of certain classes
of temporal logic properties w.r.t. these equivalences (e.g.,
the adequacy of observational µ-calculus with observational
equivalence [22]). In this respect, our reductions are similar
in spirit with the partial order reductions used in [16], which
are compatible with observational equivalence and with a
class of action-based, linear-time properties.

The on-the-fly detection of τ -Sccs using Tarjan’s algo-
rithm [23] was successfully used for verification [17] and test
generation [14]. The algorithm we propose here for on-the-
fly τ -compression clearly separates the detection and col-
lapsing of τ -Sccs from the analysis tools further applied to
the Lts. The computation of transitive reflexive closure in
directed graphs is a long standing problem (see [13] for a
survey on algorithms based upon graph traversals). As re-
gards Ltss, the transitive reflexive closure over τ -transitions
(τ -closure) was mostly used for equivalence checking [6] and
test generation [14]. Existing algorithms for on-the-fly τ -
closure usually make a time/space tradeoff, by choosing (as
extreme cases) either to store all the information necessary
for retrieving in constant time the visible successors of a
state reached after τ -closure once the state was explored [15],
or to recompute this information every time a state is en-
countered (e.g., the Reductor tool of Cadp). Our on-the-
fly τ -closure algorithm makes a compromise between the
amount of information being stored and that being recom-
puted, and identifies certain equivalent states (with the same
visible transitions reached after τ -closure) in order to further
reduce the Lts.

Partial order reductions of state spaces have been thor-
oughly studied in the literature (see [10] for a survey) and

gave rise to efficient implementations [24, 21, 16]. How-
ever, most of the partial order reduction techniques rely
upon the structure of the states and/or the interconnec-
tion topology between processes in order to detect partic-
ular kinds of Lts transitions (independent, inert, etc.) [21];
therefore, the corresponding reduction algorithms, although
applicable to quite general classes of concurrent systems,
remain language-dependent. Since we aim at construct-
ing reductor modules which are language-independent, we
adopt here an approach based upon τ -confluence, a form of
partial order reduction preserving branching equivalence be-
tween Ltss [12]. The detection of τ -confluent transitions can
be done by examining only the transitions of the Lts, and
does not require any knowledge about the internal struc-
ture of states. The reduction proposed in [12], called τ -
prioritisation, consists in keeping, for each state, only one
of its outgoing τ -confluent transitions (if any), all the other
transitions, which can still be executed after the τ -confluent
one, being ignored. The resulting Lts can be further re-
duced by compressing the sequences of τ -confluent transi-
tions produced by τ -prioritisation [12]. The first algorithms
for on-the-fly τ -confluence reduction [3, 20] implemented τ -
prioritisation by computing Sccs of τ -confluent transitions
and by locally solving a boolean equation system, respec-
tively. The on-the-fly τ -closure algorithm we propose here
improves over [20] by combining τ -prioritisation and com-
pression of τ -confluent transition sequences.

Paper outline
Section 2 describes in detail the algorithms proposed for the
τ -compression, τ -closure, and τ -confluence reductors. Sec-
tion 3 illustrates experimentally the usefulness of these re-
ductors for increasing the performance of Lts generation,
model checking, and equivalence checking. Section 4 con-
cludes and indicates directions for future work.

2. ON-THE-FLY REDUCTIONS
The three reductions that we consider are defined on La-

beled Transition Systems (Ltss), which are natural models
for action-based specification languages, such as process al-
gebras. An Lts is a tuple M = (S, A, T, s0), where S is the
set of states, A is the set of actions (containing also the in-
visible action τ ), T ⊆ S × A × S is the transition relation,
and s0 ∈ S is the initial state. A transition (s1, a, s2) ∈ T

(also written s1

a
→ s2) indicates that the system can move

from state s1 to state s2 by performing action a. All states
in S are reachable from the initial state s0 via sequences of
transitions in T . In the sequel, we consider Ltss represented
implicitly, i.e., by their successor function, which gives for
each state s ∈ S the set of transitions s

a
→ s′ ∈ T going

out of s. This representation allows Ltss to be constructed
incrementally starting at their initial state, and therefore is
suitable for developing on-the-fly verification algorithms.

