
IS
S

N
 0

24
9-

63
99

 IS
R

N
 IN

R
IA

/R
R

--
56

73
--

F
R

+
E

N
G

ap por t
de r ech er ch e

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Translating Hardware Process Algebras into
Standard Process Algebras — Illustration with CHP

and LOTOS

Gwen Salaün — Wendelin Serwe

N° 5666

September 2005

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe, 38334 Montbonnot Saint Ismier (France)

Téléphone : +33 4 76 61 52 00 — Télécopie +33 4 76 61 52 52

Translating Hardware Process Algebras into Standard

Process Algebras — Illustration with CHP and LOTOS

Gwen Salaün∗† , Wendelin Serwe∗‡

Thème COM — Systèmes communicants

Projet VASY

Rapport de recherche n
�

5666 — September 2005 — 25 pages

Abstract: A natural approach for the description of asynchronous hardware designs are
hardware process algebras, such as Martin’s Chp (Communicating Hardware Processes),
Tangram, or Balsa, which are extensions of standard process algebras with particular
operators exploiting the implementation of synchronisation using handshake protocols.

In this report, we give a structural operational semantics for value-passing Chp. Compared
to existing semantics of Chp defined by translation into Petri nets, our semantics handles
value-passing Chp with communication channels open to the environment and is indepen-
dent of any particular (2- or 4-phase) handshake protocol used for circuit implementation.

In a second step, we describe the translation of Chp into the standard process algebra
Lotos, in order to allow the application of the Cadp verification toolbox to asynchronous
hardware designs. A prototype translator from Chp to Lotos has been successfully used for
the compositional verification of the control part of an asynchronous circuit implementing
the DES (Data Encryption Standard).

Key-words: Formal Method, Process Algebra, Asynchronous Hardware Design, Struc-
tural Operational Semantics, Chp, Lotos.

A short version of this research report is also available as “Translating Hardware Process Algebras into

Standard Process Algebras — Illustration with CHP and LOTOS”, in Jaco van de Pol, Judi Romijn, and
Graeme Smith, editors, Proceedings of the Fifth International Conference on Integrated Formal Methods
IFM 2005 (Eindhoven, The Netherlands), November 29 – December 2, 2005.

∗ INRIA Rhône-Alpes
† E-mail: Gwen.Salaun@inria.fr

‡ E-mail: Wendelin.Serwe@inria.fr

Traduction d’algèbres de processus pour le matériel

vers des algèbres de processus standards — Illustration

avec CHP et LOTOS

Résumé : Une approche naturelle pour la description d’architectures matérielles et de
circuits asynchrones est d’utiliser les algèbres de processus, telles que Chp (Communicating
Hardware Processes proposée par A. J. Martin), Tangram ou Balsa, qui étendent les
algèbres de processus standards par des opérateurs particuliers qui exploitent la manière
dont la synchronisation est implantée par des protocoles de rendez-vous (“poignée de main”).

Dans ce rapport, nous donnons une sémantique opérationnelle structurelle pour Chp avec
passage de valeurs. Contrairement à la sémantique existante de Chp définie par traduc-
tion vers des réseaux de Petri, notre sémantique traite le cas de Chp avec passage de
valeurs et avec des canaux de communication ouverts sur l’environnement. De plus, elle
est indépendante de tout protocole particulier de rendez-vous (2 ou 4 phases) utilisé dans
l’implantation de circuits.

Dans une seconde étape, nous décrivons la traduction de Chp vers l’algèbre de processus
standard Lotos, afin de permettre l’utilisation de la bôıte à outils Cadp pour la vérification
de conceptions matérielles asynchrones. Un prototype de traducteur Chp en Lotos a été
utilisé avec succès pour la vérification compositionnelle de la partie contrôle d’un circuit
asynchrone implantant le standard d’encryption de données DES (Data Encryption Stan-
dard).

Mots-clés : Méthode formelle, algèbre de processus, conception de circuits asynchrones,
sémantique opérationnelle structurelle, Chp, Lotos.

Translating Hardware Process Algebras into Standard Process Algebras 3

1 Introduction

In the currently predominating synchronous approach to hardware design, a global clock is
used to synchronise all parts of the designed circuit. This method has the drawback that the
global clock requires significant chip space and power. Asynchronous design methodologies
[Hau95] abandon the notion of global clock: the different parts of an asynchronous circuit
evolve concurrently at different speeds, with no constraints on communication delays. The
advantages of asynchronous design include reduced power consumption, enhanced modu-
larity, and increased performance. However, asynchronous design raises problems that do
not exist in the synchronous approach, e.g. proving the absence of deadlocks in a circuit.
Furthermore, an established asynchronous design methodology with industrial tool support
is still lacking.

Adequate description languages are necessary to master the design of asynchronous circuits.
Several process algebras dedicated to the description of asynchronous hardware have been
proposed, as for instance Chp (Communicating Hardware Processes) [Mar86], Tangram

[KP01], or Balsa [EB02], which allow the description of concurrent processes communi-
cating via handshake synchronisations. In these languages, there is no global clock, but
each process may have its own local clock as in GALS (Globally Asynchronous, Locally Syn-
chronous) architectures. The global control flow results from processes waiting for their
partner to engage in a handshake communication. These hardware process algebras are
based on similar principles as standard process algebras [BPS01, Fok00] (such as Acp, Ccs,
Csp, Lotos, µCrl, etc.). Especially, they provide operators such as nondeterministic
choice, sequential and parallel composition. However, compared to standard process alge-
bras, they offer extensions that capture the low-level aspects of hardware communications.
In particular, communication in Chp, Tangram, or Balsa is not necessarily atomic (as
it is in standard process algebras), and may combine message-passing with shared memory
communication. For instance, the probe operator [Mar85] of Chp allows to check if the
communication partner is ready for a communication, but without performing the commu-
nication actually.

Chp, Tangram, and Balsa are supported by synthesis tools that can generate the imple-
mentation of a circuit from its process algebraic description. For instance, the Tast tool
[Ren05] can generate netlists from Chp descriptions and is being used to design complex
circuits, e.g. by STMicroelectronics, France Telecom R&D, and the asynchronous hardware
group of the CEA/Leti laboratory [BCV+05]. Our goal is to enable the verification of asyn-
chronous hardware designs with Cadp [GLM02b], a toolbox for verifying Lotos [ISO89]
specifications.

In this report, we give an SOS (Structural Operational Semantics) [BPS01, chapter 3] se-
mantics for value-passing Chp. Compared to the most recent semantics [RY04] for Chp,
which is defined by translation into Petri nets, our semantics handles value-passing Chp

with communication channels open to the environment and is independent of any particular
(2- or 4-phase) handshake protocol (cf. Section 2.2) used for circuit implementation. We
present in a second step the principles of a translation from Chp into Lotos. A prototype
translator has been implemented and successfully used for the compositional verification of
an asynchronous implementation of the DES (Data Encryption Standard) [NIS99].

As regards related work, we notice that the semantics of hardware process algebras is usu-
ally not given in terms of SOS rules (as it is the case for standard process algebras), but
rather by means of a translation into another formalism, as for instance handshake circuits
for Tangram [vB93], Petri nets for Chp [RY04], and Csp for Balsa [WKTZ04]; in that

RR n
�

5666

4 G. Salaün and W. Serwe

respect, we believe that our SOS semantics is an original contribution. As regards verifi-
cation of asynchronous circuits described using process algebra, there is very little related
work. [BBM+03] proposes a translation of Chp into networks of communicating automata.
Contrary to our approach, [BBM+03] can only handle Chp processes with intertwined se-
quential and parallel compositions by flattening parallel processes, which is less efficient
than the compositional approach presented in this report. [WKTZ04] sketches, but does
not detail, a translation of Balsa into Csp. A major difference between [WKTZ04] and
our approach is that [WKTZ04] cannot translate a Balsa process B independently of the
Balsa processes communicating with B, whereas our approach is generic in the sense that
each Chp process is translated into Lotos regardless of its context.

