
Property-Dependent Reductions Adequate with

Divergence-Sensitive Branching Bisimilarity

Radu Mateescua, Anton Wijsb

a Inria Grenoble – Rhône-Alpes and LIG / CONVECS team
655, av. de l’Europe, F-38330 Montbonnot Saint Martin, France

b Technische Universiteit Eindhoven / MDSE section
Faculteit Informatica, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

Abstract

When analyzing the behavior of finite-state concurrent systems by model
checking, one way of fighting state space explosion is to reduce the model
as much as possible whilst preserving the properties under verification. We
consider the framework of action-based systems, whose behaviors can be rep-
resented by labeled transition systems (Ltss), and whose temporal properties
of interest can be formulated in modal µ-calculus (Lµ). First, we determine,
for any Lµ formula, the maximal set of actions that can be hidden in the
Lts without changing the interpretation of the formula. Then, we define
Ldsbr

µ , a fragment of Lµ which is adequate w.r.t. divergence-sensitive branch-
ing bisimilarity. This enables us to apply the maximal hiding and to reduce
the Lts on-the-fly using divergence-sensitive τ -confluence during the verifi-
cation of any Ldsbr

µ formula. The experiments that we performed on various
examples of communication protocols and distributed systems show that this
reduction approach can significantly improve the performance of on-the-fly
verification1.

Keywords: divergence-sensitive branching bisimulation, labeled transition
system, modal µ-calculus, model checking, on-the-fly verification

1This article is an extended version of the conference article [1].
Email addresses: Radu.Mateescu@inria.fr (Radu Mateescu), A.J.Wijs@tue.nl

(Anton Wijs)

NOTICE: this is the author’s version of a work that was accepted for publication in Science
of Computer Programming. Changes resulting from the publishing process, such as peer
review, editing, corrections, structural formatting, and other quality control mechanisms
may not be reflected in this document. Changes may have been made to this work since it
was submitted for publication. A definitive version was subsequently published in Science
of Computer Programming, 10.1016/j.scico.2014.04.004.

1. Introduction

Model checking [2] is a technique to systematically verify whether a sys-
tem specification meets a given temporal property. Although successfully
applied in many cases, its usefulness in practice is still hampered by the
state space explosion phenomenon, which may entail high memory and Cpu
requirements in order to carry out the verification.

One way to improve the performance of model checking is to check the
property at a higher level of abstraction; by abstracting parts of the system
behavior away from the specification, its corresponding state space will be
smaller, thereby easier to check. This can either be done globally, i.e., before
verifying the property, or on-the-fly, i.e., during verification. However, one
needs to be careful not to abstract away any details crucial for the outcome of
the check, i.e., relevant for the property. This is known as action abstraction
in action-based formalisms, where state spaces are represented by Labeled
Transition Systems (Ltss), specifications are written using some flavor of
process algebra [3], and temporal properties are described using an action-
based temporal logic, such as the modal µ-calculus (Lµ) [4, 5]. Abstracted
behavior is then represented by some predefined action, denoted τ in process
algebras. In the past, the main focus in this area has been on devising Lµ

fragments adequate w.r.t. specific relations, such as Actl\X [6], which is
adequate w.r.t. divergence-sensitive branching bisimilarity [7, 8]2, or weak
Lµ [5], which is adequate w.r.t. weak bisimilarity [9]. For such fragments, the
minimization of an Lts modulo the specific relation preserves the truth value
of all formulas written in the adequate Lµ fragment. Other works focused
on devising reductions targeted to specific formulas, such as those written
in the selective Lµ [10]. For each selective Lµ formula, it is possible to hide
all actions not occurring in the formula, and subsequently minimize the Lts
modulo τ ∗.a bisimilarity [11] before verifying the formula.

In this article, we propose two enhancements with respect to existing
work. Firstly, starting from an arbitrary Lµ formula, we determine automat-
ically the maximal set of actions which can be hidden in an Lts without

2 In fact, a distinction can be made between divergence-sensitive branching bisimilar-
ity [6] and branching bisimilarity with explicit divergence [7, 8]. Contrary to the former,
the latter distinguishes deadlocks and livelocks, and the latter is the coarsest congruence
contained in the former. In this paper, we use the latter, but refer to it with the (more
classical) name of the former.

2

affecting the truth value of the formula on the Lts. This yields the max-
imum potential for reduction, and therefore for improving the performance
of model checking. After hiding, the Lts can be minimized, e.g., modulo
strong bisimilarity without disturbing the outcome of the verification of the
formula. This method is not intrusive, in the sense that it does not force
the specifier to write formulas in a certain way (as it is the case, e.g., for the
selective Lµ).

Secondly, to achieve further reduction of the Lts, we study the relation-
ship between Lµ formulas and weak equivalence relations, which take into ac-
count the presence of transitions labeled by the invisible action τ . More pre-
cisely, we consider divergence-sensitive branching bisimilarity (≈ds

br), a weak
equivalence relation that preserves the branching structure and the diver-
gences (cycles of invisible transitions) of Ltss, and still can yield substantial
reductions in practice. We identify a fragment of Lµ, called Ldsbr

µ , and prove
its adequacy with ≈ds

br , meaning that two Ltss are equivalent modulo this
relation if and only if they satisfy the same set of Ldsbr

µ formulas (in our pre-
vious work [1], only the compatibility of Ldsbr

µ with ≈ds
br was shown, i.e., the

fact that a Ldsbr
µ formula has the same truth value on two Ltss equivalent

modulo ≈ds
br). This enables us to reduce an Lts modulo ≈ds

br after applying
maximal hiding and before checking a Ldsbr

µ formula, and thus to improve the
performance of the overall verification process.

Finally, we show that Ldsbr
µ is equally expressive to µ-Actl\X [12], the

extension of Actl\X with fixed point operators, and it subsumes the weak
Lµ as well as (a relevant fragment of) the selective Lµ. Compared to these
µ-calculi, which require that action formulas contain only names of visible
actions, our Ldsbr

µ fragment also accepts the presence of the τ action, therefore
providing additional flexibility in the specification of properties. Moreover,
our adequacy result of Ldsbr

µ w.r.t. ≈ds
br also provides a proof of the adequacy

of µ-Actl\X w.r.t. ≈ds
br , which completes the previously known adequacy of

this logic w.r.t. strong bisimulation [13, 14].
We illustrate the reduction approach for Ldsbr

µ within the Cadp3 verifica-
tion toolbox [15]. The model checking of a Ldsbr

µ formula can be optimized
generally in two ways: globally, by generating the Lts, then hiding the maxi-
mal set of actions according to the formula, and minimizing the Lts modulo
strong or divergence-sensitive branching bisimilarity before checking the for-

3See http://cadp.inria.fr

3

mula; and locally (or on-the-fly), by applying maximal hiding and reduction
modulo divergence-sensitive τ -confluence simultaneously with the verifica-
tion. The experiments we carried out on several examples of protocols and
distributed systems, including a recent industrial case-study, show that these
optimizations can yield significant performance improvements.

The rest of the article is organized as follows. Section 2 defines the for-
malisms and equivalence relations considered. Section 3 studies the maximal
hiding of actions in an Lts w.r.t. a given Lµ formula. Section 4 introduces
the Ldsbr

µ fragment, shows its adequacy with divergence-sensitive branching
bisimilarity, and compares its expressiveness with other logics. Section 5
illustrates experimentally the model checking optimizations obtained by ap-
plying maximal hiding and reductions for Ldsbr

µ formulas. Section 6 gives
concluding remarks and directions for future work. The proofs of all lemmas
and propositions are given in Appendix A.

2. Background

Labeled transition system. We consider as interpretation model the classical
Lts, which underlies process algebras and related action-based description
languages. An Lts is a tuple 〈S,A, T, s0〉, where S is the set of states, A is
the set of actions (including the invisible action τ), T ⊆ S × A × S is the
transition relation, and s0 ∈ S is the initial state. The visible actions in
A\{τ} are denoted by a and the actions in A are denoted by b. A transition

〈s1, b, s2〉 ∈ T (also denoted by s1
b→ s2) means that the system can move

from state s1 to state s2 by performing action b. The reflexive transitive

closure of
τ→ is denoted by =⇒ . A finite path is denoted by s0

b0···bk−1→
sk, which is a finite sequence s0, s1, . . . , sk, such that there exist actions

b0, . . . , bk−1 with ∀0 ≤ i < k.si
bi→ si+1. For conciseness, we will sometimes

omit existential quantifiers (e.g., we will write s1
b→ s2 to denote the existence

of a transition) when this is clear from the context. We consider only finite
Ltss, i.e., containing finite sets of states and actions. In the following, we
assume the existence of an LtsM = 〈S,A, T, s0〉 on which temporal formulas
will be interpreted.

Modal µ-calculus. The variant of Lµ that we consider here consists of action
formulas (denoted by α) and state formulas (denoted by ϕ), which character-
ize subsets of Lts actions and states, respectively. The syntax and semantics

4

of these formulas are defined in Figure 1. Action formulas are built over the
set of actions by using Boolean connectors in a way similar to Actl (Action-
based Ctl) [6], which is a slight extension w.r.t. the original definition of
Lµ [4]. Derived action operators can be defined as usual: true = ¬false,
α1 ∧ α2 = ¬(¬α1 ∨¬α2), etc. State formulas are built from Boolean connec-
tors, the possibility modality (〈 〉), and the minimal fixed point operator (µ)
defined over propositional variables X belonging to a set X . Derived state
operators can be defined as usual: true = ¬false, ϕ1 ∧ ϕ2 = ¬(¬ϕ1 ∨ ¬ϕ2),
[α]ϕ = ¬ 〈α〉 ¬ϕ is the necessity modality, and νX.ϕ = ¬µX.¬ϕ[¬X/X] is
the maximal fixed point operator (ϕ[¬X/X] stands for ϕ in which all free oc-
currences of X, i.e., not bound by a fixed point operator, have been negated).
Syntactically, unary operators (negation, modalities, and fixed points) have
higher precedence than binary ones (conjunction and disjunction).

Action formulas:
α ::= b

| false
| ¬α1

| α1 ∨ α2

[[b]]A = {b}
[[false]]A = ∅
[[¬α1]]A = A \ [[α1]]A

[[α1 ∨ α2]]A = [[α1]]A ∪ [[α2]]A

State formulas:
ϕ ::= false

| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈α〉ϕ1

| X
| µX.ϕ1

[[false]]M ρ = ∅
[[¬ϕ1]]M ρ = S \ [[ϕ1]]M ρ

[[ϕ1 ∨ ϕ2]]M ρ = [[ϕ1]]M ρ ∪ [[ϕ2]]M ρ

[[〈α〉ϕ1]]M ρ = {s ∈ S | ∃s b→ s′ ∈ T.b ∈ [[α]]A ∧ s′ ∈ [[ϕ1]]M ρ}
[[X]]M ρ = ρ(X)

[[µX.ϕ1]]M ρ =
⋂
{U ⊆ S | [[ϕ1]]M (ρ� [U/X]) ⊆ U}

Figure 1: Syntax and semantics of Lµ

The interpretation [[α]]A of an action formula on the set of actions of an
Lts denotes the subset of actions satisfying α. An action b satisfies a formula

α (also denoted by b |=A α) if and only if b ∈ [[α]]A. A transition s1
b→ s2 such

that b |=A α is called an α-transition. A propositional context ρ : X → 2S is
a partial function mapping propositional variables to subsets of states. The
notation ρ�[U/X] stands for a propositional context identical to ρ except for
variableX, which is mapped to the state subset U . The interpretation [[ϕ]]M ρ
of a state formula on an Lts M and a propositional context ρ (which assigns

5

a set of states to each propositional variable occurring free in ϕ) denotes
the subset of states satisfying ϕ in that context. The Boolean connectors
are interpreted as usual in terms of set operations. The possibility modality
〈α〉ϕ1 (resp. the necessity modality [α]ϕ1) denotes the states for which
some (resp. all) of their outgoing α-transitions lead to states satisfying ϕ1.
The minimal fixed point operator µX.ϕ1 (resp. the maximal fixed point
operator νX.ϕ1) denotes the least (resp. greatest) solution of the equation
X = ϕ1 interpreted over the complete lattice

〈
2S, ∅, S,∩,∪,⊆

〉
. A state s

satisfies a closed formula ϕ, denoted by s |=M ϕ, if and only if s ∈ [[ϕ]]M
(the propositional context ρ can be omitted since ϕ does not contain free
variables). An Lts M = 〈S,A, T, s0〉 satisfies a closed formula ϕ, denoted
by M |= ϕ, if and only if s0 |=M ϕ.

Propositional Dynamic Logic with Looping. In addition to plain Lµ opera-
tors, we will use the modalities of Pdl-∆ (Propositional Dynamic Logic with
Looping) [16], which characterize finite (resp. infinite) sequences of tran-
sitions whose concatenated actions form words belonging to regular (resp.
ω-regular) languages. The syntax and semantics of Pdl-∆, as well as its
translation to Lµ [17], are given in Figure 2. Regular formulas (denoted
by β) are built from action formulas and the testing (?), concatenation (.),
choice (|), and transitive reflexive closure (∗) operators. Apart from Boolean
connectors, state formulas are built from the possibility modality (〈 〉) and
the infinite looping operator (〈 〉@), both containing regular formulas. De-
rived state operators are defined as follows: [β]ϕ = ¬ 〈β〉 ¬ϕ is the necessity
modality, and [β] a = ¬ 〈β〉@ is the saturation operator.

The interpretation ||β||A of a regular formula on an Lts denotes a relation
between the states that are source and target of transition sequences whose
concatenated actions form a word belonging to the regular language defined
by β. The testing operator makes it possible to specify state formulas that
must hold in the intermediate states of a transition sequence. The possibility
modality 〈β〉ϕ1 (resp. the necessity modality [β]ϕ1) denotes the states for
which some (resp. all) of their outgoing transition sequences satisfying β
lead to states satisfying ϕ1. The infinite looping operator 〈β〉@ (resp. the
saturation operator [β] a) denotes the states having some (resp. no) outgoing
transition sequence consisting of an infinite concatenation of sub-sequences
satisfying β.