2.1 Tau-compression
The TauCompression algorithm (see Figure 1) that we

propose for implementing the τ -compression reductor takes
as input a state s of an Lts M = (S,A, T, s0) represented
implicitly and produces as output the set of transitions (rep-
resented as couples (a, s′)) going out of s after collapsing the
τ -Sccs immediately reachable from s. This reductor, which
preserves branching equivalence, uses a depth-first search
(Dfs) along the τ -transitions of T , performed recursively



starting at s. A detection of τ -Sccs is performed during the
Dfs traversal, following Tarjan’s algorithm [23]. For each
τ -Scc detected, its root state (the state that was visited
first among all states of the τ -Scc) is considered as repre-
sentative for all the states of the τ -Scc. To each state u
belonging to a τ -Scc is attached a pointer rep(u) towards
the representative w of the τ -Scc. All transitions going
out from states of the τ -Scc and leading to states of other
τ -Sccs are stored in a set trans(w).

1. V := ∅; stack := nil; c := 0;

2. function TauCompression (s : S) : 2A×S is
3. if s ∈ V then
4. return trans(rep(s))
5. else
6. n(s) := c; c := c + 1; low(s) := n(s);
7. V := V ∪ {s}; stack := push(s, stack);
8. r := ∅;
9. forall (s, a, s′) ∈ T do

10. if a 6= τ then
11. r := r ∪ {(a, s′)}
12. else
13. if s′ ∈ V then
14. if s′ ∈ stack then
15. low(s) := min(low(s), n(s′))
16. else
17. r := r ∪ {(a, rep(s′))}
18. endif
19. else
20. r′ := TauCompression (s′);
21. if s′ ∈ stack then
22. r := r ∪ r′

23. else
24. r := r ∪ {(a, rep(s′))}
25. endif;
26. low(s) := min(low(s), low(s′))
27. endif
28. endif
29. end;
30. if low(s) = n(s) then
31. while top(stack) 6= s do
32. rep(top(stack )) := s;
33. stack := pop(stack)
34. end;
35. rep(s) := s;
36. trans(s) := r

37. endif;
38. return r

39. endif
40. end

Figure 1: Algorithm for on-the-fly τ -compression

TauCompression proceeds as follows. The set V ⊆ S of
the visited states and the stack used for storing the states
contained in τ -Sccs are initially empty, and the counter
c used for numbering the states according to the order in
which they are visited by the Dfs is initially 0 (line 1). If the
state s has been already visited, then the set of transitions
associated to its representative state is returned as result

(lines 3–4); otherwise, the Dfs traversal of τ -transitions is
continued starting at s (lines 5–39). The Dfs number n(s) is
the current value of the counter c, which is incremented; the
lowlink number low(s), equal to the smallest Dfs number
among those associated to the states belonging to the cur-
rently explored τ -Scc [23] is initialized to n(s); the state s is
inserted in the set V and also at the top of the τ -Scc stack ;
and the set of transitions r that accumulates the result is
initialized to empty (lines 6–8).

Then, each transition s
a
→ s′ ∈ T is traversed: if the tran-

sition is visible, then it is added to the set r (lines 10–11);
otherwise, the successor state s′ is examined. If s′ has been
already visited, two situations are possible: either it belongs
to the τ -Scc of s (i.e., it is present on stack), in which case
the number low(s) is updated according to the value of n(s′);
or it belongs to another already explored τ -Scc, in which
case the pair (a, rep(s′)) is added to r, since the correspond-
ing transition leads to (the representative state of) another
τ -Scc (lines 13–18). If s′ is a newly encountered state, then
it is explored by a recursive call to TauCompression. Af-
terwards, if s′ belongs to the τ -Scc of s, then the set r′ of
its outgoing transitions is added to r, since these transitions
will be associated later to the root of the τ -Scc contain-
ing s and s′; otherwise, the pair (a, rep(s′)) is added to r
(lines 20–25). In both cases, the number low(s) is updated
according to the value of low(s′) to take into account the
other states identified as belonging to the τ -Scc of s during
the exploration of s′ (line 26).