The remainder of the reportis organised as follows. Section 2 presents Chp and highlights its
probe operator. An SOS semantics for Chp is given in Section 3, and compared to the Petri
net based semantics given for Chp in [RY04]. Section 4 presents translation rules from Chp

into Lotos, and reports on an experiment with a prototype translator. Finally, Section 5
gives some concluding remarks.

2 Main Principles of CHP

In this section, we focus on the behavioural part of Chp and omit additional structures such
as modules or component libraries present in the full Chp [Ren05].

2.1 Syntax

A Chp description is a tuple
〈

C, X , B̂1 ‖ · · · ‖ B̂n

〉

consisting of a finite set of channels
C = {c1, . . . , cn} for handshake communication, a finite set of variables X = {x1, . . . , xn}
and a finite set of concurrent processes B̂i communicating by the channels. Without loss of
generality, we suppose that all identifiers (channels and variables) are distinct — this can
be achieved by using a suitable renaming.

A channel c is either binary (between two processes) or unary (between a process and the
environment); in the latter case, c is also called a port ; the predicate port(c) holds iff c is a
port. Channels are unidirectional, i.e. a process can use a channel either for emissions or
for receptions. We write emitter(i, c) (respectively receiver (i, c)) if process B̂i uses channel c

for emissions (respectively receptions). Also, a process is either active or passive for a given
channel. We write active(i, c) (respectively passive(i, c)) if process B̂i is active (respectively
passive) for channel c. This distinction between active and passive is also present in other
hardware process algebras such as Tangram and Balsa. Note that passive(i, c) is not the
negation of active(i, c), since for a process B̂i not using c both active(i, c) and passive(i, c)
do not hold. Binary channels can only connect matching processes, i.e. for each binary
channel, there is one emitter and one receiver, as well as an active and a passive process,
both notions being orthogonal. Let Ci be the set of channels used by B̂i.

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 5

We have for any channel c the following properties:

(∃i ∈ {1, . . . , n}) emitter(i, c) ∨ receiver (i, c)

(∃i ∈ {1, . . . , n}) active(i, c) ∨ passive(i, c)

(∃i ∈ {1, . . . , n}) emitter(i, c) =⇒
(

(∀j ∈ {1, . . . , n}) j 6= i =⇒ ¬emitter(j, c)
)

(∃i ∈ {1, . . . , n}) receiver (i, c) =⇒
(

(∀j ∈ {1, . . . , n}) j 6= i =⇒ ¬receiver (j, c)
)

(∃i ∈ {1, . . . , n}) active(i, c) =⇒
(

(∀j ∈ {1, . . . , n}) j 6= i =⇒ ¬active(j, c)
)

(∃i ∈ {1, . . . , n}) passive(i, c) =⇒
(

(∀j ∈ {1, . . . , n}) j 6= i =⇒ ¬passive(j, c)
)

Using these notations, the predicate port(c) can be defined formally for any channel c as
follows:

port(c) ⇐⇒

(

(∃i ∈ {1, . . . , n}) active(i, c) ∧
(

(∀j ∈ {1, . . . , n}) ¬passive(j, c)
)

)

∨
(

(∃i ∈ {1, . . . , n}) passive(i, c) ∧
(

(∀j ∈ {1, . . . , n}) ¬active(j, c)
)

)

Each variable is local to a single process, i.e. the set X is the disjoint union of n sets
X1, . . . , Xn, each Xi containing the local variables of process B̂i. There are no shared
variables between processes. We suppose the existence of a set of predefined data types
(natural numbers, Booleans and bit vectors) with side-effect-free operations, written f1, . . . ,
fn. Variables and channels are typed; the type of a variable x (respectively a channel c)
is written as type(x) (respectively type(c)). V stands for the set of value expressions built
using the predefined data types and operations.

The behaviour of a process B1 is described using assignments, communication actions, col-
lateral and sequential compositions, and nondeterministic guarded commands, according to
the following grammar:

B ::= nil deadlock2

| skip null action

| x:=V assignment

| c!V emission on channel c

| c?x reception on channel c

| B1;B2 sequential composition

| B1,B2 collateral composition

| @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn] guarded commands

G ::= V Boolean value expression

| c #V | c # probe on passive channel

T ::= break | loop terminations

V ::= x | f(V1, . . . , Vn) value expression

Collateral composition has higher priority than sequential composition, but brackets can be
used to express the desired behaviour, e.g. “B1, (B2;B3)”.

1B stands for any process, whereas B̂i is one of the n processes of the Chp description.
2The deadlocking process nil is not present in the version of Chp implemented in Tast [Ren05], but is

required for the definition of the SOS semantics.

RR n
�

5666

6 G. Salaün and W. Serwe

The collateral composition “,” and the parallel composition of processes “‖” correspond to
two different notions of concurrency. The parallel composition “‖” specifies concurrent ex-
ecution with handshake communications between processes, whereas collateral composition
“,” specifies concurrent execution without any communication, neither by handshakes nor
by variables. The following constraints hold for a process “B1,B2”: if B1 modifies a variable
x, B2 must neither access the value of x nor modify x, and the sets of channels used by B1

and B2 must be disjoint (which also prohibits two interleaved emissions or receptions on a
same channel).

As regards guarded commands, the guards are either Boolean value expressions or probes on
channels for which the process is passive. The keyword break indicates that the execution of
the guarded command terminates, whereas loop indicates that “@[G1 ⇒ B1;T1 . . . Gn ⇒
Bn;Tn]” must be executed once more, thus allowing loops to be specified in Chp. The
version of Chp implemented in Tast [Ren05] also allows deterministic guarded commands
which are a particular case of nondeterministic guarded commands with mutually exclusive
guards. Therefore we consider only nondeterministic guarded commands in this report.

2.2 Informal Semantics of Handshake Communication in CHP

Communication between concurrent processes in Chp is implemented by means of hardware
handshake protocols. There exists different protocols, as for instance the 2-phase protocol
(based on transition signalling) and the 4-phase protocol (based on level signalling) [RY04].
Each Chp channel c is translated into a set of wires xc needed to carry data transmitted
on c and two control wires creq and cgr implementing an access protocol to xc. The 2-phase
protocol for communication between two processes B1 (active) and B2 (passive) on a channel
c consists of the following phases:

1. Initiation. B1 sends a request to B2 by performing an electronic transition (“zero-to-
one” or “one-to-zero”) on creq .

2. Completion. B2 sends an acknowledgement (or grant) to B1 by performing an elec-
tronic transition on cgr and the emitted value is assigned to the variable of the receiver,
using the wires xc.

In a 4-phase protocol, sending a request (respectively acknowledgement) is implemented by
a value of 1 on wire creq (respectively cgr). After two phases similar to a 2-phase protocol,
two additional phases implement the return-to-zero, first of creq , then of cgr . Common to
both protocols is that a communication on a channel c is initiated by the process active for
c, which is blocked as long as the communication has not been completed by the passive
process.

The probe operation of Chp was introduced in [Mar85] and has been found to be useful in
the design of asynchronous hardware. The notation “c #” allows a passive process (either
emitter or receiver) to check if its active partner has already initiated a communication on c.
The notation “c #V ”, which can only be used by a receiver, checks if the sender has initiated
the emission of the particular value V . Contrary to classical process algebra operators, the
probe allows a process to obtain information about the current internal state (communication
initiated or not) of a concurrent process without performing the communication actually.
Typically, probes are used for multiple reads, executing “c #V ” several times, which avoids
the introduction of an additional variable to store V .

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 7

client-1

client-2
c2

c1

carbiter

Figure 1: Architecture of the asynchronous arbiter

Similar operators are also present in other hardware process algebras. For instance, Balsa

provides a particular form of reception, called input enclosure [EB02], that allows the re-
ceiver to perform several commands before acknowledging the reception, whereas the sender
witnesses an atomic communication.