The operators of Pdl-∆ can be freely mixed with those of Lµ, and in
practice they make possible a much more concise and intuitive description of

6

Regular formulas:

β ::= α
| ϕ?
| β1.β2

| β1|β2

| β∗1

||α||A = {(s, s′) ∈ S × S | ∃b ∈ A.s b→ s′ ∧ b ∈ [[α]]A}
||ϕ?||A = {(s, s) ∈ S × S | s ∈ [[ϕ]]M}

||β1.β2||A = ||β1||A ◦ ||β2||A
||β1|β2||A = ||β1||A ∪ ||β2||A
||β∗1 ||A = ||β1||∗A

State formulas:

ϕ ::= false
| ¬ϕ1

| ϕ1 ∨ ϕ2

| 〈β〉ϕ1

| 〈β〉@

[[false]]M = ∅
[[¬ϕ1]]M = S \ [[ϕ1]]M

[[ϕ1 ∨ ϕ2]]M = [[ϕ1]]M ∪ [[ϕ2]]M
[[〈β〉ϕ1]]M = {s ∈ S | ∃s′ ∈ S.(s, s′) ∈ ||β||A ∧ s′ ∈ [[ϕ1]]M}
[[〈β〉@]]M = {s ∈ S | ∀k ≥ 0.∃s′ ∈ S.(s, s′) ∈ ||β||kA}

Encoding in Lµ:
〈ϕ′?〉ϕ = ϕ′ ∧ ϕ

〈β1.β2〉ϕ = 〈β1〉 〈β2〉ϕ
〈β1|β2〉ϕ = 〈β1〉ϕ ∨ 〈β2〉ϕ
〈β∗〉ϕ = µX.(ϕ ∨ 〈β〉X)
〈β〉@ = νX. 〈β〉X

Figure 2: Syntax, semantics, and Lµ encoding of Pdl-∆

properties. For example, the fair reachability [18] (i.e., by skipping cycles)
of a response after each request, can be specified in Pdl as follows:

[true∗.req] 〈true∗.resp〉 true

whereas in plain Lµ a more verbose formula is needed:

νX.([req]µY.(〈resp〉 true ∨ 〈true〉Y) ∧ [true]X)

The variant of Lµ extended with Pdl-∆ operators, denoted by Lreg
µ , has been

considered and efficiently implemented in [19] (in fact, the syntax used for
Pdl-∆ operators in Fig. 2 is that of Lreg

µ and not the original one). In the
remainder of the article, we will use Lreg

µ whenever possible for specifying
temporal properties.

7

Divergence-sensitive branching bisimilarity. As equivalence relation between
Ltss, we consider divergence-sensitive branching bisimilarity [7, 8]4, which
preserves branching-time properties such as inevitable reachability and also
the existence of divergences (τ -cycles), while still making possible substantial
reductions of Ltss. This relation is finer than plain branching bisimilarity
and weak bisimilarity [9] (none of which preserves divergences), therefore
being a good candidate for comparing the behaviour of concurrent systems.

Definition 1 (Divergence-Sensitive Branching Bisimulation [7]). A binary
relation R on the set of states S is a divergence-sensitive branching bisimu-
lation if R is symmetric and s R t implies that

• if s
b→ s′ then

– either b = τ with s′ R t;

– or t=⇒ t̂
b→ t′ with s R t̂ and s′ R t′.

• if there is an infinite sequence of states s0, s1, s2, . . . such that s0 = s,
s0

τ→ s1
τ→ s2

τ→ . . . and sk R t for all k ≥ 0, then there is an infinite
sequence of states t0, t1, t2, . . . such that t0 = t, t0

τ→ t1
τ→ t2

τ→ . . . and
sk R t` for all k, ` ≥ 0.

Two states s and t are divergence-sensitive branching bisimilar, denoted by
s ≈ds

br t, if there is a divergence-sensitive branching bisimulation R with s R t.

When expressing certain properties (e.g., inevitable reachability), it is
necessary to characterize deadlock states in the Lts, i.e., states from which
the execution cannot progress anymore. From the≈ds

br point of view, deadlock
states are precisely those states leading eventually to sink states (i.e., states
without successors) after a finite number of τ -transitions. These states can
be characterized by the Pdl-∆ formula below:

deadlock = [true∗.¬τ] false ∧ [τ] a

where the box modality forbids the reachability of visible actions and the
saturation operator forbids the presence of divergences.

4Referred to as branching bisimilarity with explicit divergence in [7, 8], see footnote 2.

8

3. Maximal Hiding

When checking a state formula ϕ over an Lts, some actions of the Lts
can be hidden (i.e., renamed into τ) without disturbing the interpretation of
ϕ.

Definition 2 (Hiding Set). Let α be an action formula interpreted over a
set of actions A. The hiding set of α w.r.t. A is defined as follows:

hA(α) =

{
[[α]]A if τ |=A α
A \ [[α]]A if τ 6|=A α

The hiding set of a state formula ϕ w.r.t. A, denoted by hA(ϕ), is defined as
the intersection of hA(α) for all action subformulas α of ϕ.

Definition 3 (Hiding). Let A be a set of actions and H ⊆ A. The hiding
of an action b ∈ A w.r.t. H is defined as follows:

hideH(b) =

{
b if b 6∈ H
τ if b ∈ H

The hiding of an Lts M = 〈S,A, T, s0〉 w.r.t. H is defined as follows:

hideH(〈S,A, T, s0〉) =
〈
S, (A \H) ∪ {τ}, {s1

hideH(b)→ s2 | s1
b→ s2 ∈ T}, s0

〉
.

The following lemma states that, given an action formula α, the fact of
hiding an action w.r.t. the hiding set of α does not disturb the interpretation
of α on that action.

Lemma 1. Let α be an action formula interpreted over a set of actions A.
A subset H ⊆ A does not disturb the interpretation of α on the actions of A
after hiding them w.r.t. H if the following property holds:

∀b ∈ A.(b |=A α⇔ hideH(b) |=A α)

Then: a subset H ⊆ A satisfies this property iff H ⊆ hA(α).

Proof. (If.) Let H ⊆ hA(α) and let b ∈ A. Two cases are possible. If
b 6∈ hA(α), then hidehA(α)(b) = b by Definition 3; in this case, no hiding takes
place, and the property holds trivially. If b ∈ hA(α), then hidehA(α)(b) = τ
by Definition 3. Two subcases are possible. If τ |=A α, then hA(α) = [[α]]A

9

by Definition 2, and therefore b |=A α. If τ 6|=A α, then hA(α) = A \ [[α]]A by
Definition 2, and therefore b 6|=A α.

(Only if.) Let H ⊆ A satisfying the property in the lemma, and suppose
H \hA(α) 6= ∅. Let b ∈ H \hA(α) such that b |=A α⇔ hideH(b) |=A α, which
by Definition 3 becomes b |=A α ⇔ τ |=A α. Two cases are possible, both
leading to a contradiction. If τ |=A α, then hA(α) = [[α]]A by Definition 2,
and since b 6∈ hA(α), this means b 6|=A α. If τ 6|=A α, then hA(α) = A \ [[α]]A
by Definition 2, and since b 6∈ hA(α), this means b |=A α.

Lemma 1 ensures that, for an action formula α, its hiding set hA(α) is
the maximal set of actions that can be hidden in the Lts without disturbing
the interpretation of α. To make possible Lts reductions prior to (or simul-
taneously with) the verification of a state formula ϕ, it is desirable to hide as
many actions as possible in the Lts, i.e., all actions in hA(ϕ). The following
proposition ensures that this hiding preserves the interpretation of ϕ.

Proposition 1 (Maximal Hiding). Let M = 〈S,A, T, s0〉 be an Lts, ϕ be a
state formula of Lµ, and H ⊆ hA(ϕ). Then:

[[ϕ]]M ρ = [[ϕ]]hideH(M) ρ

for any propositional context ρ.

Proof. We proceed by structural induction on ϕ. We give here the most
interesting case ϕ ::= 〈α〉ϕ1, the other cases being straightforward. Since
H ⊆ hA(〈α〉ϕ1) by hypothesis and hA(〈α〉ϕ1) = hA(α) ∩ hA(ϕ1) by Defini-
tion 2, it follows that H ⊆ hA(α) and H ⊆ hA(ϕ1). Therefore, we can apply
the induction hypothesis for ϕ1, H and Lemma 1 for α, H, which yields:

[[〈α〉ϕ1]]hideH(M) ρ = by def. of [[]] and hideH(M)

{s ∈ S | ∃s hideH(b)→ s′.hideH(b) |=A α ∧
s′ ∈ [[ϕ1]]hideH(M) ρ} = by ind. hyp. and Lemma 1

{s ∈ S | ∃s b→ s′.b |=A α ∧ s′ ∈ [[ϕ1]]M ρ} = by def. of [[]]
[[〈α〉ϕ1]]M ρ.

In general, for a given property, there are several µ-calculus formulas ϕ
specifying it, with different hiding sets hA(ϕ). To take advantage of Propo-
sition 1, one must choose a formula ϕ with a hiding set as large as possible.

10

Intuitively, in such well-specified formula ϕ, all action subformulas are rel-
evant for the interpretation of ϕ on an Lts. For example, the following
formula is not well-specified:

ϕ = µX.(〈a1〉 true ∨ (([a2] false ∨ 〈a2〉 true) ∧ 〈a3〉X))

because its subformula [a2] false∨〈a2〉 true is a tautology and could be deleted
from ϕ without changing its meaning. The presence of this subformula
yields the hiding set hA(ϕ) = A \ {a1, a2, a3}, whereas deleting it yields a
larger hiding set hA(ϕ) = A \ {a1, a3}. We do not attempt here to check
well-specifiedness automatically, which would require a satisfiability check-
ing procedure on subformulas, and will assume below that state formulas are
well-specified, i.e., they contain no redundant information.

For instance, consider the Lreg
µ formula below, expressing the inevitable

reachability5 of a recv action after every send action:

ϕ = [true∗.send]µX.(¬deadlock ∧ [¬recv]X)

When checking ϕ on an Lts, one can hide all actions in hA(ϕ) = hA(send)∩
hA(¬recv) = (A \ [[send]]A) ∩ [[¬recv]]A = (A \ {send}) ∩ (A \ {recv}) =
A \ {send , recv}, i.e., all actions other than send and recv, without changing
the interpretation of the formula.

4. Mu-Calculus Fragment Adequate with ≈ds
br

When minimizing an Lts modulo a weak bisimilarity relation, i.e., a re-
lation which abstracts away invisible actions, such as ≈ds

br [7], the degree
of reduction achieved is often directly proportional to the percentage of τ -
transitions contained in the original Lts. Therefore, Proposition 1 provides,
for a given Lµ formula, the highest potential for reduction, by enabling as
many actions as possible to be hidden in the Lts. However, this proposi-
tion does not give any indication about which Lµ formulas are preserved by
reduction modulo ≈ds

br .
In this section, we define and study a fragment of Lµ, called Ldsbr

µ , which is
adequate w.r.t. ≈ds

br . Such a fragment can, by definition of standard branching

5In the action-based setting, we use the term “inevitable reachability” of an action b
to express that all sequences going out from the current state contain a b-transition after
a finite number of steps.

11

bisimilarity and divergence-sensitive branching bisimilarity, not allow one to
express anything about the immediate possibility to do a transition. In
branching bisimilarities, no distinction is made between the ability to do a
transition directly, and the ability to reach a state where this can be done
via confluent τ -transitions, i.e., τ -transitions with bisimilar source and target
states. In [8], it was shown that ≈ds

br satisfies the stuttering property, which
means that if the source and target state of a sequence of τ -transitions are
divergence-sensitive branching bisimilar, then all intermediate states are as
well. The main contribution of [8] is a study of the divergence condition in
the standard definition of ≈ds

br (Def. 1), leading to the observation that it can
be reformulated in a number of ways. We will use these results in the sequel.

We first prove the adequacy result, which means, on the one hand, the
compatibility of Ldsbr

µ with ≈ds
br (i.e., a Ldsbr

µ formula has the same truth
value on those Ltss equivalent modulo ≈ds

br) and, on the other hand, the
compatibility of ≈ds

br with Ldsbr
µ (two Ltss satisfying the same set of Ldsbr

µ

formulas are equivalent modulo ≈ds
br). Adequacy is important in practice

when verifying a Ldsbr
µ formula on an Lts: any ≈ds

br -preserving reduction
of the Lts (either minimization modulo ≈ds

br , or another partial reduction
preserving this relation) does not change the interpretation of the formula,
and moreover may improve drastically the efficiency of verification. Then,
we study the relation between the Ldsbr

µ fragment and several other weak Lµ

fragments adequate w.r.t. weak bisimilarity relations.

4.1. Mu-calculus fragment Ldsbr
µ

The Lµ fragment we consider here, called Ldsbr
µ , is defined in Figure 3.

Compared to standard Lµ, this fragment differs as follows.
It replaces the strong modalities of Lµ by three new weak operators

〈(ϕ1?.α1)
∗〉ϕ2, 〈(ϕ1?.τ)

∗.ϕ1?.α2〉ϕ2, and 〈ϕ1?.α1〉@ expressed in Pdl-∆,
where the action formulas α1 must capture the invisible action, and action
formulas α2 denote visible actions only. The ultra-weak possibility modality
〈(ϕ1?.α1)

∗〉ϕ2 characterizes the states having an outgoing sequence of (0 or
more) α1-transitions whose intermediate states satisfy ϕ1 and whose terminal
state satisfies ϕ2. The weak possibility modality 〈(ϕ1?.τ)

∗.ϕ1?.α2〉ϕ2 char-
acterizes the states having an outgoing sequence of (0 or more) τ -transitions
whose intermediate states satisfy ϕ1, leading to a state satisfying ϕ1 and
having an α2-transition to a state satisfying ϕ2. The weak infinite looping
operator 〈ϕ1?.α1〉@ characterizes the states having an infinite outgoing se-
quence of α1-transitions whose intermediate states satisfy ϕ1. When the ϕ1

12

subformula occurring in a weak operator is true, it can be omitted, because
in this case the operator becomes 〈α∗1〉ϕ2, 〈τ ∗.α2〉ϕ2, or 〈α1〉@.

The intuition behind the restriction concerning the use of action formulas
α2 is that reachability of visible transitions will remain in the Lts after maxi-
mal hiding and≈ds

br minimization, whereas reachability of invisible transitions
may be removed.

