
Active World Model for Testing Autonomous

Systems Using CEFSM

Anneliese Andrews

Department of Computer Science

University of Denver

Denver, CO 80208 USA

Email: andrews@cs.du.edu

Mahmoud Abdelgawad

Department of Computer Science

University of Denver

Denver, CO 80208 USA

Email: abdelgaw@cs.du.edu

Ahmed Gario

Department of Computer Science

University of Denver

Denver, CO 80208 USA

Email: agario@du.edu

Abstract—This paper describes a model-based test generation
approach for testing autonomous systems interacting with their
environment (i.e., world). Unlike other approaches that assume
a static world with attributes and values, we present and test
a dynamic world. We use Communicating Extended Finite
State Machine (CEFSM) to illustrate an active world model
that describes behaviors of environmental factors (i.e., actors).
Abstract World Behavioral Test Cases (AWBTCs) are then gen-
erated by covering the active world model using graph coverage
criteria. We also generate test-data by input-space partitioning
to transform the generated AWBTCs into executable test cases.
We apply the World Model-based Test Generation (WMBTG)
technique to a case study from the Human-Robot Interaction
domain (HRI) specifically a tour-guide robot. Reachability of the
active world model and efficiency of coverage criteria are also
discussed.

I. INTRODUCTION

Autonomous systems are commonly defined as those sys-

tems that are able to accomplish entirely or in part certain

tasks/goals without human intervention [1,2]. Autonomous

systems exist in various applications such as driverless vehicles

(so-called Unmanned Vehicles) [3], Search and Rescue robots

(SaR) [4], and Human-Interaction Robots (HRI) [5]. As such,

the robotic vacuum cleaner (Roomba) is a prime example

of autonomous systems [6]. Testing the interactions between

autonomous systems and world actors- pedestrians, mobile

objects, and unknown obstacles- poses a series of challenges,

due to the complexity of these systems and the uncertainty

of their surroundings. In order to generate behavioral test

cases in the form of simultaneous world stimuli, Model-based

Testing (MBT) is able to leverage behavioral models, such

as CEFSM [7], Coloured Petri Nets (CPN) [8], Labelled

Transition Systems (LTS) [9], and sequence and communi-

cation diagrams in Unified Modeling Language (UML) [10],

to describe the behavioral scenarios that can occur between

the System Under Test (SUT) and its world. This requires

testing solutions to deal with the large number of possibilities

of the behavioral scenarios. Current MBT approaches for

testing Real-time Embedded Systems (RTES) interacting with

their worlds assume a static world model [11]. However,

for autonomous systems, the world cannot be described only

statically with attributes and values, the world should also be

presented and used for testing dynamically.

To address these challenges, we propose a systematic MBT

approach, World Model-based Test Generation (WMBTG),

that identifies what, where and how to use worlds for testing

autonomous systems inteacting with their surroundings. Test

cases are generated by aggregating test paths in the individ-

ual models. These test paths are grouped as concurrent test

paths which can be used with simulators or test-harnesses to

validate autonomous systems. WMBTG has been introduced,

in our previous work, and was applied to the unmanned

vehicle application domain [12]. We extend the applicability of

WMBTG to the Human-Robot Interaction (HRI) domain. We

also evaluate the efficiency of test path coverage criteria used

to generate Abstract World Behavioral Test Cases (AWBTs).

We evaluate input-space partitioning coverage criteria [13]

used to generate test-data. We use UML class diagrams to

construct the structural model of actors and their relationships.

We also use CEFSM [7,14] to represent landscapes in worlds.

We call these landscapes snippets. Snippets are used to link the

behavioral models of various actors that are involved in this

world. We also explore the applicability of the MBT technique

for testing autonomous systems behaviors in dynamic worlds

in [12] alongside behavioral testing that is flexible, system-

atic, scalable, and shows that this technique is extendable to

other domains of autonomous systems and to other types of

behavioral models.

The remainder of this paper is organized as follows. Section

II discuses the state of research related to MBT, testing

autonomous systems, and World Model-based Testing. Sec-

tion III defines the human-robot interaction domain, explores

HRI classifications, and describes the case study. Section

IV presents our approach and applies it to the case study.

We analyze and discuss reachability and efficiency issues in

section V. Section VI draws conclusions and future work.