2.3 Running Example: An Asynchronous Arbiter

Throughout this report we consider the example of an asynchronous arbiter presented in
[RY04], which we generalise in two ways: we use value-passing communications instead of
pure synchronisations and we model an arbiter open to its environment by keeping the
shared resource outside of the arbiter example itself.

Arbiters are commonplace in digital systems, wherever a restricted number of resources (such
as memories, ports, buses, etc.) have to be allocated to different client processes. Figure 1
depicts the situation where two clients compete for accessing a common resource. Each
client transmits a request for the resource to the arbiter via an individual channel (c1 or c2).
A third channel allows the arbiter to send the number of the selected client (1 or 2) to the
environment, i.e. the resource. The arbiter chooses nondeterministically between the clients
with pending requests. The corresponding Chp description is

〈

{c, c1, c2}, {x}, client-1 ‖
client-2 ‖ arbiter

〉

, where all three channels have an active emitter and a passive receiver,
where variable x — taking values in the set {1, 2} — is local to the arbiter, and where the
three processes are described as follows:

client-1: @[true ⇒ c1!1;loop]
client-2: @[true ⇒ c2!2;loop]
arbiter: @[c1 #1 ⇒ (c!1, c1?x); loop c2 #2 ⇒ (c!2, c2?x); loop]

In this example, the arbiter uses the probe operator to check if a client has a pending request
for the resource.

3 A Structural Operational Semantics for CHP

In this section, we give an SOS semantics for Chp with value-passing communications.
Contrary to the existing semantics for Chp [Mar86, RY04], we define the semantics of Chp

without expanding communications according to a particular handshake protocol. Thus, our
approach is general in the sense that it gives to any Chp description

〈

C, X , B̂1 ‖ · · · ‖ B̂n

〉

a unique behavioural semantics by means of an Lts (Labelled Transition System). In this
Lts, a state contains two parts (data and behaviour); a transition corresponds either to
an observable action (communication on a channel)3 or an internal action, written τ , of a
process. Following [RY04], internal actions are generated whenever a process assigns one of

3Chp has no hiding or restriction operator; thus all inputs and outputs are observable.

RR n
�

5666

8 G. Salaün and W. Serwe

its local variables. Our definitions adopt the usual interleaving semantics of process algebras,
i.e. at every instant, at most one observable or internal action can take place.

We first present the notion of environment describing the data part of our semantics. Then,
we define the behavioural part in two steps, starting with the semantics of a single process
evolving independently, followed by the semantics of a set of communicating processes B̂1 ‖
· · · ‖ B̂n. Finally, we compare our semantics with the two semantics of [RY04] for 2- and
4-phase handshake protocols.

3.1 Environments

The main semantic difficulty in Chp is the handling of the probe, since this operator exploits
the fact that communication is not atomic at the lower level of implementation. Inspired
by the actual hardware implementation of Chp, we associate to each channel c a variable
noted xc that is modified only by the process active for c, but might be read by the process
passive for c. For a channel c with an active emitter, the type of xc is type(c); the active
emitter assigns the emitted value to xc when initiating the communication, and resets xc

(to the undefined value, written ⊥) when completing the communication. A variable xc

is equal to ⊥ iff all initiated communications on c have been completed. For a channel
with an active receiver, the type of xc is the singleton {ready} representing that the active
receiver has initiated the communication. Formally, we define the extended set of variables
as X ∗ = X ∪ {xc | c ∈ C}, and define X ∗

i as the set of the local variables of B̂i and all the

variables xc such that channel c is used by B̂i. Notice that the additional variables xc allow
to ensure that a value sent by the active process on channel c can be read — or probed —
as often as desired by the passive process before completion of the communication.

We define an environment E on X ∗ as a partial mapping from X ∗ to ground values (i.e.
constants), and write environments as sets of associations x 7→ v of a ground value v to
a variable x. Environment updates are described by the operator �, which is defined as
follows:

(∀x ∈ X ∗)
(

E1 � E2

)

(x) =

{

E1(x) if E2(x) = ⊥
E2(x) otherwise

The environment obtained by resetting a variable x to ⊥ in an environment E is described
by the function reset(E, x).

The semantics of a value expression V is defined by the usual evaluation function eval(E, V)
extended for the probe operator:

eval (E, x) = E(x)
eval

(

E, f(V1, . . . , Vn)
)

= f
(

eval (E, V1), . . . , eval(E, Vn)
)

eval (E, C #) = true ⇐⇒ E(xc) = ready
eval (E, C #V) = true ⇐⇒ E(xc) = eval(E, V)

3.2 Behavioural Semantics for a Single Process

Our semantics associates to each process B̂i an Lts
〈

Si,Li,−→i, 〈Ei, B̂i〉
〉

, where

� The set of states Si contains pairs 〈E, B〉 of a process B and an environment E on
X ∗

i .

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 9

� The set of labels Li contains emissions, receptions, τ (representing assignments to local
variables), and a particular label

√
representing successful termination.

� The transition relation “−→i” is defined below by SOS rules similar to those used for
BPAε (Basic Process Algebra with ε) in [BPS01, chapter 3]; as for BPAε, we write

〈E, B〉√ to mean 〈E, B〉
√

−→i 〈E, nil〉.
� The initial state is 〈Ei, B̂i〉, where the initial environment Ei assigns the undefined

value ⊥ to all variables of X ∗
i .

First of all, there are no rules for nil.

Rules for skip. The process skip always terminates successfully.

〈E, skip〉√

Rules for Assignments. An assignment can always be executed and modifies the envi-
ronment by updating the value associated to the assigned variable:

〈

E, x:=V
〉 τ−→i

〈

E � {x 7→ eval(E, V)}, skip
〉

Rules for Emissions. A passive emission is always possible. An active emission on a
channel c involves two transitions: the first one assigns a value to xc and the second one
completes the communication by resetting xc.

passive(i, c)
〈

E, c!V
〉 c!eval(E,V)−−−−−−−−→i

〈

E, skip
〉

active(i, c) eval (E, xc) = ⊥
〈

E, c!V
〉 τ−→i

〈

E � {xc 7→ eval (E, V)}, c!V
〉

active(i, c) eval (E, xc) 6= ⊥
〈

E, c!V
〉 c!eval(E,V)−−−−−−−−→i

〈

reset(E, xc), skip
〉

Rules for Receptions. These rules are dual of those for emissions.

passive(i, c)
〈

E, c?x
〉 c?eval(E,xc)−−−−−−−−→i

〈

E � {x 7→ eval (E, xc)}, skip
〉

(Recvp)

active(i, c) eval (E, xc) = ⊥
〈

E, c?x
〉 τ−→i

〈

E � {xc 7→ ready}, c?x
〉

active(i, c) eval (E, xc) 6= ⊥ V ∈ type(c)
〈

E, c?x
〉 c?V−−−→i

〈

reset(E, xc) � {x 7→ V }, skip
〉

(Recva)

Contrary to rule (Recvp), which uses the value of xc as the received value, rule (Recva)
enumerates all possible values that might be received on channel c.

RR n
�

5666

10 G. Salaün and W. Serwe

Rules for Sequential Composition. These rules are as usual.

〈E, B1〉 L−→i 〈E′, B′
1〉

〈E, B1;B2〉 L−→i 〈E′, B′
1;B2〉

〈E, B1〉
√ 〈E, B2〉 L−→i 〈E′, B′

2〉
〈E, B1;B2〉 L−→i 〈E′, B′

2〉

Rules for Collateral Composition. These rules are as usual.

〈E, B1〉 L−→i 〈E′, B′
1〉

〈E, B1,B2〉 L−→i 〈E′, B′
1,B2〉

〈E, B2〉 L−→i 〈E′, B′
2〉

〈E, B1,B2〉 L−→i 〈E′, B1,B
′
2〉

〈E, B1〉
√ 〈E, B2〉

√

〈E, B1,B2〉
√

Rules for Guarded Commands. The rules for guarded commands express that a branch
whose guard is true can be selected. If the chosen branch ends with break, the guarded
command terminates when the branch terminates; if it ends with loop the guarded command
will be executed once more after executing the branch.