ϕ ::= 〈(ϕ1?.α1)
∗〉ϕ2 | 〈(ϕ1?.τ)

∗.ϕ1?.α2〉ϕ2 | 〈ϕ1?.α1〉@
| false | ¬ϕ1 | ϕ1 ∨ ϕ2 | X | µX.ϕ1

where τ ∈ [[α1]]A and τ 6∈ [[α2]]A

[[〈(ϕ1?.α1)
∗〉ϕ2]]M ρ = {s ∈ S | ∃m ≥ 0.s = s0 ∧ (∀0 ≤ i < m.

si
bi+1→ si+1 ∈ T ∧ bi+1 ∈ [[α1]]A ∧

si ∈ [[ϕ1]]M ρ) ∧ sm ∈ [[ϕ2]]M ρ}
[[〈(ϕ1?.τ)

∗.ϕ1?.α2〉ϕ2]]M ρ = {s ∈ S | s ∈ [[ϕ1]]M ρ ∧ ∃m ≥ 0.s = s0

∧ (∀0 ≤ i < m.si
τ→ si+1 ∈ T ∧

si+1 ∈ [[ϕ1]]M ρ) ∧ sm
b→ sm+1 ∈ T ∧

b ∈ [[α2]]A ∧ sm+1 ∈ [[ϕ2]]M ρ}
[[〈ϕ1?.α1〉@]]M ρ = {s ∈ S | s = s0 ∧ ∀i ≥ 0.(si

bi+1→ si+1 ∈ T
∧ bi+1 ∈ [[α1]]A ∧ si ∈ [[ϕ1]]M ρ)}

Figure 3: Syntax and semantics of the Ldsbr
µ fragment

In the sequel, we will often use the identity α∗1.τ
∗ = α∗1, which holds for α1

formulas capturing the invisible action (this is an instance of Lemma 4(b) in
Appendix A). The deadlock formula defined in Section 2 belongs to Ldsbr

µ ,
since it can be rewritten as follows by eliminating the ‘.’ operator:

deadlock = [true∗.¬τ] false ∧ [τ] a = [true∗] [τ ∗.¬τ] false ∧ [τ] a
Similarly, the response formula given in Section 3 can be reformulated in
Ldsbr

µ as follows:

[true∗.send]µX.(¬deadlock ∧ [¬recv]X) =
[true∗] [τ ∗.send] ([(¬recv)∗]¬deadlock ∧ [¬recv] a)

The subformula stating the inevitable reachability of a recv action, initially
expressed using a minimal fixed point operator, was replaced by the con-
junction of an ultra-weak necessity modality forbidding the occurrence of

13

deadlocks before a recv action has been reached, and a weak saturation op-
erator forbidding the presence of cycles not passing through a recv action.

In [8, Corollary 4.4], it was shown that ≈ds
br is an equivalence with the

so-called stuttering property :

Property 1 (Stuttering). Let M = 〈S,A, T, s0〉 be an Lts and let s1, s2 ∈ S
such that s1 ≈ds

br s2. If s1
τ→ s1

1
τ→ · · · τ→ sm

1
τ→ s′1 (m ≥ 0) and s′1 ≈ds

br s2,
then ∀1 ≤ i ≤ m.si

1 ≈ds
br s2.

Using the stuttering property, we can prove the following lemma.

Lemma 2. Let M = 〈S,A, T, s0〉 be an Lts and let A′ ⊆ A with τ ∈ A′

and s1, s2 ∈ S such that s1 ≈ds
br s2. Then for all m ≥ 0 with s1 = s0

1 and

∀0 ≤ i < m.si
1

bi→ si+1
1 ∈ T ∧ bi ∈ A′, there exists k ≥ 0 such that s2 = s0

2 and

∀0 ≤ j < k.(sj
2

b′j→ sj+1
2 ∈ T ∧ b′j ∈ A′∧∃0 ≤ i < m.si

1 ≈ds
br s

j
2), and sm

1 ≈ds
br s

k
2.

Proof. We proceed by induction on m.

1. Base case: m = 0, hence s1 = s0
1 = sm

1 . Clearly, we can choose k = 0
and s2 = s0

2 = sk
2.

2. Inductive case: s0
1

b1→ s1
1 · · · sm−1

1
bm→ sm

1

bm+1→ sm+1
1 . By the induction

hypothesis, there exists k ≥ 0 such that s2 = s0
2 and ∀0 ≤ j < k.(sj

2

b′j→
sj+1
2 ∈ T ∧ b′j ∈ A′ ∧ ∃0 ≤ i < m.si

1 ≈ds
br s

j
2), and sm

1 ≈ds
br s

k
2. We show

that it also holds for m+1. We distinguish two cases for sm
1

bm+1→ sm+1
1 :

(a) bm+1 = τ . Since sm
1 ≈ds

br s
k
2, by Definition 1, also sm+1

1 ≈ds
br s

k
2.

(b) bm+1 6= τ . Since sm
1 ≈ds

br s
k
2, by Definition 1, sk

2 =⇒ ŝ2
bm+1→ s′2, with

sm
1 ≈ds

br ŝ2, and sm+1
1 ≈ds

br s
′
2. Say that sk

2 =⇒ ŝ2 consists of c τ -steps

sk
2

τ→ sk+1
2 · · · sk+c−1

2
τ→ sk+c

2 with sk+c
2 = ŝ2. By Definition 1, for

all k ≤ i ≤ k + c, we have sm
1 ≈ds

br si
2. Hence, there exists a

matching sequence from s2 of length k + c + 1 with sk+c+1
2 = s′2.

Note that τ ∈ A′.

A propositional context ρ : X → 2S is said to be ≈ds
br -closed if for all

states s1, s2 ∈ S such that s1 ≈ds
br s2 and for any propositional variable

X ∈ X , s1 ∈ ρ(X) ⇔ s2 ∈ ρ(X). Now we can state the main result about
Ldsbr

µ , namely that this fragment is compatible with the ≈ds
br relation.

14

Proposition 2 (Compatibility with ≈ds
br). Let M = 〈S,A, T, s0〉 be an Lts

and let s1, s2 ∈ S such that s1 ≈ds
br s2. Then:

s1 ∈ [[ϕ]]M ρ⇔ s2 ∈ [[ϕ]]M ρ

for any state formula ϕ of Ldsbr
µ and any ≈ds

br -closed propositional context ρ.

Proof. We proceed by structural induction on ϕ. We give here the most
interesting cases, the other cases being handled in Appendix A.

Case ϕ ::= 〈(ϕ1?.α1)
∗〉ϕ2. Let s1, s2 ∈ S such that s1 ≈ds

br s2 and assume
that s1 ∈ [[〈(ϕ1?.α1)

∗〉ϕ2]]M ρ, i.e., s1 ∈ {s ∈ S | ∃m ≥ 0.s = s0 ∧ (∀0 ≤ i <

m.si
bi+1→ si+1 ∈ T ∧ bi+1 ∈ [[α1]]A ∧ si ∈ [[ϕ1]]M ρ) ∧ sm ∈ [[ϕ2]]M ρ}. This

means that:

∃m ≥ 0.s1 = s′0 ∧ (∀0 ≤ i < m.s′i
bi+1→ s′i+1 ∈ T (1)

∧ bi+1 ∈ [[α1]]A ∧ s′i ∈ [[ϕ1]]M ρ) ∧ s′m ∈ [[ϕ2]]M ρ

We have to prove that s2 ∈ [[〈(ϕ1?.α1)
∗〉ϕ2]]M ρ, which means that:

∃k ≥ 0.s2 = s′′0 ∧ (∀0 ≤ j < k.s′′j
b′j+1→ s′′j+1 ∈ T (2)

∧ b′j+1 ∈ [[α1]]A ∧ s′′j ∈ [[ϕ1]]M ρ) ∧ s′′k ∈ [[ϕ2]]M ρ

First, since s1 ≈ds
br s2, τ ∈ [[α1]]A, and (1), by Lemma 2 with A′ = [[α1]]A,

there exists k ≥ 0 with s2 = s′′0 such that ∀0 ≤ j < k.(s′′j
b′j+1→ s′′j+1 ∈

T ∧ b′j+1 ∈ [[α1]]A ∧ ∃0 ≤ i < m.s′i ≈ds
br s

′′
j) and s′m ≈ds

br s
′′
k. Furthermore, for

all 0 ≤ j < k, since there exists 0 ≤ i < m.s′i ≈ds
br s

′′
j and s′i ∈ [[ϕ1]]M ρ, by the

induction hypothesis, it follows that s′′j ∈ [[ϕ1]]M ρ. Finally, since s′m ≈ds
br s

′′
k

and s′m ∈ [[ϕ2]]M ρ, by the induction hypothesis, s′′k ∈ [[ϕ2]]M ρ. Hence, (2)
holds.
The converse implication (by considering s2 ∈ [[〈(ϕ1?.α1)

∗〉ϕ2]]M ρ) holds by
a symmetric argument.

Case ϕ ::= 〈(ϕ1?.τ)
∗.ϕ1?.α2〉ϕ2. Let s1, s2 ∈ S such that s1 ≈ds

br s2 and
assume that s1 ∈ [[〈(ϕ1?.τ)

∗.ϕ1?.α2〉ϕ2]]M ρ, i.e., s1 ∈ {s ∈ S | s ∈ [[ϕ1]]M ρ ∧
∃m ≥ 0.s = s0 ∧ (∀0 ≤ i < m.si

τ→ si+1 ∈ T ∧ si+1 ∈ [[ϕ1]]M ρ) ∧ sm
b→

sm+1 ∈ T ∧ b ∈ [[α2]]A ∧ sm+1 ∈ [[ϕ2]]M ρ}. This means that:

s1 ∈ [[ϕ1]]M ρ ∧ ∃m ≥ 0.s1 = s′0 ∧ (∀0 ≤ i < m.s′i
τ→ s′i+1 ∈ T (3)

∧ s′i+1 ∈ [[ϕ1]]M ρ) ∧ s′m
b→ s′m+1 ∧ b ∈ [[α2]]A ∧ s

′
m+1 ∈ [[ϕ2]]M ρ

15

We have to prove that s2 ∈ [[〈(ϕ1?.τ)
∗.ϕ1?.α2〉ϕ2]]M ρ, which means that:

s2 ∈ [[ϕ1]]M ρ ∧ ∃k ≥ 0.s2 = s′′0 ∧ (∀0 ≤ i < k.s′′i
τ→ s′′i+1 ∈ T (4)

∧ s′′i+1 ∈ [[ϕ1]]M ρ) ∧ s′′m
c→ s′′m+1 ∧ c ∈ [[α2]]A ∧ s

′′
m+1 ∈ [[ϕ2]]M ρ

First, since s1 ≈ds
br s2 and (3), by Lemma 2 with A′ = {τ}, there exists k ≥ 0

with s2 = s′′0 such that ∀0 ≤ j < k.(s′′j
τ→ s′′j+1 ∈ T ∧ ∃0 ≤ i < m.s′i ≈ds

br s
′′
j)

and s′m ≈ds
br s

′′
k. Furthermore, for all 0 ≤ j < k, since there exists 0 ≤ i <

m.s′i ≈ds
br s

′′
j and s′i ∈ [[ϕ1]]M ρ (3), by the induction hypothesis, it follows that

s′′j ∈ [[ϕ1]]M ρ. Finally, we have to show that s′′k
c→ s′′k+1, with c ∈ [[α2]]A and

s′′k+1 ∈ [[ϕ2]]M ρ. Since s′m ≈ds
br s

′′
k, and by (3), s′m

b→ s′m+1, with b ∈ [[α2]]A, we
can distinguish two cases:

1. s′′k
b→ s′′k+1 and s′m+1 ≈ds

br s
′′
k+1. Since s′m+1 ∈ [[ϕ2]]M ρ, by the induction

hypothesis, s′′k+1 ∈ [[ϕ2]]M ρ. Furthermore, b ∈ [[α2]]A. Hence, (4) holds.

2. There exists a ŝ′′k such that s′′k =⇒ ŝ′′k
b→ s′′k+1, with s′m ≈ds

br ŝ′′k and
s′m+1 ≈ds

br s′′k+1. By Definition 1, it follows that for all intermediate
states s in s′′k =⇒ ŝ′′k, we have s′m ≈ds

br s, and since s′m ∈ [[ϕ1]]M ρ, by
the induction hypothesis, also s ∈ [[ϕ1]]M ρ. But then, we can select a
higher k, thereby extending the path s2 =⇒ s′′k to s2 =⇒ ŝ′′k, i.e. we can
initially select ŝ′′k as s′′k. If we do this, then since s′m+1 ∈ [[ϕ2]]M ρ, by the
induction hypothesis, s′′k+1 ∈ [[ϕ2]]M ρ. Furthermore, b ∈ [[α2]]A. Hence,
(4) holds.

The converse implication (by considering s2 ∈ [[〈(ϕ1?.τ)
∗.ϕ1?.α2〉ϕ2]]M ρ)

holds by a symmetric argument.

Case ϕ ::= 〈ϕ1?.α1〉@. Let s1, s2 ∈ S such that s1 ≈ds
br s2 and assume that

s1 ∈ [[〈ϕ1?.α1〉@]]M ρ, i.e., s1 ∈ {s ∈ S | s = s0 ∧ ∀i ≥ 0.(si
bi→ si+1 ∧ bi ∈

[[α1]]A ∧ si ∈ [[ϕ1]]M ρ)}. This means that:

s1 = s′0 ∧ ∀i ≥ 0.(s′i
bi→ s′i+1 ∧ bi ∈ [[α1]]A ∧ s′i ∈ [[ϕ1]]M ρ) (5)

We have to prove that s2 ∈ [[〈ϕ1?.α1〉@]]M ρ, which means that:

s2 = s′′0 ∧ ∀j ≥ 0.(s′′j
b′j→ s′′j+1 ∧ b′j ∈ [[α1]]A ∧ s′′j ∈ [[ϕ1]]M ρ) (6)

Since s1 ≈ds
br s2, τ ∈ [[α1]]A, and (5), by Lemma 2 with A′ = [[α1]]A, for any

finite prefix of length m ≥ 0 of the infinite path π from s1, there exists a

16

finite path of length k ≥ 0 from s2 such that s2 = s′′0 ∧ ∀0 ≤ j < k.(s′′j
b′j→

s′′j+1 ∧ b′j ∈ [[α1]]A ∧ ∃0 ≤ i < m.s′i ≈ds
br s

′′
j) and s′m ≈ds

br s
′′
k, hence, by the

induction hypothesis, for all 0 ≤ j ≤ k, we have s′′j ∈ [[ϕ1]]M ρ. We distinguish
two cases:

1. π contains an infinite number of transitions with a label in [[α1]]A \{τ}.
Repeatedly applying the above reasoning for intermediate states in π
yields that (6) holds for s2.