II. STATE OF RESEARCH

A. Model-based Testing (MBT)

According to Dias-Neto et al. [15], MBT uses various

models to automatically generate tests. MBT includes three

key elements: models that describe software behavior, crite-

ria that guide the test-generation algorithms, and tools that

generate supporting infrastructure for the tests. Zander et al.

[16] define MBT as an algorithm that generates test cases

automatically from models instead of creating them manually.

Utting et al. [16,17] define six dimensions of MBT approaches

(a taxonomy): model scope, characteristics, paradigm, test

selection criteria, test generation technology and test execu-

tion. They also classify MBT techniques as state, history,

functional, operational, stochastic, and transition based. Shi-

role et al. [10] present a survey on model-based test genera-

tion from UML behavioral specification diagrams (sequence,

state chart and activity diagrams). They classify the various

research approaches based on formal specifications, graph-

based, heuristics, and direct UML specification processing. In

graph-based testing, a test case is a path that covers some

specific system requirement. Test case generation from graphs

includes the following steps: build a graph model, identify test

requirements, select test paths to cover those requirements,

and derive test data. Shafique and Labiche [18] present a

systematic review to determine the current state of the art

of MBT tool support. They scope their study to tools that

use state-based models: FSM, Extended FSM, Abstract State

Machine (ASM), State-chart, UML state machine, (timed,

input/output)-automata, Harel Statechart, Petri Net, State Flow

diagram and Markov chain. They grouped MBT tools based

on test criteria similarity. Twelve MBT tools are selected for

primary studies. A comparison enables tool selection based on

project needs. The literature shows that CEFSM is practicable

for representing dynamic behaviors including dependency,

concurrency, and communication.

B. Testing Autonomous Systems

The techniques for testing autonomous systems are mostly

computer-based simulation and test fields/arenas. Jacoff et al.

[19], by the National Institute of Standards and Technology

(NIST), introduce a standard for designing and evaluating test

arenas (Reference Test Arena for Autonomous Mobile Robots).

The test arenas consist of collapsed structures that are designed

from buildings in various stages of the collapse. Pepper et al.

[20] illustrate a computer-based simulation technique for eval-

uating USAR robots using USARSim, a robot simulation tool.

The computer-based simulation is flexible, repeatable, and

accurate compared with physical test fields/arenas; however,

it lacks physical fidelity. Both techniques, computer-based

simulation and test fields/arenas, also limit possible behavioral

scenarios that may occur in autonomous system worlds. Lill

et al. [8] use a MBT technique for testing autonomous sys-

tems. The authors, first, compare different modeling notations

(Process Algebras like Calculus of Communicating Systems

(CCS) and Communicating Sequential Processes (CSP), UML

activity diagrams, Petri Nets (PNs), and Coloured Petri Nets

(CPNs)) that are used to model concurrent behavior of co-

operating autonomous systems. The comparison is based on

four evaluating criteria (understandability, well-definedness,

scalability, and testability). They then select CPNs to model

a factory robot that carries a load from one place to another.

Four behavioral transitions (look ahead, raise alarm, go ahead,

mission completed) were modeled. Obstacle passing is not

considered. They also define coverage criteria tailored to the

characteristics of CPNs, such as color-based and event-based

coverage criteria. Color-based coverage criteria focus on the

consumption of tokens that belong to pre-defined color sets.

Event-based coverage criteria focus on the CPN events, where

an event is defined as a transition together with enabling

variables. This work does not provide validation, nor does it

address dynamic worlds. The authors however found MBT is

the most promising option for testing autonomous systems.

C. World Model-based Testing

Most approaches in the literature for modeling the world

of autonomous systems define the world model as a software

control component that represents the autonomous system’s

view of its world. In our approach, the world is consid-

ered as independent actors interacting with the SUT instead

of being part of the system. These approaches are mostly

for the purpose of increasing the understandability of the

decision-making module to the relevant surroundings in order

to implement proper, efficient, and safe behaviors, but they

are not aiming for model-based testing. Gheta et al. [21]

contribute an intelligent information storage and management

system approach for autonomous systems with the aim of

modeling the world of an autonomous system. The world

model is represented as instances of classes with class specific

attributes and relations. Furda and Vlacic [22] also present

an object-oriented world model approach for the road traffic

environment of autonomous vehicles. The approach uses UML

class diagrams to represent the structure of the world actors.

The authors conducted an experiment, a field trial, using

two autonomous vehicles. The experiment illustrates that the

world model strongly supports the decision-making module

for making appropriate driving decisions in real-time. Never-

theless, this work neither intends to be a testing technique for

autonomous systems nor does it handle the dynamic aspect of

world actors.