After the exploration of the transitions going out of s is
finished, if s is identified as the root of a τ -Scc, i.e., if its
lowlink number is equal to its Dfs number, then all the
states of the current τ -Scc (which are placed above s on
stack) are scanned and their representative is set to s (lines
30–34). Additionally, the set r of the transitions going out
of all states of the current τ -Scc is associated to s (line 36).
Finally, the set r is returned as result (line 38).
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Figure 2: (a) An Lts and its τ -Sccs (grey boxes).
States are identified by their Dfs numbers and have
attached their lowlink numbers. Roots of τ -Sccs are
drawn as thick circles. (b) Reduced Lts obtained
after calling TauCompression on states s0 and s7.

Figure 2 shows the result of executing TauCompression
successively on two states of an Lts. Notice that the τ -
transition s8

τ
→ s4, which relates two states of different

τ -Sccs, is replaced (when s7 is popped from the τ -Scc

stack) by the transition s7

τ
→ s2 (stored in r as the pair

(τ, rep(s4)) when s8 was explored), which relates the roots
of those τ -Sccs.

Each call TauCompression (s) has a time and space com-



plexity linear in the size of the subgraph of τ -transitions
reachable from s, because it performs a single Dfs traver-
sal of this subgraph. Moreover, since each visited state u
is stored in V together with its representative rep(u), a se-
quence of calls to TauCompression — for instance, a call
on each state of the Lts — will have a cumulated complexity
linear in the Lts size (each transition will be traversed only
once). In practice, the insertion of a τ -compression reduc-
tor in front of an on-the-fly verification tool can significantly
increase performance (see Sections 3.1 and 3.2).

2.2 Tau-closure
The implementation of the τ -closure reductor requires

to compute the transitive reflexive closure over the τ -
transitions of the Lts, which preserves τ∗.a equivalence. In
order to simplify the underlying algorithm, we consider only
Ltss without τ -cycles, which can be obtained by applying
the τ -compression reductor described in Section 2.1.

The TauClosure algorithm (see Figures 3 and 4) that
we propose for implementing the τ -closure reductor takes
as input a state s of an Lts M = (S, A,T, s0) represented
implicitly and produces as output the set of visible transi-
tions (represented as couples (a, s′)) reached from s after
collapsing the sequences of τ -transitions going out of s. It
uses two nested Dfs traversals along the τ -transitions of T ,
performed recursively starting at s. The first Dfs (line 2),
implemented by the Explore procedure, traverses a Dfs
tree [23] rooted at s, whose states (called descendants of s)
are reachable from s via sequences of τ -transitions. The
set of descendants of s having at least one visible outgo-
ing transition is called the frontier of the Dfs tree rooted
at s. The Dfs trees explored by successive invocations
of TauClosure form a Dfs forest, in which the Dfs tree
rooted at a state s will possibly be linked (via so-called cross
τ -transitions [23]) to other Dfs trees explored by previous
invocations. The frontier of the Dfs forest is the union of
the frontiers of all Dfs trees contained in the forest. In-
tuitively, TauClosure (s) computes all visible transitions
originating from states in the portion of the Dfs forest fron-
tier reachable from s.

To speed up the τ -closure computation for every state u

descendant of s (which may be required by later calls of the
reductor), the call Explore (s) computes three fields at-
tached to u: a pointer next(u) to the state following u on
the frontier of the Dfs tree rooted at s; a pointer last(u)
to the last state of the frontier portion reachable from u
(i.e., the last state visited in the Dfs subtree rooted at
u); and a set cross(u) containing the target states of all
cross τ -transitions [23] originating from descendants of u
and leading to other subtrees of the Dfs forest. Addi-
tionally, n(u) stores the Dfs number associated to u and
a boolean has vt(u) indicates whether u has outgoing visi-
ble transitions. Explore proceeds as follows. If s is a newly
encountered state, after inserting it into the set V of visited
states and initializing the various fields attached to it (lines

8–14), each transition s
a
→ s′ ∈ T is traversed: if it is visible,

the boolean has vt(s) is updated accordingly; otherwise, the
successor state s′ is examined. If s′ has been already visited
and belongs to another Dfs subtree, it is stored in the set
cross(s) (lines 19–22); otherwise, it is explored by a recursive
call to Explore. Afterwards, the frontier portion reachable
from s is updated. If s′ has some visible outgoing transitions,
then it becomes the next state following the frontier portion

already computed for s (line 26); otherwise, if the frontier
portion reachable from s′ is not empty, it is appended to
the frontier portion of s (lines 28 and 30–32). Then, the set
cross(s) is updated with the target states (not contained in
the Dfs tree rooted at s) of the cross τ -transitions going out
of the descendants of s′ (line 33).