(∃i ∈ {1, . . . , n}) eval(E, Gi) = true Ti = break 〈E, Bi〉 L−→i 〈E′, B′
i〉

〈

E, @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]
〉 L−→i

〈

E′, B′
i

〉

(∃i ∈ {1, . . . , n}) eval (E, Gi) = true Ti = loop 〈E, Bi〉 L−→i 〈E′, B′
i〉

〈

E, @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]
〉 L−→i

〈

E′, B′
i; @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]

〉

3.3 Semantics for Communicating Processes

The semantics of a Chp description
〈

C, X , B̂1 ‖ · · · ‖ B̂n

〉

is defined by the parallel

composition of the Ltss
〈

Si,Li,−→i, 〈Ei, B̂i〉
〉

produced for the individual processes B̂i as

defined in Section 3.2. This yields a new Lts
〈

S, L, −→, 〈E, B̂1, . . . , B̂n〉
〉

, where:

� The set of states S contains tuples 〈E, B1, . . . , Bn〉 of n processes B1, . . . , Bn and a
global environment E on X ∗ =

⋃n

i=1 X ∗
i . E is the union of the local environments Ei

on X ∗
i of the processes B̂i. The sets X ∗

i are disjoint for the sets Xi (local variables of

B̂i), but for each binary channel c, the variable xc occurs in X ∗
i and X ∗

j (i 6= j); this
is not a problem, since xc is only modified by the process active for c.

� The set of labels L is the union of the sets of labels Li minus labels corresponding
to receptions on binary channels. We represent synchronised communications (i.e. an
emission and a reception) using the same symbol “!” as for emissions (following the
convention used in Cadp).

� The transition relation “−→” is defined by the three SOS rules below.

� The initial state is 〈E, B̂1, . . . , B̂n〉, with an empty initial environment E.

Let internal(i, L) be the predicate that holds iff L is internal or a communication on a port
(i.e. a unary channel open to the environment):

(∀i ∈ {1, . . . , n}) (∀L ∈ L) internal(i, L) ⇐⇒
(

L = τ ∨
(

(∃c ∈ C) (∃V ∈ V) (L = c!V ∨ L = c?V) ∧ port(i, c)
)

)

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 11

The first SOS rule describes the local — or internal — evolution of the i-th process Bi inde-
pendently of the others. It models either an assignment to a variable, or the communication
on a port c which is open to the environment and does not need to be synchronised with
another process Bj (i 6= j).

(∃i ∈ {1, . . . , n}) 〈E, Bi〉 L−→i 〈E′, B′
i〉 internal(i, L)

〈

E, B1, . . . , Bi, . . . , Bn

〉 L−→
〈

E′, B1, . . . , B
′
i, . . . , Bn

〉

The next rule describes the synchronisation between processes Bi and Bj communicating
on channel c, Bi being the emitter and Bj the receiver.

(∃i ∈ {1, . . . , n}) 〈E, Bi〉 c!V−−−→i 〈E′, B′
i〉 (∃j ∈ {1, . . . , n}) 〈E, Bj〉 c?V−−−→i 〈E′′, B′

j〉
〈

E, B1, . . . , Bi, . . . , Bj , . . . , Bn

〉 c!V−−−→
〈

reset(E′′, xc), B1, . . . , B
′
i, . . . , B

′
j , . . . , Bn

〉

(Com)

Note that i and j in rule (Com) are different and uniquely defined, since the communication
model is binary (one sender, one receiver for a given channel). Note also that, if E ′ and E

differ in rule (Com), then the only possible modification (resetting xc) is applied to E′′ in
the right hand side of the conclusion of rule (Com).

The rules presented so far are sufficient to define the semantics of (closed) systems without
passive ports, i.e. unary channels for which no process B̂i is active. The following rule com-
pletes the semantics by modelling the environment as an active process that communicates
with each passive port c.

(∃i∈{1, . . . , n}) passive(i, c) (∀j∈{1, . . . , n}) ¬active(j, c) eval (E, xc) = ⊥ V ∈ type(xc)
〈

E, B1, . . . , Bn

〉 τ−→
〈

E � {xc 7→ V }, B1, . . . , Bn

〉

(Env)
This rule is similar to those employed in the definition of semantics for asynchronous pro-
cesses communicating via shared memory, as for instance concurrent constraint programming
[dBP91] or concurrent declarative programming [Ser02, Table 5.3, page 142].

Example 1 This example shows the necessity of rule (Env). Consider the following two
processes B1 = @[c1 #1 ⇒ (c!1, c1?x); loop] and B2 = @[c2 #2 ⇒ (c!2, c2?x); loop]

corresponding to the two branches of the arbiter of Section 2.3. Here, c1 and c2 are passive
ports open to the environment. Without rule (Env), both B1 and B2 would be equivalent to the
deadlock process nil. However, while “B1 ‖ client-2” is equivalent to nil, “B2 ‖ client-2” is
not (the corresponding Lts, shown in Figure 2, has 8 states and 12 transitions). Rule (Env)
solves this issue by giving a different semantics to B1 and B2.

Example 2 Figure 3 gives the Lts generated for the arbiter of Section 2.3. To keep the size
of Figure 3 as small as possible, we minimised the Lts with respect to strong bisimulation
(merging states that differ only in the value of variable x when x is no longer used). This
is similar to the state reduction approach for process algebra described in [GS04].

3.4 Comparison with the Existing Petri Net Translation

In this section, we compare our SOS semantics with the “implicit” semantics proposed for
Chp in [RY04] by a translation of Chp into Petri nets. [RY04] only handles a subset of Chp

RR n
�

5666

12 G. Salaün and W. Serwe

τ c!2c2!2

c2!2 τ

c!2τ

c!2

c2!2

τ

τ

τ

Figure 2: Lts for “B2 ‖ client-2” of Example 1

c!2
c!2

τ τ

c1!1c2!2
τ

τ

τ

c2!2 τ

τ
τ

τ

τ

ττ

c!1

c!2c2!2
c2!2

c1!1

τ

c!1

τ τ τ
c!1

τ τ

c!1
c!1

c1!1

τ

τ

τ

τ

c!2
c!2

c1!1 c2!2

τ

c!2

ττ

c2!2

τ

τ

τ

τ

τ

c!1
c1!1

τ

τ

c1!1τ

τ
τ

τ

Figure 3: Lts for the arbiter example

that, compared to full Chp presented in Section 2, is restricted in two ways: it allows only
pure synchronisations (instead of value-passing communications) and forbids ports open to
the environment. By handling full Chp, our semantics allows to describe circuits with inputs
and outputs properly.

Translation of CHP to Petri Nets. Similar to our SOS semantics, [RY04] defines the
translation of a Chp description

〈

C, X , B̂1 ‖ · · · ‖ B̂n

〉

into Petri nets in two successive
steps:

� In a first step the Petri nets corresponding to the processes B̂i are constructed sepa-
rately following the patterns sketched in [RY04]. Petri net places may be labelled with
assignments, emissions, and receptions. Petri net transitions may be labelled with the
guards of Chp guarded commands. To fire a transition, its input places must contain
a token and the guard (if any) must be true.

� In a second step, the separate Petri nets are merged into one global Petri net. To
model synchronisation on channels, [RY04] gives two different translations, depending
on the handshake protocol (2- or 4-phase) used for the implementation. In both cases,

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 13

client 2arbiterclient 1

c2 #c1 #

c2?

x:=2

c2gr

c2req

c2s

c
2R2

c
2R1

c2

c2!

c1

c1gr

c1?

c1!

c1req

c
1R1

c
1R2

c1s

x:=1

Figure 4: Petri net for the arbiter example

channels are modelled by additional places and transitions that encode the chosen
handshake protocol. Notice that for each channel c the places labelled “c!” and “c?”
are kept separate, i.e. there is no transition merging as in [GS90].