A closely related approach for world model-based testing is

presented in [23]. It generates black-box test cases automati-

cally based on a static world model. The main characteristics

of the approach are: 1) modeling the structural and behavioral

world properties, especially real-time properties. Invariants

and error states such as unsafe, undesirable, or illegal states

are also modeled. They use an extension of UML (MARTE)

that models and analyzes real-time embedded systems. They

also use Object-Constraints Language (OCL)for specifying

environmental constraints. 2) Test oracles are then generated

automatically from the world model. They use a simulator to

observe actual response. 3) To identify feasible test cases and

maximize possibilities of fault detection, heuristic algorithms

such as Random Testing (RT), Adaptive Random Testing

(ART), and Search-based Testing (SBT) (specifically, Genetic

algorithm and (1+1) Evolutionary algorithm) are used as

test generation strategies. An empirical study is conducted

to identify which test case generation approach obtains the

best results. The experiment shows that ART is the best

among these algorithms. Recently, this approach has been

enhanced and applied to automotive sensor system [24]. This

approach generates use cases automatically by using Natural

Language Processing (NLP). The approach (so called Use

Case Modeling for System Tests Generation (UMTG)), is

applied to BodySense system. BodySense system monitors

a car seat to classify the occupants. It disables the airbag

for children and unoccupied seats while it enables airbag for

adults. It also includes a seat belt reminder function. The

result indicates that test requirements generated by UMTG

are entirely feasible. However, this approach limits the world

model to a static world. It is also specified for testing real-time

embedded systems (RTES). It is not applicable for autonomous

systems because their worlds are dynamic.

III. APPLICATION DESCRIPTION

In this paper, we consider tour guide-robot applications. Ac-

cording to [5,25,26], a tour guide-robot is classified as a highly

autonomous, serviceable, anthropomorphic, navigational, and

social HRI robot. Tour guide-robots usually perform in indoor

sensory environments where sensors are placed ubiquitously

for perceiving static/mobile objects. Tour guide-robots use the

sensory environment to understand their surroundings and to

localize themselves. Museum, campus, shopping arcade, train

station, and hotel-lobby are examples of indoor sensory envi-

ronments. MacDougall et al. [27] present a sensory environ-

ment. They built the sensory environment in the Electrical and

Computer Engineering Department of Kettering University for

the purpose of college tours. They then conducted a field trial

on a tour guide-robot that gives tours to visitors. Although,

experimenters use visitors’ opinions (questionnaire), which is

not enough for validation, these experiments illustrate that the

tour guide-robots are capable to be proximate, conversational,

serviceable, and sociable. Burgard et al. [28] conducted a

field trial on a tour guide-robot, RHINO, in the Deutsche

Museum Bonn. For six days, RHINO gave tours to more

than 2000 visitors. Thrun et al. [29] experimented with a tour

guide-robot, MINERVA, in the Smithsonian National Museum

of American History. MINERVA successfully educated and

entertained many thousand visitors. Socially, MINERVA is

compared with RHINO. A key difference between both robots

relates to their interactive capabilities. RHINO acts more

rudimentarily and does not exhibit emotional states, while

MINERVA behaves more effectively in attracting people and

making progress. The Microsoft Research Team [30] also

conducted a field trial on a tour guide-robot (a humanoid robot

(NAO), from Aldebaran Robotics, France). The experiment

focuses on conversational engagement, handling queries, and

providing directions to visitors. The experimental results show

successful conversational engagements with individuals but

not multiparty conversational situations. The HRI literature

with the most relevance to the guide-robot applications comes

from a series of studies on Robovie, a humanoid robot invented

by Advanced Telecommunications Research (ATR) Institute,

Japan. Therefore, we select Robovie as a System Under Test

(SUT) in our case study.

1) Tour-guide Robot (Robovie): Robovie is an interactive

humanoid robot performing human-like physical expressions

[31]. It has a head with two eyes, two arms, a body, and

wheels for mobility. Its mobile platform includes two driving

wheels and one free wheel. Robovie is equipped with 10 tactile

sensors, an omnidirectional vision sensor, two microphones to

listen, and 24 ultrasonic sensors for detecting obstacles. The

eyes have a pan-tilt mechanism with direct-drive motors, and

they are used for stereo vision and gaze control. It also has

skin sensors for realizing interactive behaviors. Robovie com-

municates with its sensory environment via wireless LAN. En-

vironmental sensors that Robovie communicates with usually

are Laser Range Finders (LRFs). Many cognitive experiments

were conducted on Robovie to increase its behavioral skills.