1. function TauClosure (s : S) : 2A×S is
2. Explore (s);
3. return VisibleSucc (s)
4. end
5.
6. V := ∅; c := 0;
7. procedure Explore (s : S) is
8. if s 6∈ V then
9. V := V ∪ {s};

10. n(s) := c; c := c + 1;
11. next(s) := nil;
12. last(s) := s;
13. cross(s) := ∅;
14. has vt(s) := false;
15. forall (s, a, s′) ∈ T do
16. if a 6= τ then
17. has vt(s) := true
18. else
19. if s′ ∈ V then
20. if n(s′) < n(s) then
21. cross(s) := cross(s) ∪ {s′}
22. endif
23. else
24. Explore (s′);
25. if has vt(s′) then
26. next(last(s)) := s′

27. elsif next(s′) 6= nil then
28. next(last(s)) := next(s′)
29. endif;
30. if has vt(s′) ∨ last(s′) 6= s′ then
31. last(s) := last(s′)
32. endif;
33. cross(s) := cross(s) ∪

{u ∈ cross(s′) | n(u) < n(s)}
34. endif
35. endif
36. end
37. endif
38. end

Figure 3: Algorithm for on-the-fly τ -closure (I)

After the first Dfs traversal is finished, the list of visible
transitions reached after τ -closure is computed by a call to
VisibleSucc (line 3). This function starts by invoking the
Normalize procedure (line 40), which performs the second
Dfs traversal of the Lts along the cross τ -transitions previ-
ously computed by the first Dfs traversal. Normalize (s)
updates the set cross(s) such that it contains all the states
reachable from s by following cross τ -transitions and which
dominate nonempty portions of frontier; the concatenation
of these portions yields the frontier of the Dfs forest reach-
able from s. Normalize maintains a global set R, initially



set to empty (line 65), containing the states visited during
the second Dfs, and proceeds as follows. If s is a newly en-
countered state, it is inserted into R and the set new cross
is initialized to empty (lines 67–69). Then, each state s′

in cross(s) is normalized and its resulting set of reachable
states dominating nonempty portions of frontier is accumu-
lated in new cross (lines 70–73). Finally, the set new cross is
stored into cross(s) and, if s dominates a nonempty portion
of frontier, it is added itself to cross(s) (lines 74–77).

39. function VisibleSucc (s : S) : 2A×S is
40. Normalize (s);
41. r := ∅;
42. forall s′ ∈ cross(s) do
43. r := r ∪ VisibleTree (s′)
44. end;
45. return r

46. end
47.
48. function VisibleTree (s : S) : 2A×S is
49. r := ∅;
50. u := s;
51. finish := false;
52. repeat
53. if has vt(u) then
54. r := r ∪ {(a, u′) | (u, a, u′) ∈ T ∧ a 6= τ}
55. endif;
56. if u 6= last(s) then
57. u := next(u)
58. else
59. finish := true
60. endif
61. until finish;
62. return r

63. end
64.
65. R := ∅;
66. procedure Normalize (s : S) is
67. if s 6∈ R then
67. R := R ∪ {s};
69. new cross := ∅;
70. forall s′ ∈ cross(s) do
71. Normalize (s′);
72. new cross := new cross ∪ cross(s′)
73. end;
74. cross(s) := new cross;
75. if has vt(s) ∨ last(s) 6= s then
76. cross(s) := cross(s) ∪ {s}
77. endif
78. endif
79. end

Figure 4: Algorithm for on-the-fly τ -closure (II)

After normalisation of s, VisibleSucc computes the set
of visible transitions reachable from s after τ -closure by ac-
cumulating, for each state s′ contained in cross(s), the set
of its visible transitions originating from the states in the
frontier portion reachable from s′ (lines 41–45). These sets
are computed by calls to VisibleTree (s′), which scans the

portion of frontier reachable from s′, delimited by next(s′)
and last(s′), and accumulates all visible transitions going
out from states of that portion (lines 52–61).