The generated Petri net is one-safe, i.e. in every reachable marking, each place contains at
most one token.

Example 3 Consider the Chp description
〈

{c1, c2}, {x}, client-1 ‖ client-2 ‖ arbiter
〉

,
where channels c1 and c2 have an active emitter and a passive receiver, where variable x is
local to the arbiter, and where the three processes are defined as follows:

client-1: @[true ⇒ c1!;loop]

client-2: @[true ⇒ c2!;loop]

arbiter: @[c1 #1 ⇒ x:=1; c1?; loop c2 #2 ⇒ x:=2; c2?; loop]

This example is an adaptation of the arbiter of Section 2.3 in order to meet the restrictions
of [RY04]. The corresponding Petri net for a 4-phase protocol is (adapted from [RY04,
Figure 11]) shown in Figure 4. Places are represented by circles, and transitions by thick
lines. Whenever a place is both an input and an output place of some transition, we use
a double-headed arrow (as for places labelled c1req, c1gr, c2req, and c2gr). The Petri nets
corresponding to the three processes are framed in dotted boxes. The places modelling the
channels c1 and c2 are framed in dashed boxes.

Relation between SOS and Petri Net Semantics. In order to relate the Petri nets
proposed in [RY04] with the Ltss produced by our semantics, one needs to generate the
Ltss corresponding to the Petri nets. This is not immediate, since the Petri nets of [RY04]
have a different behaviour than ordinary Petri nets. For instance, if two places with action
(e.g. “c1!” and “c2!” in Figure 4) have a token, then interleaved transitions have to be
created for these actions. From [RY04] and following discussions with the first author of
[RY04], we conjecture that these Ltss can be obtained by the following two steps.

� First, the Petri net model of [RY04] with actions attached to places needs to be
transformed into a more standard model where actions are attached to transitions.

RR n
�

5666

14 G. Salaün and W. Serwe

aq

1 2

q1 q2

1 2

3 443

a

becomes

Figure 5: Duplication of Petri net places

As shown in Figure 5, each Petri net place q labelled with an action a (i.e. emission,
reception, or assignment) is replaced by two places q1 and q2 and a new Petri net
transition labelled with action a. Place q is replaced by q1 (respectively q2) in the sets
of output (respectively input) places of all transitions. In the case a transition t has q

both as an input and an output place (i.e. t corresponds to a double-headed arrow),
q is replaced by q2 in the sets of input and output places of t.

� Then, we compute the Lts for the modified Petri net by applying the standard marking
graph construction algorithm. We label the transitions of the generated Lts with
emissions and receptions labelling Petri net transitions. If a Petri net transition is not
labelled with an emission or a reception, the corresponding Lts transition is labelled
with τ .

We can now compare the LtsSOS obtained by our SOS semantics and LtsPN obtained after
translation of Chp into Petri nets, transformation, and marking graph construction. Given
that [RY04] does not deal with value-passing communications and open systems, this is only
possible for closed systems with pure synchronisations.

A first remark is that the places and transitions added to the Petri nets for the commu-
nication channels introduce τ transitions in LtsPN that might not have a counterpart in
LtsSOS . Thus, LtsSOS and LtsPN are not strongly equivalent. A second remark is that
the sets of labels of LtsSOS and LtsPN might be different. On the one hand, LtsPN might
contain both, “c!” and “c?” as labels, since the places labelled “c!” and “c?” are kept sep-
arate in the Petri nets of [RY04]. On the other hand, for closed systems LtsSOS does not
contain labels of the form “c?”. Establishing an equivalence relation between LtsSOS and
LtsPN would probably require to rename into τ all labels of LtsPN corresponding to com-
munications by active processes and to replace all remaining “?” by “!”; we conjecture that
after these transformations, LtsSOS and LtsPN are equivalent with respect to branching
equivalence [vGW89], but this remains to be proved.

4 Principles of a Translation from CHP to LOTOS

In order to check the correctness of asynchronous circuit designs (e.g. absence of deadlocks),
our approach is to translate Chp into Lotos so that existing tools (namely, the Cadp

verification toolbox [GLM02b]) can be applied. A tutorial of the ISO standard Lotos

[ISO89] can be found in [BB88]. We highlight first the main features of the translation of
Chp into Lotos:

�
Chp types (natural numbers, Booleans, bit vectors, etc.) are translated into Lotos

sorts (i.e. algebraic data types).

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 15

�
Chp functions are translated into Lotos operations, the semantics of which is defined
using algebraic equations.

� A Chp channel c is translated into a Lotos gate with the same name c.

� A Chp variable x is translated into one or more Lotos variables (i.e. value identifiers
in the Lotos standard terminology) with the same name and the same type as x. Sev-
eral Lotos variables might be required since Lotos variables are single-assignment,
whereas Chp variables are multiple-assignment.

� Sequential composition “;” in Chp is symmetric, whereas Lotos has two different
operators for sequential composition: an asymmetric action prefix “;” and a symmetric
sequential composition “>>”. Variables assigned on the left hand side of a Chp “;”
can be used on the right hand side, whereas variables assigned on the left hand side
of a Lotos “>>” must be explicitly listed (in an accept clause) to be used in the
right hand side. Furthermore, “>>” creates an internal τ transition, contrary to the
“;” operator of both Chp and Lotos. There are two options when translating Chp

to Lotos. A simple approach is to use only “>>”. A better approach is to use the
Lotos “;” whenever possible, and “>>” only when needed. In this report, we adopt
the second approach which generates better Lotos code at the expense of a more
involved translation.

�
Chp has a neutral element (skip) for its sequential composition, whereas Lotos lacks
neutral elements both for “;” (which is asymmetric) and for “>>” (which creates a τ

transition).

�
Chp has a loop operator, whereas Lotos does not; Chp loops have to be translated
into recursive processes in Lotos.

�
Chp guards are either Boolean expressions or probes, whereas Lotos guards are
Boolean expressions only.

4.1 Principles of Translating a Single Process

The translation of a Chp process B̂i is described by the recursive function c2l i(B, D, U, ∆)
with four parameters: B is a Chp process to translate and D, U , and ∆ are alphabetically
ordered sets of variables necessary to compute the variables to explicitly pass over Lotos

sequential compositions “>>”. Intuitively, D is the set of variables that have a defined value
before execution of B, U is the set of variables used after execution of B, and ∆ ⊆ D is an
auxiliary set of defined variables used to translate collateral compositions.

RR n
�

5666

16 G. Salaün and W. Serwe

Data-flow Analysis. We introduce the following data-flow sets inspired from [GS04, Sec-
tion 3]. Let def (B) be the set of variables defined by process B:

def (nil) = ∅
def (skip) = ∅
def (c!V) = ∅
def (x:=V) = {x}
def (c?x) = {x}
def (B1;B2) = def (B1) ∪ def (B2)

def (B1,B2) = def (B1) ∪ def (B2)

def (@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]) =

n
⋃

i=1

def (Bi)

Let usev(V) be the set of variables used by value expression V :

usev(x) = {x}
usev

(

f(V1, . . . , Vn)
)

=
⋃n

i=1 usev(Vi)

Let use(B) be the set of variables used by process B before they are defined:

use(nil) = ∅
use(skip) = ∅
use(x:=V) = usev(V)

use(c!V) = usev(V)

use(c?x) = ∅
use(B1;B2) = use(B1) ∪

(

use(B2) \ def (B1)
)

use(B1,B2) = use(B1) ∪ use(B2)

use(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]) =

n
⋃

i=1

(

use(Gi) ∪ use(Bi)
)

Functionalities. The functionality of a Chp process B is given by the function
func(B, D, U), where D and U are two alphabetically ordered sets of variables with the
same intuition as for c2l i. A functionality is either noexit or exit(X), X being a possibly
empty alphabetically ordered set of variables.

func(nil, D, U) = noexit

func(skip, D, U) = exit(D ∩ U)

func(c!V, D, U) = exit(D ∩ U)

func(x:=V, D, U) = exit
(

(D ∪ {x}) ∩ U
)

func(c?x, D, U) = exit
(

(D ∪ {x}) ∩ U
)

func(B1;B2, D, U) = if func(B1, D, U) = noexit ∨ func(B2, D, U) = noexit then
noexit

else
exit

(

(D ∪ def (B1) ∪ def (B2)) ∩ U
)

end if

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 17

func(B1,B2, D, U) = if func(B1, D, U) = noexit ∨ func(B2, D, U) = noexit then
noexit

else
exit

(

(D ∪ def (B1) ∪ def (B2)) ∩ U
)

end if

func(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn], D, U) =

if (∀i ∈ {1, . . . , n}) func(Bi, D, U) = noexit ∨ Ti = loop then
noexit

else

exit
(

(

D ∪ ⋃n

i=1 def (Bi)
)

∩ U
)

end if

Using func, let inf (B) be the predicate that holds iff func(B, ∅, ∅) = noexit.