For instance, Robovie can predict human behaviors. This skill

was added recently to Robovie for the purpose of escaping

from children’s abuse [32]. Robovie can perform meaningful

interactive-behaviors for a human. For example, it can gaze,

gesture, greet, converse, listen, assist, follow, accompany and

guide people. Robovie also can perform in various sensory en-

vironments. Kanda et al. [33] present a field trial conducted on

Robovie at a shopping mall for five weeks. Each day, approxi-

mately 100 groups of customers signed up to interact with the

robot. The experimenters observe Robovie’s interaction with

customers. They also collect feedback using a questionnaire.

The findings show that the customers accepted the robot with

positive impressions. In [34] and [35], the authors present the

results of two field trials on Robovie at a train station. Its task

includes greeting, providing directions, and advertising. The

experimenters also consider this robot being capable to elicit

spontaneous participation from pedestrians. This experiment

investigates the robot’s technical performance and its attitudes.

The authors illustrate fine results in both considerations except

speech recognition. Shiomi et al. [36] also present a field

trial conducted on Robovie at Osaka Science Museum for two

months. The robot is assigned to welcome, guide, and provide

scientific information about the exhibits. In this field trial,

the target visitors are children, therefore Robovie expresses

childlike behaviors such as handshaking, hugging, and free-

playing. The findings indicate that performing childlike in-

teractions effectively attracts visitors’ attention for scientific

explanations. These field trials were conducted with a few

interventions (so-called semi-autonomous trial) by operators

(humans). Operators use ubiquitous cameras to watch partici-

pants and start the robot for greeting when a participant talks

to it. They also intervene when the robot encounters a critical

situation. In compliance with these field trials, one can image

that Robovie generally deals with three types of environmental

actors (people, obstacles, and environmental sensors). Also, to

present an active world model, we assume that this robot is

fully autonomous.

2) Crowds in a train station: As mentioned, Robovie can

perform in various sensory environments where crowds can be

formed. A crowd is defined as a large group of individuals

in the same physical environment, sharing a common goal

[37]. Each crowd has a set of behaviors resulting from world

actors. For instance, in a museum, an attendee can attend, ask,

film, and leave an exhibit. In a train station, crowds can be

Fig. 1: Shopping Arcade in a Train Station, [35]

formed over many snippets (entry gate, train doors, shopping

arcade, restaurant, exit gate). Each snippet has a somewhat

different set of behaviors from other snippets. At a restaurant,

for example, people can walk, talk, order, sit, eat, etc. At the

entry gate, people run, sometimes push and shove, follow, pass,

etc. In both locations, people engage in common behaviors

such as talking, listening, gesturing, gazing, etc. In addition,

people naturally do these behaviors simultaneously. Therefore,

crowd behaviors are infinite and simultaneous. [37] explores

the crowd behaviors in detail.

In this paper, the shopping arcade in the train station presented

in [35] is considered as a world snippet of the case study. As

shown in Fig. 1, the shopping arcade in a train station consists

of participants, obstacles, and four LRFs mounted around

the trial area. In [35], the authors classify the participants

as addressees, side-participants, bystanders, and pedestrians.

Addressee is a person in front of the robot listening to and

following. Side-participants are participants accompanying an

addressee. Addressee and Side-participants are responsible for

responding to the robot. Bystanders are participants encour-

aged by the robot, addressee, or side-participants but they are

not responsible for interacting with the robot. Pedestrians are

people who are not arranged in any of these classes. Obstacles

are classified as Mobile obstacles (e.g., drivable cleaning-cart)

and Static obstacles like ”caution: wet floor” sign. The four

LRFs are assigned to sense the obstacles and the participants’

movements in the trial area and provide the sensory data to

the robot. Fig. 2 visualizes a set of shopping arcade actors.

Fig. 2: A set of shopping arcade actors

The areas also are classified into two types, Area of Audience

(AoA) and Area of Passing (AoP) [35]. AoAs are locations

where pedestrians tend to become members of the audience

like a restaurant. AoPs are locations where pedestrians tend to

keep passing, for instance entry and exit gates, see [35]. The
shopping arcade is considered as AoA.