Figure 5 shows the result of executing TauClosure suc-
cessively on two states of an Lts. The sets cross(s3) and
cross(s6) are obtained after normalisation: s6 has a cross
τ -transition to s3, which in turn has a cross τ -transition to
s1, and both s1 and s3 dominate non empty portions of the
Dfs forest frontier (they have outgoing visible transitions).
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Figure 5: (a) An Lts with the fields next (dashed ar-
rows), last (dotted arrows), and cross (marked when
not empty). States in the frontier of the Dfs forest
are drawn as thick circles. (b) Reduced Lts obtained
after calling TauClosure on states s0 and s5.

The first call TauClosure (s) has a time and space com-
plexity linear in the size of the subgraph of τ -transitions
reachable from s, since only the first Dfs traversal of this
subgraph is performed (the set cross(s) is empty because
there are no other trees in the Dfs forest). Each subse-
quent call TauClosure (u) such that the Dfs tree rooted
at u has outgoing cross τ -transitions leading to other trees
of the Dfs forest will trigger the normalisation of u and
the computation of the set cross(u); the cumulated size of
these sets after a sequence of calls to TauClosure may be
quadratic in the size of the Lts, since the same state can be
present in several cross sets. It is worth noticing that, for
an Lts in which all subgraphs of τ -transitions are trees, the
cumulated complexity of a sequence of calls to TauClosure
is linear, because the frontier information computed by the
Explore procedure allows to retrieve in constant time the
frontier of the Dfs subtree rooted at a given state. From
this point of view, the TauClosure algorithm has a nat-
ural behaviour, its time and space complexity increasing
(from linear towards quadratic) with the number of cross
τ -transitions contained in the Lts.

In practice, a time/space tradeoff can be achieved by stor-
ing the cross sets produced by normalisation only for a sub-
set of the Lts states, and recomputing the cross sets for the
other states as needed. Another way to improve the per-
formance of the τ -confluence reductor is to group the states
having the same cross sets into equivalence classes, since
they have the same set of visible transitions reachable af-
ter τ -closure. This scheme further reduces the implicit Lts
produced as output by TauClosure, and can lead to good
performance in practice (see Sections 3.1 and 3.2).

2.3 Tau-confluence
The form of partial-order reduction called τ -confluence

was defined in [12], and shown to preserve branching equiv-
alence between Ltss. It consists in identifying the τ -



transitions which are confluent, i.e., whose execution does
not alter the observable behaviour of the system. Once a
τ -confluent transition going out of a state was detected, one
can safely delete all the other transitions going out of that
state, without losing branching equivalence; this reduction
is called τ -prioritisation [12].

1. V := ∅;

2. function TauConfluence (s : S) : 2A×S is
3. if s 6∈ V then
4. V := V ∪ {s};
5. seq := s; crt s := s;
6. end of seq := false;
7. repeat
8. if TauPrio (crt s) = (τ, s′) then
9. seq := seq . s′;

10. crt s := s′;
11. if crt s 6∈ V then
12. V := V ∪ {crt s}
13. else
14. end of seq := true
15. endif
16. else
17. rep(crt s) := crt s ;
18. end of seq := true
19. endif
20. until end of seq;
21. l := seq ;
22. while l 6= nil do
23. s′ := head(l);
24. rep(s′) := rep(crt s);
25. l := tail(l)
26. end
27. endif;

28. return {(a, s′) | rep(s)
a
→ s′ ∈ T}

29. end
30.
31. function TauPrio (s : S) : 2A×S is
32. found := false;
33. forall (s, a, s′) ∈ T do
34. if a = τ ∧ TauConfluent(s, a, s′) then
35. found := true;
36. break
37. endif
38. end;
39. if found then
40. return (a, s′)
41. else