Preliminary Transformations. We first simplify the Chp processes by applying the
following transformations successively:

� All occurrences of skip are removed wherever possible, based on the facts that (1)
skip is neutral element for sequential and collateral composition, (2) any branch “G ⇒
skip; loop” of a guarded command can be removed, and (3) any B̂i equal to skip

can be removed from B̂1 ‖ · · · ‖ B̂n. After these transformations, skip may occur only
in branches “G ⇒ skip; break” of guarded commands.

� The abstract syntax tree of each Chp process is reorganised so as to be right bracketed
(based on the associativity of Chp sequential composition). After transformation, each
sequence “B1; B2; B3” is bracketed as “B1; (B2;B3)”.

� If the rightmost process Bn of a maximal sequence “B1; . . . ;Bn” (n ≥ 1) is of the
form “x:=V ”, “c!V ”, or “c?x” (and not followed by break or loop), a final skip is
added, leading to the sequence “B1; . . . ;Bn;skip”.

� For each process of the form “B1;B2” such that inf (B1), B2 will never be executed
and can be removed. Similarly, in each process of the form “B1,B2” such that inf (B1)
is the negation of inf (B2), we replace the process Bi (i ∈ {1, 2}) such that inf (Bi)
does not hold, by “Bi; nil”. Also, if ¬inf (B̂i), then B̂i is replaced by “B̂i;nil”.
These transformations are needed to obey the static check of functionalities in Lotos.

After these transformations, all assignments and all communications (emissions and re-
ceptions) are used in prefix-style, i.e. they occur only in processes of one of the forms
“x:=V ; B”, “c!V; B”, and “c?x; B”. Formally, after these transformations, Chp pro-
cesses are described by the following grammar:

B ::= nil | skip | A;B | B1,B2 | @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]

A ::= x:=V | c!V | c?x | B1,B2 | @[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn]

where G, T , and V are defined as in Section 2. In the sequel, we use this new grammar for
the definition of the translation function c2l .

RR n
�

5666

18 G. Salaün and W. Serwe

Translation of nil and skip. nil is translated into stop. After the preliminary trans-
formations skip occurs only in a guarded command as a branch “G ⇒ skip; break” (this
case is handled below with guarded commands) or at the end of a sequence; in this case:

c2l i(skip, D, U, ∆) = exit(ξ1, . . . , ξn)

where the ξi are defined as follows. Let {x1, . . . , xn} = D ∩ U . Then (∀i ∈ {1, . . . , n})
ξi = xi if xi ∈ ∆ or ξi = “any type(xi)” otherwise.

Translation of “x:=V ;B”. An assignment to a variable x of type S is translated (gen-
erating an internal transition as in our SOS semantics and [RY04]) into:

c2l i(“x:=V ;B”, D, U, ∆) = let x:S = V in τ; c2l i

(

B, D ∪ {x}, U, ∆ ∪ {x}
)

Translation of Guards. Boolean expressions “V ⇒” are directly translated into “V ->”.
To model the Chp probe operator for a channel c, we introduce an additional synchronisation
on the corresponding Lotos gate c. Probes are distinguished from actual communications by
an additional offer “!Probe”, where Probe is a special constant belonging to an enumerated
type with a single value. This translation is based on the value-matching feature of Lotos

synchronisation, which ensures that two offers “!Probe” will synchronise.

c2l g(c #) = c!Probe

c2l g(c #V) = c!Probe!V

Translation of “c!V ;B” and “c?x;B”. Translation of an emission or a reception on a
channel c of type S = type(c) depends whether process B̂i is active or passive for c.

� The translation is straightforward if passive(i, c) holds:

c2l i(“c!V ;B”, D, U, ∆) = c!V ; c2l i(B, D, U, ∆)

c2l i(“c?x;B”, D, U, ∆) = c?x:S; c2l i(B, D ∪ {x}, U, ∆ ∪ {x})

� If active(i, c) holds, the translation is more involved because the active process B̂i needs
to allow its passive partner to probe channel c an arbitrary number of times. After a
synchronisation labelled with “!Probe”, B̂i can only perform further synchronisations
labelled with “!Probe”, until the communication is completed. Therefore, for every
occurrence of an active emission or an active reception on channel c in B̂i, we define an
auxiliary Lotos process probed c, the definition of which depends whether c is used
for emission or reception.

– An active emission “c!V ;B” translates as follows:

c2l i(“c!V ;B”, D, U, ∆) =
τ; probed c[c](V, x1, . . . , xn) >> accept x1:S1, . . . , xn:Sn in

c2l i(B, D′, U, ∆ ∩ D′)

where D′ = D ∩ (use(B) ∪ U), {x1, . . . , xn} = D′, and (∀i ∈ {1, . . . , n}) Si =
type(xi). Process probed c is defined by:

process probed c[c](x:S, x1:S1, . . . , xn:Sn): exit(S1, . . . , Sn) :=

c!x; exit(x1, . . . , xn) [] c!Probe!x; probed c[c](x, x1, . . . , xn)
endproc

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 19

– An active reception “c?x;B” translates as follows:

c2l i(“c?x;B”, D, U, ∆) =
τ; probed c[c](x1, . . . , xn) >> accept x1:S1, . . . , xn:Sn in

c2l i(B, D′, U, ∆ ∩ D′)

where D′ = (D ∪ {x}) ∩ (use(B) ∪ U), {x1, . . . , xn} = D′, and (∀i ∈ {1, . . . , n})
Si = type(xi). Process probed c is defined by:

process probed c[c](x1:S1, . . . , xn:Sn): exit(S1, . . . , Sn) :=

c?x:S; exit(x1, . . . , xn) [] c!Probe; probed c[c](x1, . . . , xn)
endproc

If x ∈ {x1, . . . , xn} and x 6∈ D, then x is removed from the parameters of process
probed c.

In both cases, the τ action preceding the call to probed c is created by the assignment
to xc (cf. Section 3) and models the asymmetry of Chp communications, i.e. the
fact that the active process chooses first. Notice that redundant process definitions
can be avoided by defining probed c only for all relevant subsets of {x1, . . . , xn}; an
approximation of these subsets can be computed by data-flow analysis.

Contrary to our approach, the translation from Balsa into Csp sketched in [WKTZ04]
uses pairs of actions with different names for representing (passive) input enclosures;
the active process is translated accordingly. Our approach has the advantage that the
translation of an active process is independent of the fact that the passive process
probes or not.

Translation of “A;B”. This translation rule applies only if A is a collateral composition
or a guarded command; all other cases have been handled before.

c2l i(“A;B”, D, U, ∆) =

c2l i(A, ∆′, U ′, ∆′) >> accept x1:S1, . . . , xn:Sn in c2l i(B, D′, U, ∆′)

where U ′ =use(B) ∪
(

U \ def (B)
)

, D′ =
(

D ∪ def (A)
)

∩ U ′, ∆′ =
(

∆ ∪ def (A)
)

∩ U ′, and
{x1, . . . , xn}=∆′.