IV. APPROACH

Our objective is to apply a systematic model-based test

generation approach [12] to generate test cases from an active

world model that represents world actors of an autonomous

system. There are a multitude of world actors. They can

be mobile or static. World actors also act independently,

Fig. 3: World Behavioral Test Generation Process

simultaneously, and unpredictably. To avoid scalability and

complexity issues of the dynamic worlds, we concentrate on

actors that autonomous systems are dealing with and the

behavioral messages that autonomous systems can perceive

from these actors. The locations where actors interact are also

considered. In other words, a set of actions that a group of

actors can perform may occur over a particular snippet. For

instance, when travelers stop by a shopping arcade in a train

station, behaviors can be walking or standing.

We build the world behavioral model in two steps. First,

we construct a structural model of actors to represent their

attributes, functions and relations. Second, we construct the

behavioral model to describe actors’ possible states and tran-

sitions and their interactions. Each actor is presented by

one behavioral model showing its behavioral messages. The

interactions between these actors represent the active world

model. These interactions need to be modeled by a com-

municating behavioral semantic model such as CEFSM. As

such in our application, actors are interacting simultaneously,

the active world model should cover not only the internal

transitions of actors, but also the interactions between them.

The active world model can then be leveraged to generate

world behavioral test cases. Once we build the active world

model, any member of the graph-based testing criteria from

[8,13] can be used to generate abstract behavioral test paths,

which are AWBTCs. Finally, we generate test-data by input-

space partitioning to transform the generated AWBTCs into

executable test cases. The test generation process is illustrated

in Fig. 3. The world Model-based test generation process

follows three phases:

• Model the active world by constructing structural and

then behavioral models.

TABLE I: Instances of Shopping Arcade Actors

Class Actor Instance Behavioral message example

Participant An elderly person,
an adult, a teen, and
a child

child.attend()
child.behave(talk)
elderly.behave(gaze)

Mobile
obstacle

Cleaning cart and
maintenance cart

cleaningCart.appear()
cleaningCart.act(moveBW)
cleaningCart.act(flashingLight)

Static
obstacle

Caution signs, flash
lights, siren, and
fire alarms

caution.appear()
caution.inform(”Wet Floor”)
alram.inform(”siren”)

LRF LRF1, LRF2,
LRF3, and LRF4

LRF1.on()
LRF1.detect(participant)

• Select proper graph-based coverage criteria for test-path

generation and proper input-space partitioning coverage

criteria for test-data.

• Generate AWTCs which are concurrent test paths and

then generate test-data to transform these concurrent test

paths into executable test cases.

A. Phase 1: World Models

1) Structural Model: The structural model is constructed

using a UML class diagram, where classes represent actors

including their important characteristics, behavioral messages,

and relationships. In our application, the shopping arcade in a

train station can be represented by a single snippet ”Crowd”.

World actors that are considered to perform in this snippet are

of three types: participants (humans), obstacles, and LRFs.

A participant can be addressee, side-participant, bystander,

or pedestrian [35]. Obstacles also are classified as mobile or

static. Pedestrians and mobile obstacles perform independently

Fig. 4: Structural Model for Shopping Arcade

and concurrently several behaviors (communicated via mes-

sages); however, static obstacles inform messages only. LRFs

detect objects that appear in the Crowd and describe these

objects to the robot. However, these LRFs do not interact with

other world actors except the robot. The UML class diagram

that represents the shopping arcade in a train station and its

world actors is shown in Fig. 4. The actors are aggregated

into a Crowd snippet. Similar actors are generalized to a

single class. For instance, Static and Mobile obstacle are

generalized into the Obstacle class. The number of actors in

the Crowd is determined by their multiplicity relationship.

Instances of shopping arcade actors and examples of their

behavioral messages are illustrated in Table I. We assume

that only one robot performs in a snippet; this robot is not

considered a world actor as it is the SUT.

2) Behavioral Model: Although a wide range of behavioral

models exists, we illustrate the behavioral model using com-

municating extend finite state machine (CEFSM). The strength

of CEFSM is that it can model orthogonal states of a system

in a flat manner and does not need to compose the whole
system in one state as in state charts, which would make it

more complicated and harder to analyze and/or test [7,38].