42. return {(a, s′) | s
a
→ s′ ∈ T}

43. endif
44. end

Figure 6: Algorithm for on-the-fly τ -confluence

The detection of τ -confluent transitions can be encoded
as a Boolean Equation System (Bes) [20] and performed
during an on-the-fly construction of the Lts by solving the
Bes locally. As pointed out in [12], the reduction by τ -
prioritisation can be further improved by compressing the
sequences of τ -confluent transitions, using the fact that the

source and target states of such a transition are branch-
ing equivalent. The τ -confluence reductor described below
explores an Lts on-the-fly and applies τ -prioritisation and
compression of τ -sequences. In the sequel we consider only
Ltss without τ -cycles, since this is required by the theory
of τ -confluence [12]; these Ltss can be obtained by applying
the τ -compression reductor described in Section 2.1.

The TauConfluence algorithm (see Figure 6) that we
propose for implementing the τ -confluence reductor takes
as input a state s of an Lts M = (S,A, T, s0) represented
implicitly and produces as output the set of transitions (rep-
resented as couples (a, s′)) reachable from s after collapsing
the sequences of τ -confluent transitions going out of s. It
uses a forward traversal of the Lts along the τ -transitions
of T , performed iteratively starting at s. To each visited
state u is attached a pointer rep(u) towards the represen-
tative of u, which is the last state reachable from u via a
sequence of τ -confluent transitions. TauConfluence pro-
ceeds as follows. If s is a newly encountered state, then it
is added to the set V of visited states (initially empty), and
the exploration of a (potential) sequence of τ -confluent tran-
sitions going out of s is initialized (lines 3–6). The states of
this sequence are stored in seq and the last state of the se-
quence is stored in crt s. At each step, the transitions going
out of crt s after τ -prioritisation are computed by calls to
TauPrio (crt s) (line 8). If this function returns a single
(confluent) τ -transition, this transition is appended to seq
(lines 9–10); the sequence terminates either when its last
state was already explored (line 14), or the state crt s does
not have any τ -confluent outgoing transition (lines 17–18).
Afterwards, the sequence is scanned and the representative
of its last state becomes the representative of all states of
the sequence (lines 21–26).

The call TauPrio (s) examines each transition s
a
→ s′ ∈ T

and uses the predicate TauConfluent (implemented by a
local resolution of a Bes [20]) to detect whether it is τ -
confluent (lines 32–38): if this is the case, then (a, s′) is re-
turned as result, all the remaining transitions being ignored
by τ -prioritisation; otherwise, the set of all transitions is
returned (lines 39–43).
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Figure 7 shows the result of executing TauConfluence
successively on two states of an Lts. The compression of
τ -sequences takes place only for s0

τ
→ s1 and s7

τ
→ s5

τ
→

s3, which are explored by TauConfluence; the other τ -
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Figure 8: (a) Lts reduction and (b) execution time of Generator with reductions w.r.t. Generator alone.
(c) Lts reduction and (d) execution time of Generator with τ -closure w.r.t. Reductor.

confluent transitions s8

τ
→ s6 and s6

τ
→ s4 are explored

during the resolution of the Bes when the confluence of s7

τ
→

s5 and s5

τ
→ s3 is detected.

A sequence of calls to TauConfluence has a cumulated
time and space complexity linear in the size of the Lts,
each τ -transition being traversed only once. However, the
on-the-fly detection of τ -confluent transitions induces an ad-
ditional cost, which is locally quadratic [20], because each
τ -transition going out of a state s must be checked to be
confluent w.r.t. all other transitions going out of s. In prac-
tice, this cost is sometimes compensated by compressing the
sequences of τ -confluent transitions, and can improve perfor-
mance for Ltss containing a sufficient degree of concurrency
(see Sections 3.1 and 3.3).