Translation of “B1,B2”. A collateral composition is translated as follows:

c2l i(“B1,B2”, D, U, ∆) = c2l i(B1, D
′, U, ∆1) ||| c2l i(B2, D

′, U, ∆2)

where D′ = D ∪ def (B1) ∪ def (B2), ∆1 = D′ \ def (B2), and ∆2 = D′ \ def (B1).

Translation of Guarded Commands. Every guarded command B = “@[G1 ⇒
B1;T1 . . . Gn⇒ Bn;Tn]” is translated into a call to a process PB

c2l i(@[G1 ⇒ B1;T1 . . . Gn ⇒ Bn;Tn], D, U, ∆) = PB[Ci](x1, . . . , xn)

where {x1, . . . , xn} = D. The auxiliary process PB is defined by:

RR n
�

5666

20 G. Salaün and W. Serwe

process PB[Ci](x1:S1, . . . , xn:Sn): F

c2lg(G1) c2l i(B1, D, U, ∆) >> c2l t(T1, B1, D, U, ∆) [] · · · []
c2lg(Gn) c2l i(Bn, D, U, ∆) >> c2l t(Tn, Bn, D, U, ∆)

endproc

c2l t(loop, B, D, U, ∆) = accept x1:S1, . . . , xn:Sn in PB[Ci](x1, . . . , xn)
c2l t(break, B, D, U, ∆) =

accept x′
1:S1, . . . , x

′
m:Sm in c2l i

(

skip, (D ∪ def (B)) ∩ U, U, ∆
)

with {x′
1, . . . , x

′
m} =

(

D ∪ def (B)
)

∩ U . If inf (B) then F = noexit; otherwise
func(B, D, U) = exit({x′′

1 , . . . , x′′
k}) and F = exit(type(x′′

1), . . . , type(x′′
k)).

If a guarded command is the left hand side of a sequential composition “@[. . .];B ′”, we
generate a second auxiliary process PB′ (for B′); each break is translated into a call to PB′

and the functionality F is computed with respect to B′. This avoids the introduction of a τ

transition due to the exit (generated by the translation of break). For each Bi such that
inf (Bi), Ti is not translated at all.

4.2 Principles of Translating Several Concurrent Processes

The parallel composition “‖” of Chp is translated into the Lotos operator “|[· · ·]|”. In
Chp, processes synchronise implicitly on channels with the same name, whereas in Lotos

the set of gates for synchronisation has to be stated explicitly. Although such a translation
would not always be possible in the general case [GS99], it works for Chp descriptions, since
the channels have pairwise distinct names.

The translation of a Chp description
〈

C, X , B̂1 ‖ · · · ‖ B̂n

〉

is defined recursively:

c2l(“B̂1 ‖ · · · ‖ B̂n”, C) =

if n = 1 then

c2l1(B̂1, ∅, ∅, ∅)
else

c2l1(B̂1, ∅, ∅, ∅) |[chan(B̂1) ∩ C]| c2l
(

“B̂2 ‖ · · · ‖ B̂n”, C \ chan(B̂1)
)

end if

where chan(B̂) stands for the set of binary channels occurring in process B̂.

4.3 Example of the Arbiter

The Lotos behaviour obtained as translation of the arbiter described in Section 2.3 is
defined by the following Lotos code:

client-1[c1] |[c1]|
(

client-2[c2] |[c2]| arbiter[c, c1, c2]
)

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 21

τ

c!2

c2!2

c!2

c2!2

c2!2
τ

c!1

c1!1

c!1

c1!1

c1!1

c!2

c2!2

c2!2

c!2

ττ

c!1

c1!1

c1!1

c!1

(a) SOS semantics (b) Lotos translation

Figure 6: Ltss of the arbiter example (minimised with respect to branching equivalence)

where

process client-1[c1] : noexit :=

τ; probed c1[c1](1) >> client-1[c1]

endproc

process client-2[c2] : noexit :=

τ; probed c2[c2](2) >> client-2[c2]

endproc

process arbiter[c, c1, c2] : noexit :=
(

c1!Probe!1; (τ; probed c[c](1) ||| c1?x:S;exit) >> arbiter[c, c1, c2]
)

[]
(

c2!Probe!2; (τ; probed c[c](2) ||| c2?x:S;exit) >> arbiter[c, c1, c2]
)

endproc

where the processes probed c(j) are defined as described in Section 4.1.

The Lts corresponding to this Lotos specification has 82 states and 212 transitions. The
Lts obtained after hiding all labels with “!Probe” offers was found (by the Bisimulator tool
[BDJM05] of Cadp) to be observationally [Mil80] (but not branching [vGW89]) equivalent
to the one presented in Figure 3.

The reason why our translation does not preserve branching equivalence is that a probe is
translated into a τ transition that is not present in the SOS semantics of Section 3. For
instance, the Lts of Figure 3 contains a state (lower middle of the graph) with two outgoing
transitions labelled “c1!1” and “c2!2”, but no such state exists in the Lts obtained after
our Lotos translation, since both branches of the “[]” choice in the arbiter start with a τ

transition corresponding to a probe.

To illustrate further, the Ltss depicted in Figure 6(a) (respectively Figure 6(b)) corresponds
to the Lts obtained for the arbiter example by the SOS semantics (respectively the Lotos

translation) after minimisation with respect to branching equivalence. The transitions that
are present in Figure 6(a), but not in Figure 6(b) are represented by dashed arrows. Notice
that the two Ltss of Figure (6) are observationally equivalent.

4.4 Application: An Asynchronous Implementation of the DES

We developed a prototype Chp to Lotos translator, called chp2lotos, using the Syntax

and Lotos NT compiler construction technologies [GLM02a]. So far, chp2lotos consists
of about 2,000 lines of Syntax, 6,000 lines of Lotos NT, and 500 lines of C.

We have experimented chp2lotos on a case study tackled in [BBM+03], namely a Chp

description (1,600 lines) of an asynchronous implementation of the DES (Data Encryption

RR n
�

5666

22 G. Salaün and W. Serwe

Standard) [NIS99], from which chp2lotos produced about 1,600 lines of Lotos. Since
this case study contains many concurrent processes, direct generation of the Lts failed
due to lack of memory (after 70 minutes, the generated Lts had more than 17 million
states and 139 million transitions). However, using the compositional verification techniques
(decomposing, minimising, and recomposing processes) [Lan02] of the Cadp toolbox we
generated an equivalent, but smaller Lts (50,956 states and 228,136 transitions) in 8 minutes
on a SunBlade 100 (500 Mhz Ultra Sparc II processor, 1.5 GB of RAM). Compared to
[BBM+03]4, compositional techniques improves verification performance.

5 Concluding Remarks

In this report, we gave an SOS semantics for the hardware process algebra Chp with value-
passing communication and ports open to the environment. Our semantics clarifies the
definition of the probe operator. We investigated the relation of our semantics with existing
semantics based on a translation of Chp into Petri nets. Based on our semantics, we outlined
a translation of Chp into Lotos, in order to allow the reuse of existing formal verification
tools, such as Cadp, for the analysis and validation of asynchronous hardware. Finally, we
reported on a first experiment with a prototype translator.

As regards future work, we are currently validating and extending our prototype with the aim
of an integration of formal verification in the design process by a tight connection between
synthesis and verification tools, in particular Tast and Cadp. Furthermore, it would be
interesting to characterise precisely the weak equivalence preserved by our translation from
Chp into Lotos. We conjecture that observational equivalence is preserved, and that if the
Chp description does not contain any probe, branching equivalence is also preserved.

Acknowledgements.

We are grateful to Edith Beigné, François Bertrand, Dominique Borrione, Marc Renaudin,
and Pascal Vivet for interesting discussions on Chp and Tast, in particular on the semantics
of the probe operator. We are indebted to Hubert Garavel for his significant contribution
to the final version.