2. π contains a finite number of transitions with a label in [[α1]]A \ {τ}.
Then, there exists an ŝ reachable from s1 such that from ŝ, an infinite
τ -path exists. By the earlier reasoning, there exists an ŝ′ reachable
from s2 such that ŝ ≈ds

br ŝ
′ and for all states s′′j on the path from s2 to

ŝ′, we have s′′j ∈ [[ϕ1]]M ρ. Finally, since ŝ ≈ds
br ŝ

′, by the second clause
of Definition 1, there also exists an infinite τ -path π′ from ŝ′. Finally,
by Definition 1 and repeated application of Definition 1, it follows that
for all states s′′j in π′, ŝ ≈ds

br s′′j , hence by the induction hypothesis,
s′′j ∈ [[ϕ1]]M ρ. Therefore, (6) holds for s2.

The converse implication (by considering s2 ∈ [[〈ϕ1?.α1〉@]]M ρ) holds by a
symmetric argument.

From Proposition 2, it can be easily deduced that a closed Ldsbr
µ formula

ϕ has the same truth value on two Ltss M1 = 〈S1, A, T1, s01〉 and M2 =
〈S2, A, T2, s02〉 that are equivalent modulo ≈ds

br . Indeed, the two Ltss can be
merged into a single one by joining the sets of states and transitions, and
Proposition 2 can be applied to the initial states s01 and s02. In practice,
M2 can be obtained from M1 by applying maximal hiding followed by a ≈ds

br -
preserving reduction, in particular modulo strong equivalence or divergence-
preserving τ -confluence.

4.2. Compatibility of ≈ds
br with Ldsbr

µ

To obtain a complete logical characterization of ≈ds
br , we must show that

this relation is compatible with Ldsbr
µ , meaning that two Ltss satisfying the

same set of Ldsbr
µ formulas are equivalent modulo ≈ds

br . This is stated by the
following proposition, whose proof relies upon the fact that the characteristic
formula [20] of ≈ds

br can be expressed in Ldsbr
µ .

Proposition 3 (Compatibility of ≈ds
br with Ldsbr

µ). Let M1 = 〈S1, A, T1, s01〉
and M2 = 〈S2, A, T2, s02〉 be two Ltss. Then:

(∀ϕ ∈ Ldsbr
µ .(M1 |= ϕ⇔M2 |= ϕ)) ⇒M1 ≈ds

br M2.

17

Proof Sketch. Let M1,M2 be two Ltss satisfying the statement above, and
let ϕ≈ds

br
(M1) be the characteristic formula of M1 w.r.t. ≈ds

br , meaning that

any Lts equivalent to M1 modulo ≈ds
br must satisfy this formula. If ϕ≈ds

br
(M1)

is expressible in Ldsbr
µ , and since M1 |= ϕ≈ds

br
(M1) by definition, then also

M2 |= ϕ≈ds
br

(M1), which implies M1 ≈ds
br M2. Thus, to complete the proof, it

remains to show that ϕ≈ds
br

(M1) is expressible in Ldsbr
µ .

To carry out this task, we rely upon existing work on constructing char-
acteristic formulas, namely for weak bisimilarity [21] and for strong and
ready bisimilarity (among other relations) [22, 23]. The approach is as fol-
lows: if a recursively defined logical formula expresses the definition of a
behavioral relation, then the largest interpretation of that formula is the
characteristic formula for the derived behavioral relation. For a given Lts
M = 〈S,A, T, s0〉, we construct a system of equations expressed using Ldsbr

µ ,
that captures the largest divergence-sensitive branching bisimulation that
can be constructed over S × S. More precisely, we will define a declaration
function D : X → Ldsbr

µ , providing us with a system of equations over X that
decides the meaning of each variable.

It is assumed that X is indexed over S, i.e. {Xs | s ∈ S}. Now, the
largest fixed point of D over the set of all environments ρ, which we refer to
as ρD

ν , gives the characteristic formula for a binary relation R over S if, for
all s, t ∈ S:

s ∈ ρD
ν (Xt) ⇐⇒ (s, t) ∈ R

First of all, we need to define an appropriate propositional context. We
define context ρS as follows:

ρS(Xt) = {s ∈ S | (s, t) ∈ R}

To construct D, we need to translate the two clauses of Definition 1 and
their symmetric versions to construct a characteristic formula. These are:

1. if s
b→ s′ then (1) either b = τ with s′ R t, or (2) t=⇒ t̂

b→ t′ with s R t̂
and s′ R t′.

2. if t
b→ t′ then (1) either b = τ with s R t′, or (2) s=⇒ ŝ

b→ s′ with ŝ R t
and s′ R t′.

3. if there is an infinite sequence of states s0, s1, s2, . . . such that s0 = s,
s0

τ→ s1
τ→ s2

τ→ . . . and sk R t for all k ≥ 0, then there is an infinite

18

sequence of states t0, t1, t2, . . . such that t0 = t, t0
τ→ t1

τ→ t2
τ→ . . . and

sk R t` for all k, ` ≥ 0.

4. if there is an infinite sequence of states t0, t1, t2, . . . such that t0 = t,
t0

τ→ t1
τ→ t2

τ→ . . . and tk R s for all k ≥ 0, then there is an infinite
sequence of states s0, s1, s2, . . . such that s0 = s, s0

τ→ s1
τ→ s2

τ→ . . .
and tk R s` for all k, ` ≥ 0.

Clause 2 can be translated straightforwardly, along the lines of [21, 23],
as follows:

(ρS, s) |=M

∧
t′.t

τ→t′

〈(Xt?.τ)
∗〉Xt′ ∧

∧
b∈A\{τ},t′.t b→t′

〈(Xt?.τ)
∗.Xt?.b〉Xt′

Here, (ρS, s) |=M ϕ expresses that s satisfies ϕ with context ρS. The
first part of the above formula expresses that for all τ -transitions enabled
from t leading to a state t′, there exists a path from s of (0 or more) τ -
transitions along intermediate states satisfying Xt, i.e. that are divergence-
sensitive branching bisimilar to t, such that the final state satisfies Xt′ , i.e.
is divergence-sensitive branching bisimilar to t′. This covers clause 2.1 and
2.2 in the case that b = τ . The second part concerns all actions in A \ {τ}.
For all visible b-transitions from t to a state t′, there exists a path from s of
(0 or more) τ -transitions along states satisfying Xt, leading to a state from
where a b-transition is enabled to a state satisfying Xt′ . The necessity for
these two parts stems from the fact that in the weak possibility modality of
Ldsbr

µ , only visible actions may be used.
For clause 1, note that in Ldsbr

µ , we cannot reason about visible transitions
being enabled in a particular state, for example s

b→ s′. However, we can
reason about all visible transitions that are reachable from s via (0 or more) τ -
transitions. Doing so does not weaken the clause. Therefore, we can translate
clause 1 to the following:

(ρS, s) |=M [(Xt?.τ)
∗] (Xt ∨

∨
t̂.t =⇒ t̂ ∧ (ρ,t̂)|=MXt

(
∨

t′.t̂
τ→t′

Xt′))

∧
∧

b∈A\{τ}

[(Xt?.τ)
∗.Xt?.b]

∨
t̂.t =⇒ t̂ ∧ (ρ,t̂)|=MXt

(
∨

t′.t̂
b→t′

Xt′)

19

Similar to the translation of clause 2, the first part addresses the τ -
transitions. For any τ -transition, reachable from s via (0 or more) τ -
transitions, via states satisfying Xt, we either have that the end state also
satisfies Xt, i.e. it is divergence-sensitive branching bisimilar to t (clause 1.1),
or it satisfies at least one Xt′ , where t′ is reachable from t via a state t̂. State
t̂ should be reachable from t via (0 or more) τ -transitions, and satisfy Xt,
i.e. it should be divergence-sensitive branching bisimilar to t, and hence to
s, and t̂ must have an outgoing τ -transition to t′. This translates clause 1.2,
in the case that b = τ . The second part of the translation covers clause 1.2
for the visible transitions.

Clause 4 can be translated to the following:

(ρS, s) |=M

∧
t′.t =⇒ t′

[τ] a ∨ 〈Xt′?.τ〉@

It expresses that every state t′ reachable from t via a τ -path is either
saturated on τ , i.e. the path cannot be extended to an infinite τ -path, hence
the clause is not applicable for this state, or there is an infinite τ -path from s
such that all intermediate states satisfyXt′ . Since for all infinite τ -paths from
t, the formula expresses that for all intermediate states t′, there must exist
an infinite τ -path from s in which the intermediate states are divergence-
sensitive branching bisimilar to t′, this covers that all the states in one path
must be divergence-sensitive branching bisimilar to all the states in the other
path.

In order to translate clause 3, we must first reformulate it. As explained
in [8], the requirement that t can diverge, and all states on that infinite τ -path
satisfy certain properties, can be replaced by the requirement that a state t′

satisfying those properties can be reached from t via a single τ -transition. If
a binary relation satisfies that, then the divergence of t can be inductively
constructed [8]. Along these lines, we reformulate clause 3 as follows:

3′. if there is an infinite sequence of states s0, s1, s2, . . . such that s0 = s,
s0

τ→ s1
τ→ s2

τ→ . . . and sk R t for all k ≥ 0, then there exists a t′ such
that t

τ→ t′ and sk R t′ for all k ≥ 0.

Clause 3′ can be translated to the following:

(ρS, s) |=M [(Xt?.τ)
∗] ([τ] a ∨

∨
t′.t

τ→t′

Xt′)

20

As explained in [23], we can now construct a monotonic function dec-
laration D, by combining the translations of the individual clauses, such
that the characteristic formula is given by the largest interpretation of that
declaration:

D(Xt) = [(Xt?.τ)
∗] (Xt ∨

∨
t̂.t =⇒ t̂ ∧ (ρ,t̂)|=MXt

(
∨

t′.t̂
τ→t′

Xt′))

∧
∧

b∈A\{τ}

[(Xt?.τ)
∗.Xt?.b]

∨
t̂.t =⇒ t̂ ∧ (ρ,t̂)|=MXt

(
∨

t′.t̂
b→t′

Xt′)

∧
∧

t′.t
τ→t′

〈(Xt?.τ)
∗〉Xt′ ∧

∧
b∈A\{τ},t′.t b→t′

〈(Xt?.τ)
∗.Xt?.b〉Xt′

∧ [(Xt?.τ)
∗] ([τ] a ∨

∨
t′.t

τ→t′

Xt′)

∧
∧

t′.t =⇒ t′

[τ] a ∨ 〈Xt′?.τ〉@

This completes our adequacy result between Ldsbr
µ and ≈ds

br . In practice,
it is desirable to use a temporal logic sufficiently expressive to capture the
essential classes of properties (safety, liveness, fairness) of concurrent sys-
tems. Thus, the question is whether Ldsbr

µ subsumes the existing temporal
logics adequate w.r.t. weak equivalence relations (such as τ ∗.a and weak
bisimilarities); in the next subsection, we show that this is indeed the case.

4.3. Expressiveness of Ldsbr
µ

We examine here the relation between Ldsbr
µ and existing µ-calculi ade-

quate w.r.t. weak equivalence relations. We show first that Ldsbr
µ is equally

expressive to µ-Actl\X, and then we show that Ldsbr
µ subsumes (a relevant

fragment of) selective Lµ, as well as the weak Lµ.

Translating Ldsbr
µ into µActl\X and back. Actl [6] is a branching-time

logic similar to Ctl [24], but interpreted on Ltss. It consists of action
formulas (denoted by α) and state formulas (denoted by ϕ) expressing prop-
erties about actions and states of an Lts, respectively. The temporal opera-
tors of Actl\X, the fragment of the logic without the next-time operators,
are defined in Figure 4 (boolean state formulas are omitted for brevity).

21

The operator E[ϕ1αUϕ2] (resp. A[ϕ1αUϕ2]) denotes the states from which
some (resp. all) outgoing sequences lead, after 0 or more α-transitions (or
τ -transitions) whose source states satisfy ϕ1, to a state satisfying ϕ2. The
operator E[ϕ1α1

Uα2ϕ2] (resp. A[ϕ1α1
Uα2ϕ2]) denotes the states from which

some (resp. all) outgoing sequences lead, after 0 or more α1-transitions (or τ -
transitions) whose source states satisfy ϕ1, to an α2-transition whose source
state satisfies ϕ1 and whose target state satisfies ϕ2. The action subformulas
α, α1, and α2 denote visible actions only. The lower part of Figure 4 shows
the encodings in Lµ of the Actl\X temporal operators, as proposed in [12].

State formulas:
ϕ ::= E[ϕ1αUϕ2] | E[ϕ1α1

Uα2ϕ2] | A[ϕ1αUϕ2] | A[ϕ1α1
Uα2ϕ2]

[[E[ϕ1αUϕ2]]]M = {s ∈ S | ∃s1(= s)
b1→ · · · bi−1→ si · · · .∃k ≥ 1.

∀1 ≤ j < k.(bj ∈ [[α ∨ τ]]A ∧ sj ∈ [[ϕ1]]M) ∧
sk ∈ [[ϕ2]]M}

[[E[ϕ1α1
Uα2ϕ2]]]M = {s ∈ S | ∃s1(= s)

b1→ · · · bi−1→ si · · · .∃k ≥ 1.
∀1 ≤ j < k.(bj ∈ [[α1 ∨ τ]]A ∧ sj ∈ [[ϕ1]]M) ∧
bk ∈ [[α2]]A ∧ sk+1 ∈ [[ϕ2]]M}

[[A[ϕ1αUϕ2]]]M = {s ∈ S | ∀s1(= s)
b1→ · · · bi−1→ si · · · .∃k ≥ 1.