3. IMPLEMENTATION AND MEASURES
The three on-the-fly reduction algorithms described in

Section 2 were implemented as separate modules (8, 300
lines of C code in total) within Cadp [9] using the generic
Open/Cæsar environment [8], which provides versatile
primitives for developing Lts exploration algorithms (lists

of transitions, stacks, hash tables, etc.). As a consequence,
each reductor module can be inserted as an “accelerator”
in front of any on-the-fly verification tool developed using
Open/Cæsar, which will transparently use the successor
function produced as output by the reductor instead of the
successor function provided by Open/Cæsar (representing
the original Lts of the system being analysed). In the sequel,
we illustrate the benefits of applying the reductor modules as
accelerators for three on-the-fly verification tools of Cadp,
dedicated to Lts generation, model checking, and equiva-
lence checking. All experiments were performed on Ltss cor-
responding to various examples taken from the Cadp distri-
bution (communication protocols, hardware devices, etc.),
using a Linux Pc with a Pentium III at 730 MHz and 1 GB
of memory. Lts sizes range from 18 Kstates and 44 Ktran-
sitions to 935 Kstates and 3 Mtransitions.

3.1 State space generation
We consider first the Generator and Reductor tools of

Cadp, which convert Ltss from the implicit Open/Cæsar
representation (successor function implemented in C) to the
explicit Bcg (Binary Coded Graphs) representation (list of



transitions encoded in a binary file). Generator does
not modify the transition relation of the Lts, whereas
Reductor performs an on-the-fly reduction by τ -closure,
using an algorithm which recomputes the τ -closure every
time a state is encountered. We use our three reduc-
tor modules in conjunction with Generator (note that
Generator with τ -closure achieves the same functionality
as Reductor) and compare their behaviour.

Figure 8(a) shows the reductions in Lts size (number of
transitions) obtained by each of the three Generators with
reduction w.r.t. Generator alone. The highest reductions
(up to three orders of magnitude on some Ltss) are achieved
by Generator with τ -confluence, but at the price of an
increased execution time (up to two orders of magnitude).
The lowest reductions (which can still reach one or two or-
ders of magnitude), but also the fastest ones, are achieved
by Generator with τ -compression. Note that, depending
upon the structure of the transition relation, the τ -closure
may increase the number of transitions in the Lts; however,
if the Lts contains τ -transitions, the number of states is al-
ways decreased. Figure 8(b) indicates the execution times
for the same set of examples. As expected, all reductors are
more time consuming than Generator alone; however, in
many cases the loss in speed is compensated by the reduc-
tion achieved, making the reductors useful as accelerators
for on-the-fly verification tools.

Figures 8(c) and 8(d) compare the reductions and exe-
cution times achieved by Generator with τ -closure and
by Reductor. On all examples, we observe that the for-
mer tool reduces Ltss much stronger than the latter; this
is due to the identification of τ∗.a equivalent states by our
τ -closure algorithm. Note that the topmost point (Lts
number 7) on Figures 8(b) and 8(d) denotes a disk space
shortage that occurred when executing Reductor, due to
a prohibitive number of transitions in the resulting Lts.
Moreover, Generator with τ -closure is much faster (up
to two orders of magnitude) than the algorithm used by
Reductor.

3.2 Model checking
We focus now on the on-the-fly model checker

Evaluator [18], which verifies Ltss against temporal prop-
erties written in regular alternation-free µ-calculus. To
study the effect of our reductors on Evaluator’s perfor-
mance, we consider the two properties below (a, b, c are
visible Lts actions).

P1 : [ true∗ . a . (not b)∗ . c ] false
P2 : [ true∗ . a ] 〈 true∗ . b 〉 true

P1 is a safety property similar to mutual exclusion (after
an a action occurs, c cannot happen before b) and is com-
patible with τ∗.a equivalence, therefore being preserved by
the τ -closure reductor. P2 is a liveness property expressing
the response to a stimulus (every a action is potentially fol-
lowed by b) and is compatible with branching equivalence,
therefore being preserved by the τ -compression reductor. In
order to observe the effect of reductors on the worst-case ex-
ecutions of Evaluator, the actions a, b, c have been chosen
such that P1 and P2 are satisfied by each Lts considered,
which forces the model checker to explore the entire Lts.
Moreover, to make reductions more substantial, all actions
other than a, b, c were hidden (i.e., renamed into τ ) during
Lts exploration.