References

[BB88] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks and ISDN Systems, 14(1):25–59, Jan-
uary 1988.

[BBM+03] Dominique Borrione, Menouer Boubekeur, Laurent Mounier, Marc Renaudin,
and Antoine Sirianni. Validation of Asynchronous Circuit Specifications using
IF/CADP. In Manfred Glesner, Ricardo Augusto da Luz Reis, Hans Evek-
ing, Vincent John Mooney, Leandro Soares Indrusiak, and Peter Zipf, editors,
Proceedings of the International Conference on Very Large Scale Integration of

4[BBM+03] managed to generate an Lts directly (5.3 million states, 30 million transitions) in 65 minutes
after replacing collateral compositions by sequential compositions in some well-chosen processes of the Chp

description (according to the second author of [BBM+03]). When applying the same transformations on a
Lotos specification, we generated an equivalent Lts of the same size in 15 minutes.

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 23

System-on-Chip VLSI-SoC 2003 (Darmstadt, Germany), pages 86–91, Darm-
stadt, December 2003.

[BCV+05] Edith Beigné, Fabien Clermidy, Pascal Vivet, Alain Clouard, and Marc Re-
naudin. An Asynchronous NOC Architecture Providing Low Latency Service
and Its Multi-Level Design Framework. In Proceedings of the 11th IEEE Inter-
national Symposium on Asynchronous Circuits and Systems ASYNC’05 (New
York, USA), pages 54–63. IEEE Computer Society Press, March 2005.

[BDJM05] Damien Bergamini, Nicolas Descoubes, Christophe Joubert, and Radu Ma-
teescu. BISIMULATOR: A Modular Tool for On-the-Fly Equivalence Checking.
In Nicolas Halbwachs and Lenore Zuck, editors, Proceedings of the 11th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems TACAS’2005 (Edinburgh, Scotland, UK), volume 3440 of Lecture Notes
in Computer Science, pages 581–585. Springer Verlag, April 2005.

[BPS01] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of
Process Algebra. Elsevier, 2001.

[dBP91] Frank S. de Boer and Catuscia Palamidessi. A Fully Abstract Model for Concur-
rent Constraint Programming. In S. Abramsky and T. S. E. Maibaum, editors,
Proceedings of the International Joint Conference on Theory and Practice of
Software Development TAPSOFT’91, Volume 1, Colloquium on Trees in Alge-
bra and Programming CAAP’91 (Brighton, United Kingdom), volume 493 of
Lecture Notes in Computer Science, pages 296–319. Springer Verlag, April 1991.

[EB02] Doug Edwards and Andrew Bardsley. Balsa: An Asynchronous Hardware Syn-
thesis Language. The Computer Journal, 45(1):12–18, 2002.

[Fok00] Wan Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer Verlag, 2000.

[GLM02a] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler Construction us-
ing LOTOS NT. In Nigel Horspool, editor, Proceedings of the 11th International
Conference on Compiler Construction CC 2002 (Grenoble, France), volume 2304
of Lecture Notes in Computer Science, pages 9–13. Springer Verlag, April 2002.

[GLM02b] Hubert Garavel, Frédéric Lang, and Radu Mateescu. An Overview of CADP
2001. European Association for Software Science and Technology (EASST)
Newsletter, 4:13–24, August 2002. Also available as INRIA Technical Report RT-
0254 (December 2001).

[GS90] Hubert Garavel and Joseph Sifakis. Compilation and Verification of LOTOS
Specifications. In L. Logrippo, R. L. Probert, and H. Ural, editors, Proceed-
ings of the 10th International Symposium on Protocol Specification, Testing and
Verification (Ottawa, Canada), pages 379–394. IFIP, North-Holland, June 1990.

[GS99] Hubert Garavel and Mihaela Sighireanu. A Graphical Parallel Composition
Operator for Process Algebras. In Jianping Wu, Qiang Gao, and Samuel T.
Chanson, editors, Proceedings of the Joint International Conference on Formal
Description Techniques for Distributed Systems and Communication Protocols,
and Protocol Specification, Testing, and Verification FORTE/PSTV’99 (Beijing,
China), pages 185–202. IFIP, Kluwer Academic Publishers, October 1999.

RR n
�

5666

24 G. Salaün and W. Serwe

[GS04] Hubert Garavel and Wendelin Serwe. State Space Reduction for Process Algebra
Specifications. In Charles Rattray, Savitri Maharaj, and Carron Shankland, edi-
tors, Proceedings of the 10th International Conference on Algebraic Methodology
and Software Technology AMAST’2004 (Stirling, Scotland, UK), volume 3116 of
Lecture Notes in Computer Science, pages 164–180. Springer Verlag, July 2004.

[Hau95] Scott Hauck. Asynchronous Design Methodologies: An Overview. Proceedings
of the IEEE, 83(1):69–93, January 1995.

[ISO89] ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour. International Standard 8807, Interna-
tional Organization for Standardization — Information Processing Systems —
Open Systems Interconnection, Genève, September 1989.

[KP01] Joep L. W. Kessels and Ad M. G. Peeters. The Tangram Framework (Embedded
Tutorial): Asynchronous Circuits for Low Power. In Proceedings of the Asia
and South Pacific Design Automation Conference ASP-DAC 2001 (Yokohama,
Japan), pages 255–260. ACM, 2001.

[Lan02] Frédéric Lang. Compositional Verification using SVL Scripts. In Joost-Pieter
Katoen and Perdita Stevens, editors, Proceedings of the 8th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’2002 (Grenoble, France), volume 2280 of Lecture Notes in Computer
Science, pages 465–469. Springer Verlag, April 2002.

[Mar85] Alain J. Martin. The Probe: An Addition to Communication Primitives. Infor-
mation Processing Letters, 20(3):125–130, April 1985.

[Mar86] Alain J. Martin. Compiling Communicating Processes into Delay-Insensitive
VLSI Circuits. Distributed Computing, 1(4):226–234, 1986.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer Verlag, 1980.

[NIS99] NIST. Data Encryption Standard (DES). Federal Information Processing Stan-
dards FIPS PUB 46-3, National Institute of Standards and Technology, Octo-
ber 25 1999.

[Ren05] Marc Renaudin. TAST Compiler and TAST CHP Language, Version 0.6. TIMA
Laboratory, CIS Group, 2005.

[RY04] Marc Renaudin and Alex Yakovlev. From Hardware Processes to Asynchronous
Circuits via Petri Nets: an Application to Arbiter Design. In Proceedings of
the Workshop on Token Based Computing TOBACO’04 (Bologna, Italy), June
2004.

[Ser02] Wendelin Serwe. On Concurrent Functional-Logic Programming. Thèse de doc-
torat, Institut National Polytechnique de Grenoble, March 2002.

[vB93] Kees van Berkel. Handshake Circuits: An Asynchronous Architecture for VLSI
Programming, volume 5 of International Series on Parallel Computation. Cam-
bridge University Press, 1993.

INRIA

Translating Hardware Process Algebras into Standard Process Algebras 25

[vGW89] R. J. van Glabbeek and W. P. Weijland. Branching-Time and Abstraction
in Bisimulation Semantics (extended abstract). CS R8911, Centrum voor
Wiskunde en Informatica, Amsterdam, 1989. Also in proc. IFIP 11th World
Computer Congress, San Francisco, 1989.

[WKTZ04] X. Wang, Marta Kwiatkowska, G. Theodoropoulos, and Q. Zhang. Towards a
Unifying CSP approach for Hierarchical Verification of Asynchronous Hardware.
In M. R. A. Huth, editor, Proceedings of the 4th International Workshop on
Automated Verification of Critical Systems AVoCS’04 (London, UK), volume
128 of Electronic Notes in Theoretical Computer Science, pages 231–246, 2004.

RR n
�

5666

Unité de recherche INRIA Rhône-Alpes
655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