∀1 ≤ j < k.(bj ∈ [[α ∨ τ]]A ∧ sj ∈ [[ϕ1]]M) ∧
sk ∈ [[ϕ2]]M}

[[A[ϕ1α1
Uα2ϕ2]]]M = {s ∈ S | ∀s1(= s)

b1→ · · · bi−1→ si · · · .∃k ≥ 1.
∀1 ≤ j < k.(bj ∈ [[α1 ∨ τ]]A ∧ sj ∈ [[ϕ1]]M) ∧
bk ∈ [[α2]]A ∧ sk+1 ∈ [[ϕ2]]M}

Encoding in Lµ:
E[ϕ1αUϕ2] = µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X))

E[ϕ1α1
Uα2ϕ2] = µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X))

A[ϕ1αUϕ2] = µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X))
A[ϕ1α1

Uα2ϕ2] = µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧
[α2 ∧ ¬α1]ϕ2 ∧ [α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X)

Figure 4: Syntax, semantics, and Lµ encoding of Actl\X temporal operators

Actl\X and also its richer version Actl∗\X, which captures linear-time

22

properties, were shown to be adequate w.r.t. ≈ds
br [6]. Moreover, Actl\X

was extended in [12] with fixed point operators, yielding a fragment of Lµ

called µ-Actl\X, which subsumes Actl∗\X. The temporal operators of
Actl\X can be translated in Ldsbr

µ , as stated by the following proposition
(proven in Appendix A).

Proposition 4 (Translation from Actl\X to Ldsbr
µ). The following identities

hold in Lµ:

µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X)) = 〈(ϕ1?.α ∨ τ)∗〉ϕ2

µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X)) = 〈(ϕ1?.α1 ∨ τ)∗〉 〈(ϕ1?.τ)
∗.α2〉ϕ2

µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) =
[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [(¬ϕ2?.τ)

∗.¬ϕ2?.¬(α ∨ τ)] false))
∧
[¬ϕ2?.α ∨ τ] a

µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) =

νX. [(¬α2)
∗] (ϕ1 ∧ ¬deadlock ∧ [τ ∗.¬(α1 ∨ α2 ∨ τ)] false ∧

[τ ∗.α2 ∧ ¬α1]ϕ2 ∧ [τ ∗.α1 ∧ α2] (ϕ2 ∨X) ∧X)
∧
νX.([¬α2] a ∧ [(¬α2)

∗] [τ ∗.α1 ∧ α2] (ϕ2 ∨X))
∧
µX. [(¬α2)

∗] [τ ∗.α1 ∧ α2] (ϕ2 ∨X)

The intuition underlying these identities is the following: the EU oper-
ators are translated into Pdl diamond modalities specifying the existence
of the desired transition sequences; the A[ϕ1αUϕ2] operator is translated as
the conjunction of a Pdl necessity modality expressing that all sequences
having a prefix made of α-transitions must also have the right suffix lead-
ing to ϕ2-states, and a Pdl-∆ saturation operator forbidding the infinite
sequences of α-transitions not containing ϕ2-states; and the A[ϕ1α1

Uα2ϕ2]
operator is translated as the conjunction of three Ldsbr

µ subformulas, the first
one expressing that all sequences having a prefix made of α1-transitions (and
not of α2-transitions) must also have the right suffix leading to ϕ2-states,
and the two other ones forbidding the infinite sequences not containing α2-
transitions or ϕ2-states. By applying the translations of Actl\X temporal

23

operators given in Proposition 4, and given that both Ldsbr
µ and µ-Actl\X

have the same boolean and fixed point operators, it follows that µ-Actl\X
is subsumed by Ldsbr

µ . The converse is also true, because the weak and ultra
weak modalities of Ldsbr

µ can be encoded in µ-Actl\X as follows (α1 denotes
visible or invisible actions, whereas α2 denotes visible actions only):

〈(ϕ1?.α1)
∗〉ϕ2 = E[ϕ1α1∧¬τUϕ2]

〈(ϕ1?.τ)
∗.ϕ1?.α2〉ϕ2 = E[ϕ1falseUα2ϕ2]
〈ϕ1?.α1〉@ = νX.E[ϕ1falseUα1X]

The first two identities can be easily shown by replacing the EU operators
with their fixed point counterparts given in Figure 4, and the third one makes
use of Lemma 4(c) given in Appendix A. Hence, Ldsbr

µ and µ-Actl\X are
equally expressive. Therefore, the adequacy result of Ldsbr

µ w.r.t. ≈ds
br shown

in Sections 4.1 and 4.2 also implies the adequacy of µ-Actl\X w.r.t. ≈ds
br .

This new adequacy result completes the already known adequacy of µ-Actl
w.r.t. strong bisimulation [13]. Another temporal logic adequate with ≈ds

br

was proposed in [25] by extending Ctl∗\X (and hence, Ctl\X) with a path
operator expressing the existence of infinite sequences. This logic, which
is interpreted on Ltss via the translation from Kripke structures to Ltss
defined in [6], can be translated into µ-Actl\X following the lines of [26],
and therefore is subsumed by Ldsbr

µ .
In practice, for conciseness and efficiency of model checking, we will use

the Lµ encodings of the Actl\X operators given in Figure 4 instead of the
more complex Ldsbr

µ formulas shown in Proposition 4.
The response formula given in Section 3 can also be expressed in Actl\X:

AGtrue,sendA[truetrueUrecv true]

where AGα1,α2ϕ = ¬EFα1,α2¬ϕ = ¬E[trueα1Uα2¬ϕ] is the Actl counterpart
of the AG operator of Ctl.

Subsuming a relevant selective µ-calculus fragment. The selective µ-
calculus [10] introduces modalities indexed by sets of actions (represented
here as action formulas) specifying the reachability of certain actions after
sequences of (0 or more) actions not belonging to the indexing set. The
syntax and semantics of selective Lµ modalities, as well as their encoding
in standard Lµ, are shown in Figure 5. The selective possibility modality
〈α1〉α2

ϕ, where α1, α2 denote visible actions only, specifies the states having

24

State formulas:
ϕ ::= false | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈α1〉α2

ϕ1 | X | µX.ϕ1

[[〈α1〉α2
ϕ1]]Mρ = {s ∈ S | ∃s1(= s)

b1→ · · · bk−1→ sk
a→ sk+1.

∀1 ≤ i < k.bi 6∈ [[α1 ∨ α2]]A ∧ a ∈ [[α1]]A ∧
sk+1 ∈ [[ϕ1]]M ρ)}

Encoding in Lµ:
〈α1〉α2

ϕ1 = µX.(〈α1〉ϕ1 ∨ 〈¬(α1 ∨ α2)〉X)

Figure 5: Syntax, semantics, and Lµ encoding of selective µ-calculus modalities

an outgoing sequence of 0 or more transitions labeled by actions satisfying
neither α1, nor α2, and leading to an α1-transition.

Selective Lµ is adequate w.r.t. the τ ∗.a bisimilarity [10]: for each selective
formula ϕ, one can hide all Lts actions other than those occurring in the
modalities of ϕ and their index sets, and then minimize the Lts modulo
τ ∗.a without changing the interpretation of ϕ. Selective Lµ was shown to be
equivalent to standard Lµ, because the strong possibility modality of Lµ can
be expressed in terms of the selective one: 〈α〉ϕ = 〈α〉true ϕ. However, this
way of translating would yield no possibility of hiding actions (and hence,
reducing the Lts), because the index sets would contain all actions of the Lts.
For instance, the response formula given in Section 3 can be reformulated in
selective Lµ as follows:

[send]false µX.(〈true〉true true ∧ [¬recv]trueX)

The minimal fixed point subformula expressing the inevitable reachability of
a recv action cannot be mapped to selective Lµ modalities, which forces the
use of strong modalities (represented by selective modalities indexed by true).
Therefore, the set of actions that can be hidden according to [10] without
disturbing the interpretation of this formula is A\({send , recv}∪A) = ∅, i.e.,
no hiding of actions prior to verification would be possible in that setting.

When α1 and α2 do not cover all visible actions of the Lts, i.e.,
α1 ∨ α2 6= true, the selective possibility modality can be encoded in Ldsbr

µ

as follows: 〈α1〉α2
ϕ1 = 〈(¬(α1 ∨ α2))

∗〉 〈τ ∗.α1〉ϕ1. Therefore, Ldsbr
µ subsumes

the selective Lµ fragment whose modalities satisfy the condition above, which

25

precisely contains the selective Lµ formulas yielding a potential reduction by
allowing one to hide some actions in the Lts before verification.

Subsuming weak µ-calculus. The last logic we consider here is the weak (or
observational) µ-calculus [5], a fragment of Lµ adequate w.r.t. weak bisim-
ilarity. It introduces weak modalities specifying the reachability of certain
actions preceded and followed by 0 or more τ -transitions. The syntax, se-
mantics, and encoding of the weak Lµ modalities in standard Lµ are shown
in Figure 6. The weak possibility modality 〈〈α〉〉ϕ, where α denotes visible
actions only, specifies the states having an outgoing sequence of 0 or more
τ -transitions, followed by an α-transition, followed by another sequence of 0
or more τ -transitions, and leading to a state satisfying ϕ. The empty weak
possibility modality 〈〈〉〉ϕ denotes the states having an outgoing sequence of
0 or more τ -transitions leading to a state satisfying ϕ.

State formulas:
ϕ ::= false | ¬ϕ1 | ϕ1 ∨ ϕ2 | 〈〈α〉〉ϕ1 | 〈〈〉〉ϕ1 | X | µX.ϕ1

[[〈〈α〉〉ϕ1]]M ρ = {s ∈ S | ∃s′, s′′, s′′′ ∈ S.s⇒ s′
a→ s′′ ⇒ s′′′ ∧ a ∈ [[α]]A ∧

s′′′ ∈ [[ϕ1]]M ρ)}
[[〈〈〉〉ϕ1]]M ρ = {s ∈ S | ∃s′ ∈ S.s⇒ s′ ∧ s′ ∈ [[ϕ1]]M ρ)}

Encoding in Lµ:
〈〈α〉〉ϕ1 = µX.(〈α〉µY.(ϕ1 ∨ 〈τ〉Y) ∨ 〈τ〉X)
〈〈〉〉ϕ1 = µX.(ϕ1 ∨ 〈τ〉X)

Figure 6: Syntax, semantics, and Lµ encoding of weak µ-calculus modalities

The weak Lµ modalities can be encoded in Ldsbr
µ as follows:

〈〈α〉〉ϕ1 = 〈τ ∗.α〉 〈τ ∗〉ϕ1 〈〈〉〉ϕ1 = 〈τ ∗〉ϕ1

Weak Lµ is able to express only weak safety and liveness properties; in par-
ticular, it does not capture the inevitable reachability of a given action, and
is therefore less expressive than Ldsbr

µ .

5. Implementation and Experiments

We have implemented the maximal hiding and associated on-the-fly re-
duction machinery within the Cadp verification toolbox [15]. We exper-

26

imented on the effect of these optimizations on the Evaluator [19, 27]
model checker, which evaluates formulas of the alternation-free fragment of
Lreg

µ (without mutually recursive minimal and maximal fixed point operators)
on Ltss on-the-fly. The tool works by first translating the Lreg

µ formulas into
plain Lµ by eliminating the Pdl regular operators, and then reformulat-
ing the verification problem as the resolution of a Boolean equation system
(Bes) [28], which is solved locally using the algorithms of the Cæsar Solve
library [29] of Cadp. Evaluator makes it possible to define reusable li-
braries of derived operators (e.g., those of Actl) and property patterns (e.g.,
the pattern system of [30]).

For the sake of efficiency, we focus on Ldsbr
µ formulas having a linear-

time model checking complexity, namely the alternation-free fragment [31]
extended with the infinite looping and saturation operators of Pdl-∆ [16],
which can be evaluated in linear time using the algorithms proposed in [27].
In the formulas below, we use the operators of Pdl and Actl\X, and the
Ldsbr

µ formula inev(a) = [(¬a)∗]¬deadlock∧[¬a] a as a shorthand for express-
ing the inevitable execution of an action a. For each verification experiment,
we applied maximal hiding as stated in Proposition 1, and then carried out
Lts reductions either prior to (by minimization modulo equivalence rela-
tions), or simultaneously with (by τ -confluence reduction), the verification
of the formula.

Strong bisimulation reduction. We considered first global verification, which
consists in generating the Lts, applying maximal hiding, minimizing the Lts
modulo a bisimilarity relation, and then verifying the properties on the min-
imized Lts. Ltss are represented as files in the compact Bcg (Binary Coded
Graphs) format of Cadp. Hiding and minimization were carried out using
the Bcg Labels and Bcg Min tools [32], the whole process being auto-
mated using Svl [33] scripts. We first experimented the effect of minimizing
modulo strong bisimilarity, which although it handles visible and invisible
actions in the same way, can still improve the model checking performance
when the percentage of τ -transitions obtained after hiding is important.

We considered the alternating bit protocol, implemented in Lotos
(demo 02 of Cadp), and checked the following property, which states that
the protocol behaves as a one-place buffer (initially empty) regarding the

27

emission (action put) and reception (action get) of messages:

[true∗] ([τ ∗.put] (A[true¬getU〈τ〉@] ∧ [(¬get)∗] [τ ∗.put] false)
∧
[τ ∗.get] (A[true¬putU〈τ〉@] ∧ [(¬put)∗] [τ ∗.get] false))

This formula specifies that, after each emission (resp. reception) of a message,
a livelock — denoted by the 〈τ〉@ subformulas — is eventually reachable
because of the unreliable communication channels, and no other emission
(resp. reception) can occur until that message was received (resp. a new
message was emitted). This formula makes possible the hiding of every action
other than put and get.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 (

s
e

c
)

number of messages

gen + verif
gen + min strong + verif
gen + min branch + verif

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 100 200 300 400 500 600 700 800 900 1000

m
e

m
o

ry
 (

K
B

y
te

s
)

number of messages

gen + verif
gen + min strong + verif
gen + min branch + verif

Figure 7: Effect of strong bisimulation minimization (Alternating Bit Protocol)

The overall time and peak memory needed for verification are shown in
Figure 7 for increasingly larger configurations of the protocol. When strong
bisimulation minimization is carried out before verification, we observe gains
both in speedup and memory (factors 4 and 2 for the Lts corresponding to
1000 messages, having 12, 196, 201 states and 46, 639, 612 transitions), which
become larger with the size of the Lts. The lower plots in Figure 7 indicate
the time and peak memory consumption for the same protocol configura-
tions when minimizing modulo divergence-sensitive branching bisimulation
before performing the verification. On this example, the additional gain
w.r.t. strong bisimulation is of 10% in speedup and 5% in memory; this
rather low improvement is explained by the large amount of τ -transitions
(around 74.5% for each configuration) obtained after maximal hiding, which
yields significant reductions modulo strong bisimulation.