Figure 9 shows the performance gains brought by τ -

closure (resp. τ -compression) to Evaluator for checking
property P1 (resp. P2). We observe reductions of mem-
ory consumption and execution time up to a factor 3. It is
worth noticing that, on the examples considered, the reduc-
tor by τ -confluence (which is more time consuming than the
other two), does not bring any improvement to Evaluator,
whose model checking algorithm, based on local Bes reso-
lution [17], has a linear time complexity in the Lts size.

3.3 Equivalence checking
Finally, we examine the effect of our reductors

in conjunction with the on-the-fly equivalence checker
Bisimulator [17, 2]. In fact, the τ -compression and τ -
closure reductors are already used by Bisimulator for en-
coding weak equivalences in terms of boolean equation sys-
tems [17]; therefore, we study here only the effect of adding
the τ -confluence reductor. For τ∗.a and safety equivalences,
which are based only upon τ -closure, the corresponding re-
ductor proves to be sufficiently fast to prevent τ -confluence
of bringing any improvement; however, the situation is dif-
ferent for observational and branching equivalences, which
require more complex computations.

Figures 10(a) and (b) show the performance impact of ex-
tending Bisimulator with τ -confluence for checking obser-
vational equivalence. We observe strong reductions of mem-
ory consumption (up to two orders of magnitude), which are
sometimes obtained at the price of an increase of execution
time (up to one order of magnitude).

4. CONCLUSION AND FUTURE WORK
Tools for on-the-fly verification are complex software ar-

tifacts, the development, testing, and optimization of which
are costly activities. The architecture of such tools should
be as modular as possible in order to reduce these costs
by enhancing reusability and reliability. The three reduc-
tor modules we presented (τ -compression, τ -closure, and τ -
confluence) aim at improving the performance of on-the-
fly verification tools, by reducing the size of an Lts in-
crementally during verification. Building these reductor
modules using the generic Open/Cæsar environment [8]
of Cadp [9] made them immediately available as “accelera-
tors” for every on-the-fly verification tool developed on top
of Open/Cæsar. The experiments carried out so far have
shown the benefits these reductors can bring to Lts gener-
ation, model checking, and equivalence checking.

Reduction Temporal logic Equivalence
properties relation

τ -compression Actl \ X branching, obs.,
τ -confluence obs. µ-calculus τ∗.a, safety
τ -closure Pdl (safety prop. of τ∗.a, safety

the form [R] false)

Table 1: Adequacy of reductions with temporal log-
ics and equivalence relations

Table 1 summarizes the compatibility of the three reduc-
tions considered with various classes of temporal logic prop-
erties and weak equivalence relations. τ -compression and τ -
confluence are compatible with branching and observational
equivalences, and therefore preserve properties expressed in
Actl \X [5] and in observational µ-calculus [22], which are



adequate w.r.t. these two relations, respectively. τ -closure
is compatible with τ∗.a and safety equivalences, and thus
preserves safety properties expressed as Pdl [7] formulas
of the form [R] false, where the regular expression R may
not contain explicit occurrences of the τ action except in τ∗

subexpressions.
We plan to continue this work along several directions.

Firstly, we will continue experimenting our reductor mod-
ules using larger Ltss, such as those provided by the Vlts
benchmark suite [25], which contains realistic examples of
state spaces for the assessment of verification and graph
manipulation tools. Secondly, reductor modules implement-
ing other reductions on Ltss (e.g., τ -inertness [11], weak
τ -confluence [12], etc.) can be developed and experimented.
Thirdly, it would be interesting to study the effect of using
these reductors in conjunction with other tools for on-the-fly
verification present in Cadp (e.g., the Exhibitor tool for
searching regular sequences in Ltss, the Ocis interactive
simulator, etc.).
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de test. In G. Leduc, editor, Congrès Francophone sur
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Figure 9: (a) Time and (b) memory of Evaluator with τ -closure for checking P1. (c) Time and (d) memory
of Evaluator with τ -compression for checking P2.
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Figure 10: (a) Time and (b) memory of Bisimulator with τ -confluence w.r.t. Bisimulator alone for checking
observational equivalence