28

We also considered a token ring leader election protocol, implemented in
Lotos (experiment 6 in demo 17 of Cadp), and checked the following prop-
erty, stating that each station i on the ring accesses a shared resource (actions
open i and close i) in mutual exclusion with the other stations and each ac-
cess is fairly reachable, i.e., from each state of a τ -cycle due to unreliable
communication channels, it is possible to reach an open i action:

[true∗] ([τ ∗.open i][(¬close i)
∗][τ ∗.openj]false ∧

A[truetrueU〈(〈true∗〉 〈τ ∗.open i〉 true)?.τ〉@])

This formula belongs to Ldsbr
µ (after expanding the A[U] operator) and

makes possible the hiding of every action other than open i,j and close i. The
“〈...〉@” subformula of A[U] expresses the existence of infinite τ -sequences
whose intermediate states enable the potential reachability of an open i action.

 0.1

 1

 10

 100

 1000

 10000

 100000

 3 3.5 4 4.5 5 5.5 6 6.5 7

ti
m

e
 (

s
e

c
)

number of stations

gen + verif
gen + min + verif

 10000

 100000

 1e+06

 1e+07

 1e+08

 3 3.5 4 4.5 5 5.5 6 6.5 7

m
e

m
o

ry
 (

K
B

y
te

s
)

number of stations

gen + verif
gen + min + verif

Figure 8: Effect of strong bisimulation minimization (Token Ring Protocol)

The overall time and peak memory needed for verification are shown in
Figure 8 for increasingly larger configurations of the protocol. When strong
bisimulation minimization is carried out before verification, we observe gains
both in speedup and memory (factors 2.8 and 2.5 for the Lts corresponding
to 7 stations, having 53, 848, 492 states and 214, 528, 176 transitions), which
become larger with the size of the Lts.

Divergence-sensitive branching bisimulation reduction. To study the effect of
≈ds

br minimization, we considered the Dynamic Task Dispatcher (Dtd), a
complex hardware block dispatching data-intensive applications on a cluster

29

of processors for parallel execution. We use the Lnt formal model and some
of the temporal logic properties of the Dtd given in [34].

Property P2, expressed by the formula below, requires that, after waking
up a processor x (action wakeupx), the Dtd eventually informs the processor
that there is no more work left (action ld rsp nonex):

[true∗] [τ ∗.wakeupx] fair(ld rsp nonex,¬ld rsp wait slave)

The formula fair(α1, α2), where α1 denotes visible actions only and α2 must
capture the invisible action, specifies that an α1-transition is eventually
reached from the current state by avoiding the (spurious) cycles of actions
other than α1, and by forbidding α2-cycles:

fair(α1, α2) = [(¬α1)
∗] (〈true∗〉 〈τ ∗.α1〉 true ∧ [α2] a)

In the Dtd model, the cycles of ld rsp wait slave actions correspond
to a master processor waiting indefinitely for the slave processes to ter-
minate, which is an unrealistic situation in the real system, each slave
process being supposed to terminate its task. The saturation operator
[¬ld rsp wait slave] a forbids the presence of cycles containing actions other
than ld rsp wait slave, meaning that only cycles of ld rsp wait slave ac-
tions are allowed (and ignored). The formula encoding P2 belongs to Ldsbr

µ ,
enabling one to hide every action other than wakeupx, ld rsp nonex, and
ld rsp wait slave.

Property P5, expressed by the formula below, requires that each dupli-
cation operation for processor x, task c, and number n (action st dupx,c,n)
is followed by the correct number of subtask assignments (actions ld rspy,c,i)
for each 0 ≤ i < n:

[true∗]
[
τ ∗.st dupx,c,n

]∧
0≤i<n fair(ld rspy,c,i,¬ld rsp wait slave)

This formula also belongs to Ldsbr
µ , enabling one to hide every action other

than st dupx,c,n, ld rspy,c,i, and ld rsp wait slave.
The overall time and peak memory needed for verification of properties

P2 and P5 are shown in Figure 9 for increasingly larger configurations of
the Dtd. The minimization modulo ≈ds

br induces significant reductions of
both execution time (factor 20.6 for P2 on the Lts with 48, 263, 777 states)
and memory consumption (factor 5.4 for P2 on the same Lts). For prop-
erty P5, the largest three configurations considered (Ltss having more that
36, 865, 661 states), which caused memory exhaustion using the direct ap-
proach, could be checked only with the help of ≈ds

br minimization.

30

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

ti
m

e
 (

s
e

c
)

number of states

gen + verif
gen + min + verif

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

m
e

m
o

ry
 (

K
B

y
te

s
)

number of states

gen + verif
gen + min + verif

Property P2

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

ti
m

e
 (

s
e

c
)

number of states

gen + verif
gen + min + verif

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07 4e+07 4.5e+07 5e+07

m
e

m
o

ry
 (

K
B

y
te

s
)

number of states

gen + verif
gen + min + verif

Property P5

Figure 9: Effect of ≈ds
br minimization (Dynamic Task Dispatcher)

31

On-the-fly τ -confluence reduction. Lastly, we examined the effect of τ -
confluence reduction [35] carried out on-the-fly during the verification of
formulas. This reduction, which preserves branching bisimilarity, consists
in identifying confluent τ -transitions (i.e., whose execution does not alter
the observable behavior of the system), and giving them priority over their
neighbors during the Lts traversal. The detection of confluent τ -transitions
is done on-the-fly by reformulating the problem as a Bes resolution [36, 37],
which is performed locally using the algorithms of Cæsar Solve. In order
to make the reduction compatible with ≈ds

br , we enhanced the τ -confluence
detection with the bookkeeping of divergence, by exploiting the τ -cycle com-
pression algorithm proposed in [38]. In practice, this amounts to reduce the
Lts by τ -cycle compression, which collapses the strongly connected compo-
nents made of τ -transitions and replaces them with τ -loops, and then reduce
the Lts further by detecting τ -confluent transitions and deleting their neigh-
bors. These two reductions, both carried out on-the-fly, are invoked in a
demand-driven way by the model checking algorithms of Evaluator.

We considered the distributed version of Erathosthene’s sieve, imple-
mented using Lotos processes and Exp networks of automata (demo 36
of Cadp). We checked the following formula, expressing that each prime
number p fed as input to the sieve will be eventually delivered as output
and each non-prime number q will be filtered (where inev(a), expressing the
inevitable execution of a, was defined at the beginning of this section):

[true∗] ([τ ∗.genp]inev(outputp) ∧ [τ ∗.genq][true∗.¬output q]false)

This formula belongs to Ldsbr
µ (after eliminating the concatenation operators)

and makes possible the hiding of every action other than genp,q and outputp,q.
The overall time and peak memory needed for verification are shown in

Figure 10 for increasingly larger configurations of the sieve. We observe a
substantial increase in speed in the presence of τ -confluence reduction (about
one order of magnitude for a sieve with 10 units). The reduction in memory
usage becomes apparent once the size of the system becomes sufficiently
large, such that the memory overhead induced by the presence of the on-the-
fly reduction machinery is compensated by the memory required for verifying
the formula.

Overall experiment conclusion. From the experiments shown above, and also
from other use cases, we noticed that, when the percentage of τ -transitions

32

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8 9 10

ti
m

e
 (

s
e

c
)

number of units in the sieve

without tau-confluence
with tau-confluence

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9 10

m
e

m
o

ry
 (

K
b

y
te

s
)

number of units in the sieve

without tau-confluence
with tau-confluence

Figure 10: Effect of on-the-fly τ -confluence reduction (Erathostene’s sieve)

obtained after maximal hiding is important (e.g., around 75% for the Alter-
nating Bit Protocol), all reductions are likely to improve the performance
of verification. This is valid even for strong bisimulation, which has a low
computational cost compared to weak equivalences, and is able in some cases
to merge large parts of the invisible behaviour.

When the system under analysis contains many interleavings of indepen-
dent transitions (e.g., for loosely-coupled systems, such as the Erathosthene’s
sieve), the partial order reductions applied on-the-fly simultaneously with
maximal hiding are likely to yield good results.

Finally, for large Ltss that can be constructed explicitly (e.g., the large
configurations of the Dtd), a viable strategy seems to minimize them, after
applying maximal hiding, modulo divergent-sensitive branching bisimulation
using state-of-the art partition refinement algorithms, which have a better
complexity than on-the-fly reductions.

6. Conclusion and Future Work

We have proposed two techniques enabling one to improve automatically
the effectiveness of model checking modal µ-calculus (Lµ) formulas on Ltss
by applying reductions modulo bisimilarity relations. The first technique,
which uses strong bisimilarity, involves the maximal hiding of an Lts w.r.t.
a given Lµ formula without changing its truth value on that Lts. In this
way, the Lts can be minimized modulo strong bisimilarity before carrying
out the verification. This technique is not intrusive, meaning that the speci-
fier is not forced to write Lµ formulas in a certain way. The second technique,

33

which uses divergence-sensitive branching bisimilarity (≈ds
br), relies on a Lµ

fragment, called Ldsbr
µ (equally expressive to µ-Actl\X), that we proved ad-

equate w.r.t. this relation. After applying maximal hiding w.r.t. a given
Ldsbr

µ formula, the Lts can be reduced modulo ≈ds
br , either globally (i.e., by

minimization prior to), or locally (i.e., by on-the-fly reduction simultaneously
with) the verification of the formula. Experimental results on several exam-
ples of concurrent systems illustrate the effectiveness of these techniques.

As future work, we plan to study which property patterns of the sys-
tem [30] can be translated in Ldsbr

µ , so as to provide useful information about
the possible reductions modulo ≈ds

br . We also plan to continue experiment-
ing with maximal hiding and on-the-fly reduction by using weak forms of
divergence-sensitive τ -confluence implemented in a distributed setting [39],
by using clusters or grids for Lts reduction and verification. Finally, it is
interesting to investigate property-dependent reductions in the context of
directed model checking [40].

Acknowledgments

We are grateful to the anonymous referees for their insightful comments,
which allowed us to correct an error and to improve the text accordingly.
We also thank Wendelin Serwe for carrying out the reduction experiments
and gracefully providing the results concerning the Dtd case-study. These
experiments were carried out using the Grid’5000 experimental testbed6 built
by Inria with support from CNRS, RENATER, several Universities, and
other funding bodies.

References

[1] R. Mateescu, A. J. Wijs, Property-Dependent Reductions for the Modal
Mu-Calculus, in: A. Groce, M. Musuvathi (Eds.), Proceedings of
the 18th International SPIN Workshop on Model Checking Software
(SPIN’11), Vol. 6823 of Lecture Notes in Computer Science, Springer,
2011, pp. 2–19.

[2] E. Clarke, O. Grumberg, D. Peled, Model Checking, The MIT Press,
1999.

6See http://www.grid5000.fr

34

[3] J. Baeten, A Brief History of Process Algebra, Theoretical Computer
Science 335 (2-3) (2005) 131–146.

[4] D. Kozen, Results on the propositional µ-calculus, Theoretical Com-
puter Science 27 (1983) 333–354.

[5] C. Stirling, Modal and Temporal Properties of Processes, Springer, 2001.

[6] R. D. Nicola, F. W. Vaandrager, Action versus State Based Logics for
Transition Systems, in: I. Guessarian (Ed.), Semantics of Systems of
Concurrent Processes, LITP Spring School on Theoretical Computer
Science, Vol. 469 of Lecture Notes in Computer Science, Springer, 1990,
pp. 407–419.

[7] R. v. Glabbeek, W. Weijland, Branching Time and Abstraction in Bisim-
ulation Semantics, Journal of the ACM 43 (3) (1996) 555–600.

[8] R. v. Glabbeek, B. Luttik, N. Trčka, Branching Bisimilarity with Ex-
plicit Divergence, Fundamenta Informaticae 93 (4) (2009) 371–392.

[9] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.

[10] R. Barbuti, N. de Francesco, A. Santone, G. Vaglini, Selective Mu-
Calculus and Formula-Based Equivalence of Transition Systems, Journal
of Computer and System Science 59 (3) (1999) 537–556.

[11] J.-C. Fernandez, L. Mounier, “On the Fly” Verification of Behavioural
Equivalences and Preorders, in: K. G. Larsen, A. Skou (Eds.), Proceed-
ings of the 3rd Workshop on Computer-Aided Verification (CAV’91),
Vol. 575 of Lecture Notes in Computer Science, Springer, 1991, pp.
181–191.

[12] A. Fantechi, S. Gnesi, G. Ristori, From ACTL to Mu-Calculus, in: Pro-
ceedings of the ERCIM Workshop on Theory and Practice in Verifica-
tion, 1992, pp. 3–10.

[13] A. Fantechi, S. Gnesi, G. Ristori, Modelling transition systems within an
action based logic, Technical Report TR-005, IEI-CNR, Pisa (December
1995).

35

[14] A. Fantechi, S. Gnesi, F. Mazzanti, R. Pugliese, E. Tronci, A sym-
bolic model checker for ACTL, in: D. Hutter, W. Stephan, P. Traverso,
M. Ullmann (Eds.), Proceedings of the International Workshop on Cur-
rent Trends in Applied Formal Methods FM-Trends’98 (Boppard, Ger-
many), Vol. 1641 of LNCS, Springer Verlag, 1998, pp. 228–242.

[15] H. Garavel, F. Lang, R. Mateescu, W. Serwe, CADP 2011: A Toolbox
for the Construction and Analysis of Distributed Processes, Interna-
tional Journal on Software Tools for Technology Transfer (STTT) 15 (2)
(2013) 89–107.

[16] R. Streett, Propositional Dynamic Logic of Looping and Converse, In-
formation and Control 54 (1-2) (1982) 121–141.

[17] E. A. Emerson, C.-L. Lei, Efficient model checking in fragments of the
propositional mu-calculus, in: Proceedings of the 1st International Sym-
posium on Logic in Computer Science LICS’86, 1986, pp. 267–278.

[18] J.-P. Queille, J. Sifakis, Fairness and related properties in transition
systems — a temporal logic to deal with fairness, Acta Informatica 19
(1983) 195–220.

[19] R. Mateescu, M. Sighireanu, Efficient On-the-Fly Model-Checking for
Regular Alternation-Free Mu-Calculus, Science of Computer Program-
ming 46 (3) (2003) 255–281.

[20] S. Graf, J. Sifakis, A Modal Characterization of Observational Congru-
ence on Finite Terms of CCS, in: J. Paredaens (Ed.), Proceedings of
the 11th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’84), Vol. 172 of Lecture Notes in Computer Science,
Springer, 1984, pp. 222–234.

[21] M. Müller-Olm, Derivation of Characteristic Formulae, in: P. Jančar,
M. Kretinsky (Eds.), Proceedings of the MFCS’98 Workshop on Concur-
rency, Algorithms and Tools, Vol. 18 of Electronic Notes in Theoretical
Computer Science, Elsevier, 1998, pp. 159–170.

[22] B. Steffen, A. Ingólfsdóttir, Characteristic Formulae for Processes with
Divergence, Information and Computation 110 (1) (1994) 149–163.

36

[23] L. Aceto, A. Ingólfsdóttir, J. Sack, Characteristic Formulae for Fixed-
Point Semantics: A General Framework, in: S. Fröschle, D. Gorla (Eds.),
Proceedings of the 16th International Workshop on Expressiveness in
Concurrency (EXPRESS’09), Vol. 8 of Electronic Proceedings in Theo-
retical Computer Science, Open Publishing Association, 2009, pp. 1–15.

[24] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic Verification
of Finite-State Concurrent Systems using Temporal Logic Specifica-
tions, ACM Transactions on Programming Languages and Systems 8 (2)
(1986) 244–263.

[25] R. v. Glabbeek, B. Luttik, N. Trčka, Computation Tree Logic with
Deadlock Detection, Logical Methods in Computer Science 5 (4-5)
(2009) 1–24.

[26] M. Dam, Ctl∗ and Ectl∗ as Fragments of the Modal µ-calculus, The-
oretical Computer Science 126 (1) (1994) 77–96.

[27] R. Mateescu, D. Thivolle, A Model Checking Language for Concurrent
Value-Passing Systems, in: J. Cuellar, T. Maibaum, K. Sere (Eds.),
Proceedings of the 15th International Symposium on Formal Methods
(FM’08), Vol. 5014 of Lecture Notes in Computer Science, Springer,
2008, pp. 148–164.

[28] H. R. Andersen, Model Checking and Boolean Graphs, Theoretical Com-
puter Science 126 (1) (1994) 3–30.

[29] R. Mateescu, CAESAR SOLVE: A Generic Library for On-the-Fly Res-
olution of Alternation-Free Boolean Equation Systems, International
Journal on Software Tools for Technology Transfer (STTT) 8 (1) (2006)
37–56.

[30] M. B. Dwyer, G. S. Avrunin, J. C. Corbett, Patterns in Property Specifi-
cations for Finite-State Verification, in: Proceedings of the 21st Interna-
tional Conference on Software Engineering (ICSE’99), ACM Computer
Society Press, 1999, pp. 411–420.

[31] R. Cleaveland, B. Steffen, A Linear-Time Model-Checking Algorithm for
the Alternation-Free Modal Mu-Calculus, Formal Methods in System
Design 2 (2) (1993) 121–147.

37

[32] N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu, W. Serwe,
Ten Years of Performance Evaluation for Concurrent Systems Using
CADP, in: T. Margaria, B. Steffen (Eds.), Proceedings of the 4th In-
ternational Symposium on Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA’10), Part II, Vol. 6416 of Lecture
Notes in Computer Science, Springer, 2010, pp. 128–142.

[33] H. Garavel, F. Lang, SVL: a Scripting Language for Compositional Ver-
ification, in: M. Kim, B. Chin, S. Kang, D. Lee (Eds.), Proceedings of
the 21st IFIP WG 6.1 International Conference on Formal Techniques
for Networked and Distributed Systems (FORTE’2001), IFIP, Kluwer
Academic Publishers, 2001, pp. 377–392.

[34] E. Lantreibecq, W. Serwe, Formal Analysis of a Hardware Dynamic Task
Dispatcher with CADP, Science of Computer Programming, to appear.
doi:http://dx.doi.org/10.1016/j.scico.2013.01.003.

[35] J. F. Groote, M. P. A. Sellink, Confluence for Process Verification, The-
oretical Computer Science 170 (1–2) (1996) 47–81.

[36] G. Pace, F. Lang, R. Mateescu, Calculating τ -Confluence Composition-
ally, in: J. Warren A. Hunt, F. Somenzi (Eds.), Proceedings of the 15th
International Conference on Computer Aided Verification (CAV’2003),
Vol. 2725 of Lecture Notes in Computer Science, Springer, 2003, pp.
446–459.

[37] R. Mateescu, A. J. Wijs, Efficient On-the-Fly Computation of Weak
Tau-Confluence, Research Report RR-7000, INRIA (July 2009).

[38] R. Mateescu, On-the-fly State Space Reductions for Weak Equivalences,
in: T. Margaria, M. Massink (Eds.), Proceedings of the 10th Inter-
national Workshop on Formal Methods for Industrial Critical Systems
(FMICS’05), ERCIM, ACM Computer Society Press, 2005, pp. 80–89.

[39] R. Mateescu, A. J. Wijs, Sequential and Distributed On-the-Fly Com-
putation of Weak Tau-Confluence, Science of Computer Programming
70 (10-11) (2012) 1075–1094.

[40] A. J. Wijs, What To Do Next?: Analysing and Optimising System
Behaviour in Time, Ph.D. thesis, VU University Amsterdam (2007).

38

[41] S. C. Kleene, Introduction to Metamathematics, North-Holland, 1952.

[42] M. J. Fischer, R. E. Ladner, Propositional Dynamic Logic of Regular
Programs, Journal of Computer and System Sciences 18 (2) (1979) 194–
211.

Appendix A. Proofs

We provide in this annex the proofs of all lemmas and propositions stated
in the main text.

Proposition 2. We proceed by structural induction on ϕ. For brevity, we omit
the (straightforward) boolean cases, and prove only the fixed point cases.
Case ϕ ::= X. Let s1, s2 ∈ S such that s1 ≈ds

br s2 and assume that s1 ∈
[[X]]M ρ, i.e., s1 ∈ ρ(X) by definition of [[]]. Since s1 ≈ds

br s2 and ρ is ≈ds
br -

closed by hypothesis, this is equivalent to s2 ∈ ρ(X), i.e., s2 ∈ [[X]]M ρ. The
converse implication (by considering s2 ∈ [[X]]M ρ) holds by a symmetric
argument.

Case ϕ ::= µX.ϕ1. Since we consider finite Ltss, we can use the alternative
characterization of minimal fixed point formulas [41]:

[[µX.ϕ1]]M ρ =
⋃
k≥0

Φk
M,ρ(∅), Φ0

M,ρ(∅) = ∅

where ΦM,ρ : 2S → 2S, ΦM,ρ(U) = [[ϕ1]]M (ρ� [U/X]).
We show first the following statement by induction on k:

∀s1, s2 ∈ S.∀k ≥ 0.s1 ≈ds
br s2 ⇒ (s1 ∈ Φk

M,ρ(∅) ⇔ s2 ∈ Φk
M,ρ(∅)) (A.1)

1. Base case: k = 0. We have s1 ∈ Φ0
M,ρ(∅), i.e., s1 ∈ ∅, which is

equivalent to false. This is equivalent in turn to s2 ∈ ∅, i.e., s2 ∈
Φ0

M,ρ(∅).
2. Inductive case: Let s1 ∈ Φk+1

M,ρ(∅), i.e., s1 ∈ ΦM,ρ(Φ
k
M,ρ(∅)), which

is equivalent to s1 ∈ [[ϕ1]]M (ρ � [Φk
M,ρ(∅)/X]) by definition of ΦM,ρ.

We show that the context ρ � [Φk
M,ρ(∅)/X] is ≈ds

br -closed. Since ρ
is ≈ds

br -closed by hypothesis, it is sufficient to show the closedness of
ρ � [Φk

M,ρ(∅)/X] for variable X. Let s′1, s
′
2 ∈ S such that s′1 ≈ds

br s′2

39

and s′1 ∈ (ρ � [Φk
M,ρ(∅)/X])(X), i.e., s′1 ∈ Φk

M,ρ(∅). By the in-
duction hypothesis of (A.1), this is equivalent to s′2 ∈ Φk

M,ρ(∅), i.e.,
s′2 ∈ (ρ� [Φk

M,ρ(∅)/X])(X).
Since ρ � [Φk

M,ρ(∅)/X] is ≈ds
br -closed, we can apply the induction hy-

pothesis of the proposition to s1, ϕ, and ρ� [Φk
M,ρ(∅)/X], and conclude

that s2 ∈ [[ϕ1]]M (ρ � [Φk
M,ρ(∅)/X]), i.e., s2 ∈ Φk+1

M,ρ(∅). The converse

implication (by considering s2 ∈ Φk+1
M,ρ(∅)) holds by a symmetric argu-

ment.

Let s1, s2 ∈ S such that s1 ≈ds
br s2 and assume s1 ∈ [[µX.ϕ1]]M ρ, i.e.,

s1 ∈
⋃

k≥0 Φk
M,ρ(∅). This means there exists k ≥ 0 such that s1 ∈ Φk

M,ρ(∅)
and by applying (A.1), this is equivalent to s2 ∈ Φk

M,ρ(∅). This implies
s2 ∈

⋃
k≥0 Φk

M,ρ(∅), i.e., s2 ∈ [[µX.ϕ1]]M ρ. The converse implication (by
considering s2 ∈ [[µX.ϕ1]]M ρ) holds by a symmetric argument.

In order to prove Proposition 4, we show first two lemmas.

Lemma 3. Let X ∈ X be a propositional variable and let ϕ be a state formula
of Lµ, which may contain free occurrences of X. Then:

νX.(ϕ ∧ [β]X) = νX. [β∗] (ϕ ∧X)

for any regular formula β of Pdl.

Proof. The right-hand side of the identity can be rewritten by applying the
Pdl identity [β∗]ψ = ψ ∧ [β] [β∗]ψ [42]:

νX. [β∗] (ϕ ∧X) = νX.(ϕ ∧X ∧ [β] [β∗] (ϕ ∧X))

The first occurrence of X can be replaced with true by applying absorption,
which yields the identity below:

νX. [β∗] (ϕ ∧X) = νX.(ϕ ∧ [β] [β∗] (ϕ ∧X)) (A.2)

Consider an Lts M = 〈S,A, T, s0〉 and a propositional context ρ. The func-
tionals ΦM,ρ : 2S → 2S and ΨM,ρ : 2S → 2S are defined as follows:

ΦM,ρ(U) = [[ϕ ∧ [β]X]]M (ρ� [U/X])
ΨM,ρ(U) = [[ϕ ∧ [β] [β∗] (ϕ ∧X)]]M (ρ� [U/X])

40

Let θ, θ′ ⊆ S be the maximal fixed points of ΦM,ρ,ΨM,ρ, respectively. We
must show that θ = θ′. We show first that θ ⊆ θ′ by using Tarski’s theorem,
which requires to check that θ ⊆ ΨM,ρ(θ). By definition, θ satisfies the
fixed point equation θ = [[ϕ ∧ [β]X]]M (ρ � [θ/X]), which implies that θ ⊆
[[ϕ]]M (ρ� [θ/X]) and θ ⊆ [[[β]X]]M (ρ� [θ/X]).

ΨM,ρ(θ) = by def. of ΨM,ρ and (A.2)
[[[β∗] (ϕ ∧X)]]M (ρ� [θ/X]) = by introducing Y
[[[β∗]Y]]M (ρ� [θ/X, [[ϕ ∧X]]M (ρ� [θ/X])/Y]) = by definition of [[]]
[[[β∗]Y]]M (ρ� [θ/X, [[ϕ]]M (ρ� [θ/X]) ∩ [[X]]M (ρ� [θ/X])/Y]) = by def. of [[]]
[[[β∗]Y]]M (ρ� [θ/X, [[ϕ]]M (ρ� [θ/X]) ∩ θ/Y]) = by θ ⊆ [[ϕ]]M (ρ� [θ/X])
[[[β∗]Y]]M (ρ� [θ/X, θ/Y]) = by replacing Y with X
[[[β∗]X]]M (ρ� [θ/X]).

It remains to show that θ ⊆ [[[β∗]X]]M (ρ� [θ/X]). Let ΓM,ρ : 2S → 2S be the
functional associated to the formula [β∗]X, defined as follows: ΓM,ρ(U) =
[[X ∧ [β]Y]]M (ρ� [U/Y]). The semantics of this formula when X is replaced
by θ is characterized iteratively as follows [41]:

[[[β∗]X]]M (ρ� [θ/X]) = [[νY.(X ∧ [β]Y)]]M (ρ� [θ/X]) =
⋂
k≥0

Γk
M,ρ�[θ/X](S)

To show the desired inclusion, we prove that θ ⊆ Γk
M,ρ�[θ/X](S) by induction

on k.

1. Base case: θ ⊆ S = Γ0
M,ρ�[θ/X](S).

2. Inductive case:

Γk+1
M,ρ�[θ/X](S) = by definition of ΓM,ρ

ΓM,ρ�[θ/X](Γ
k
M,ρ�[θ/X](S)) = by definition of ΓM,ρ

[[X ∧ [β]Y]]M (ρ� [θ/X,Γk
M,ρ�[θ/X](S)/Y] ⊇ by induction hypothesis

[[X ∧ [β]Y]]M (ρ� [θ/X, θ/Y]) = by definition of [[]]
θ ∩ [[[β]Y]]M (ρ� [θ/Y]) = by θ ⊆ [[[β]Y]]M (ρ� [θ/Y])
θ.

To show that θ′ ⊆ θ, we check that θ′ is a fixed point of ΦM,ρ:

41

θ′ = by fixed point def.
ΨM,ρ(θ

′) = by def. of ΨM,ρ

[[ϕ ∧ [β] [β∗] (ϕ ∧X)]]M (ρ� [θ′/X]) = by introducing Y
[[ϕ ∧ [β]Y]]M (ρ� [θ′/X, [[[β∗] (ϕ ∧X)]]M (ρ� [θ′/X])/Y]) = by (A.2)
[[ϕ ∧ [β]Y]]M (ρ� [θ′/X, θ′/Y]) = by removing Y
[[ϕ ∧ [β]X]]M (ρ� [θ′/X]) = by def. of ΦM,ρ

ΦM,ρ(θ
′).

Lemma 4. Let β1, β2 be regular formulas of Pdl such that they denote one-
step sequences (i.e., β1 and β2 are satisfied by transition sequences containing
only one transition) and they are disjoint (i.e., no transition can satisfy both
β1 and β2). Then:

(a) 〈β1|β2〉@ = 〈(β∗1 .β2)
∗〉 〈β1〉@ ∨ 〈β∗1 .β2〉@

(b) 〈β∗1 .β∗2〉ϕ = 〈β∗1〉ϕ if β2 ⇒ β1

(c) 〈β∗1 .β2〉@ = 〈β2〉@ if β1 ⇒ β2

Proof. (a). To show the “⇐” implication, we observe that both disjuncts in
the right-hand side of the equality are included in the left-hand side term
because the ω-regular languages (β∗1 .β2)

∗.βω
1 and (β∗1 .β2)

ω are both included
in (β1|β2)

ω, which consists of all infinite sequences made from transitions
satisfying β1 or β2. For the “⇒” implication, we observe that, since β1 and
β2 are disjoint, the ω-regular languages (β∗1 .β2)

∗.βω
1 and (β∗1 .β2)

ω are comple-
mentary: they denote the set of infinite sequences containing a finite and an
infinite number of occurrences of β2, respectively. Therefore, any infinite se-
quence of the form (β1|β2)

ω belongs either to (β∗1 .β2)
∗.βω

1 , or to (β∗1 .β2)
ω, and

thus satisfies one of the disjuncts in the right-hand side of the equality.
(b). The “⇒” implication holds by monotonicity: since β2 ⇒ β1, then
〈β∗1 .β∗2〉ϕ ⇒ 〈β∗1 .β∗1〉ϕ = 〈β∗1〉ϕ. To show the “⇐” implication, we use the
Pdl identity 〈β∗2〉ϕ = ϕ ∨ 〈β2〉 〈β∗2〉ϕ, which implies that ϕ ⇒ 〈β∗2〉ϕ, and
then by monotonicity 〈β∗1〉ϕ⇒ 〈β∗1〉 〈β∗2〉ϕ = 〈β∗1 .β∗2〉ϕ.
(c). The “⇒” implication holds by monotonicity: since β1 ⇒ β2, then
νX. 〈β∗1 .β2〉X ⇒ νX. 〈β∗2 .β2〉X = νX.

〈
β+

2

〉
X = νX. 〈β2〉X. The “⇐”

implication holds trivially, since 〈β∗1 .β2〉ϕ⇐ 〈β2〉ϕ for any ϕ.

42

Proposition 4. Starting from the Ldsbr
µ formulations of the Actl\X temporal

operators stated in the proposition, we expand the weak modalities to obtain
plain Lµ formulas, and then we show that these formulas are equivalent to
the Lµ formulas given in Figure 4.
Operator E[ϕ1αUϕ2].

E[ϕ1αUϕ2] = by hypothesis
〈(ϕ1?.α ∨ τ)∗〉ϕ2 = by expansion of the ∗ operator
µX.(ϕ2 ∨ 〈ϕ1?.α ∨ τ〉X) = by expansion of the . operator
µX.(ϕ2 ∨ 〈ϕ1?〉 〈α ∨ τ〉X) = by expansion of the ? operator
µX.(ϕ2 ∨ (ϕ1 ∧ 〈α ∨ τ〉X)).

Operator E[ϕ1α1
Uα2ϕ2].

E[ϕ1α1
Uα2ϕ2] = by hypothesis

〈(ϕ1?.α1 ∨ τ)∗〉 〈(ϕ1?.τ)
∗.ϕ1?.α2〉ϕ2 = by Pdl reasoning

〈(ϕ1?.α1 ∨ τ)∗.(ϕ1?.τ)
∗〉 〈ϕ1?.α2〉ϕ2 = by Lemma 4(b)

〈(ϕ1?.α1 ∨ τ)∗〉 〈ϕ1?.α2〉ϕ2 = by expansion of the ? operator
〈(ϕ1?.α1 ∨ τ)∗〉 (ϕ1 ∧ 〈α2〉ϕ2) = by expansion of the ∗ operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ 〈ϕ1?.α1 ∨ τ〉X) = by expansion of the . operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ 〈ϕ1?〉 〈α1 ∨ τ〉X) = by expansion of the ? operator
µX.((ϕ1 ∧ 〈α2〉ϕ2) ∨ (ϕ1 ∧ 〈α1 ∨ τ〉X)) = by propositional calculus
µX.(ϕ1 ∧ (〈α2〉ϕ2 ∨ 〈α1 ∨ τ〉X)).

Operator A[ϕ1αUϕ2].

A[ϕ1αUϕ2] = by hypothesis
[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [(¬ϕ2.τ)

∗.¬ϕ2.¬(α ∨ τ)] false)) ∧
[¬ϕ2?.α ∨ τ] a = by Pdl reasoning

[(¬ϕ2?.α ∨ τ)∗] ((ϕ2 ∨ (ϕ1 ∧ ¬deadlock)) ∧ [¬ϕ2?.(¬ϕ2.τ)
∗.¬ϕ2.¬(α ∨ τ)] false) ∧

[¬ϕ2?.α ∨ τ] a = by Pdl reasoning
[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock)) ∧
[(¬ϕ2?.α ∨ τ)∗.¬ϕ2?.(¬ϕ2.τ)

∗.¬ϕ2.¬(α ∨ τ)] false ∧
[¬ϕ2?.α ∨ τ] a = by Lemma 4(b) and Pdl reasoning

[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock)) ∧
[(¬ϕ2?.α ∨ τ)∗.¬ϕ2?.¬(α ∨ τ)] false ∧

[¬ϕ2?.α ∨ τ] a = by Pdl reasoning

[(¬ϕ2?.α ∨ τ)∗] (ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧
[¬ϕ2?.α ∨ τ] a = by expansion of the * operator

νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧
[¬ϕ2?.α ∨ τ]X) ∧ [¬ϕ2?.α ∨ τ] a = by expansion of the . operator

43

νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧
[¬ϕ2?] [α ∨ τ]X) ∧ [¬ϕ2?.α ∨ τ] a = by expansion of the ? operator

νX.((ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false)) ∧
(ϕ2 ∨ [α ∨ τ]X)) ∧ [¬ϕ2?.α ∨ τ] a = by propositional calculus

νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧
[¬ϕ2?.α ∨ τ] a = by expansion of [. . .] a

νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧
µX. [¬ϕ2?.α ∨ τ]X = by expansion of the . operator
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧

µX. [¬ϕ2?] [α ∨ τ]X = by expansion of the ? operator
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧

µX.(ϕ2 ∨ [α ∨ τ]X).

To show the equivalence between the last formula above and the translation of
A[ϕ1αUϕ2] in Lµ given in Figure 4, it remains to show the following equality:

µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) =
νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧ µX.(ϕ2 ∨ [α ∨ τ]X)

The “⇒” implication follows immediately by monotonicity. For the converse
implication, we consider an Lts M = 〈S,A, T, s0〉 and we show the following
inequality between the interpretations on M of the formulas in the left- and
right-hand sides (note that ϕ1, ϕ2 are closed and therefore there is no need
for a propositional context ρ):

[[νX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X))]]M ∩
[[µX.(ϕ2 ∨ [α ∨ τ]X)]]M ⊆
[[µX.(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X))]]M

Let ΦM ,ΨM : 2S → 2S the functionals defined below:

ΦM(U) = [[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)]]M [U/X]
ΨM(U) = [[ϕ2 ∨ [α ∨ τ]X]]M [U/X]

Using the iterative characterization of fixed point operators [41], the inequal-
ity above can be reformulated in terms of these functionals as follows:⋂

n≥0 Φn
M(S) ∩

⋃
n≥0 Ψn

M(∅) ⊆
⋃

n≥0 Φn
M(∅)

or, equivalently:⋃
k≥0

((⋂
n≥0 Φn

M(S)
)
∩Ψk

M(∅)
)
⊆

⋃
k≥0 Φk

M(∅)

44

To prove this inequality, we first show the relation below by induction on k:

∀k ≥ 0.
(⋂

n≥0

Φn
M(S)

)
∩Ψk

M(∅) ⊆ Φk
M(∅) (A.3)

1. Base case: (
⋂

n≥0 Φn
M(S)) ∩Ψ0

M(∅) = (
⋂

n≥0 Φn
M(S)) ∩ ∅ = ∅ ⊆ Φ0

M(∅).
2. Inductive case:

Φk+1
M (∅) =

ΦM(Φk
M(∅)) ⊇ by induction hypothesis

ΦM((
⋂

n≥0 Φn
M(S)) ∩Ψk

M(∅)) = by definition of ΦM

[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)]]M
[(
⋂

n≥0 Φn
M(S)) ∩Ψk

M(∅)/X] = by introducing Y
[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ] (X ∧ Y))]]M

[
⋂

n≥0 Φn
M(S)/X,Ψk

M(∅)/Y] = by modal calculus
[[(ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)) ∧ (ϕ2 ∨ [α ∨ τ]Y)]]M

[
⋂

n≥0 Φn
M(S)/X,Ψk

M(∅)/Y] = by definition of [[]]
[[ϕ2 ∨ (ϕ1 ∧ ¬deadlock ∧ [¬(α ∨ τ)] false ∧ [α ∨ τ]X)]]M

[
⋂

n≥0 Φn
M(S)/X] ∩

[[ϕ2 ∨ [α ∨ τ]Y]]M [Ψk
M(∅)/Y] = by definition of ΦM ,ΨM

ΦM(
⋂

n≥0 Φn
M(S)) ∩ΨM(Ψk

M(∅)) = by definition of νΦM

(
⋂

n≥0 Φn
M(S)) ∩Ψk+1

M (∅).

By applying union for all k ≥ 0 on the left- and right-hand sides of (A.3),
we obtain the desired inequality.
Operator A[ϕ1α1

Uα2ϕ2].

A[ϕ1α1
Uα2ϕ2] = by hypothesis

νX. [(¬α2)
∗] (ϕ1 ∧ ¬deadlock ∧ [τ ∗.¬(α1 ∨ α2 ∨ τ)] false ∧ [τ ∗.α2 ∧ ¬α1]ϕ2 ∧

[τ ∗.α1 ∧ α2] (ϕ2 ∨X) ∧X) ∧
νX.([¬α2] a ∧ [(¬α2)

∗] [τ ∗.α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗] [τ ∗.α1 ∧ α2] (ϕ2 ∨X) = by Pdl reasoning
νX.([(¬α2)

∗] (ϕ1 ∧ ¬deadlock) ∧
[(¬α2)

∗.τ ∗.¬(α1 ∨ α2 ∨ τ)] false ∧ [(¬α2)
∗.τ ∗.α2 ∧ ¬α1]ϕ2 ∧

[(¬α2)
∗.τ ∗.α1 ∧ α2] (ϕ2 ∨X) ∧ [(¬α2)

∗]X) ∧
νX.([¬α2] a ∧ [(¬α2)

∗.τ ∗.α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗.τ ∗.α1 ∧ α2] (ϕ2 ∨X) = by Lemma 4(b)

45

νX.([(¬α2)
∗] (ϕ1 ∧ ¬deadlock) ∧
[(¬α2)

∗.¬(α1 ∨ α2 ∨ τ)] false ∧ [(¬α2)
∗.α2 ∧ ¬α1]ϕ2 ∧

[(¬α2)
∗.α1 ∧ α2] (ϕ2 ∨X) ∧ [(¬α2)

∗]X) ∧
νX.([¬α2] a ∧ [(¬α2)

∗.α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗.α1 ∧ α2] (ϕ2 ∨X) = by Pdl reasoning

νX. [(¬α2)
∗] (ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧X) ∧
νX.([¬α2] a ∧ [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X)) ∧
µX. [(¬α2)

∗] [α1 ∧ α2] (ϕ2 ∨X) = by Lemma 3

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧

νX.([¬α2] a ∧ [(¬α2)
∗] [α1 ∧ α2] (ϕ2 ∨X)) ∧

µX. [(¬α2)
∗] [α1 ∧ α2] (ϕ2 ∨X) = by Pdl semantics

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧

[((¬α2)
∗.(α1 ∧ α2.¬ϕ2?))

∗] [¬α2] a ∧
[(¬α2)

∗.(α1 ∧ α2.¬ϕ2?)] a = by negating Lemma 4(a)

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧

[¬α2|(α1 ∧ α2.¬ϕ2?)] a = by Pdl semantics
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧
µX. [¬α2|(α1 ∧ α2.¬ϕ2?)]X = by Pdl semantics

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧

µX.([¬α2]X ∧ [α1 ∧ α2.¬ϕ2?]X) = by Pdl semantics
νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧

[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧ µX.([α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X).

To show the equivalence between the last formula above and the translation
of A[ϕ1α1

Uα2ϕ2] in Lµ given in Figure 4, it remains to show the equality:

µX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) =

νX.(ϕ1 ∧ ¬deadlock ∧ [¬(α1 ∨ α2 ∨ τ)] false ∧ [α2 ∧ ¬α1]ϕ2 ∧
[α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X) ∧ µX.([α1 ∧ α2] (ϕ2 ∨X) ∧ [¬α2]X)

The proof of this last equality is very similar to the proof of the corresponding
equality for the A[ϕ1αUϕ2] operator above, and is omitted here.

46