CEFSM = (S, s0, E, P, T, A, M, V, C), such that: S is a finite

set of states, s0 is the initial state, E is a set of events, P is

a set of boolean predicates, T is a set of transition functions

such that T: S×P×E→S×A×M , A is a set of actions, M

is a set of communicating messages, V is a set of variables,

and C is the set of input/output communication channels used

in the CEFSM. State changes (action language): The function

T returns a next state, a set of output signals, and an action

list for each combination of a current state, an input signal,

and a predicate. It is defined as: T(si, pi, get(mi))/(sj , A,

send(mj1 ,..., mjk)) where, si is the current state, sj is the

next state, pi is the predicate that must be true in order to

execute the transition, ei is the event that when combined

with a predicate trigger the transition function, mi1 ,..., mik

are the messages. CEFSM is a generalization of an EFSM

[39] (i.e., adding communication channels between EFSMs).

Modeling behavioral models follows two steps. First, we

Fig. 5: Behavioral Models for Shopping Arcade Actors

model each individual actors as EFSMs. Then we model the

interaction between these actors as CEFSM. Fig. 5 shows

a set of CFSM that represents a group of shopping arcade

actors interacting with each other. It is clear that a participant

actor can express multiple behavioral messages simultane-

ously. For instance, a participant can walk and talk at the

same time. Similarly, mobile obstacles also can concurrently

reveal several behavioral messages. For instance, a cleaning-

cart moves forward/backward and flashes its lighting-alarm at

the same time. However, in some cases, exhibiting different

behavioral messages concurrently is infeasible. For example,

a pedestrian cannot sit and walk at the same time. Therefore,

proper input-space partitioning criteria can be used to exclude

the infeasible combinations of behavioral messages. However,

static obstacles inform by messages only. For example, a

cautionary sign shows a wet floor message. As shown in Fig.

5, a participant initially is out of the crowd (absent). When

this participant attends the crowd, the attend() transition fires

and the participant moves to present place. This participant

then starts a behavior. Whenever this participant behaves, the

behave() transition fires, the behavioral message reveals, and

the participant moves to present state again. This process

can occur at will. It is similar to other actors’ processes.

The key difference is that the behavioral/information messages

these processes reveal are dissimilar. Secondly, these behav-

ioral models (EFSMs) that represent world actors are linked

together into a higher level behavioral model which describes

the interactions among these actors. Fig. 6 illustrates the high

level behavioral model. This model shows that participants

can interact with mobile obstacles and vice-versa. However,

Fig. 6: Behavioral Model (High-Level)

static obstacles can only show messages to other actors (i.e.,

unidirectional interaction). A LRF also is a unidirectional actor

due to the fact that they detect objects only.

B. Phase 2: Coverage Criteria

Since each actor is represented as a EFSM (a process), an

active world behavioral model can be defined as a collection

of concurrent processes, AWM = {P1, P2, . . . , Pi} where

1 ≤ i ≤ M and M is the number of actors that share

a snippet. Model-flow coverage criteria such as node (state-

based) coverage, edge (transition-based) coverage, etc. [8,13],

can be applied. Using any of a number of test path generation

techniques, test paths that fulfill these coverage criteria can

then be generated. Let TPi = (tpi1, tpi2, ..., tpik) be a set of

such internal test paths that cover the process Pi and k is

the number of these internal test paths. These internal paths

describe the internal execution (possible behaviors) of the

processes. We use transition-based coverage [7] to generate in-

ternal paths that cover the processes of shopping arcade actors.

In the shopping arcade, as illustrated in Table II, each of these

TABLE II: Internal Test Path Sets

1. Participant process, TP1 = {tp11}

tp11 : absent
p.attend()
−−−−−−→ present

p.behave(behavior)
−−−−−−−−−−−−→

present
p.miss()
−−−−−→ absent

2. Mobile obstacle process, TP2 = {tp21}

tp21 : hidden
mo.appear()
−−−−−−−−→ visible

mo.act(action)
−−−−−−−−−−→

visible
mo.disappear()
−−−−−−−−−−→ hidden

3. Static obstacle process, TP3 = {tp31}

tp31 : unseen
so.appear()
−−−−−−−→ seen

so.inform(message)
−−−−−−−−−−−−−→

seen
so.disappear()
−−−−−−−−−→ unseen

4. LRF process, TP4 = {tp41}

tp41 : off
lrf.on()
−−−−−→ On

lrf.detect(object)
−−−−−−−−−−−→ On

lrf.off()
−−−−−−→ Off

processes TPi is coincidentally covered by one internal test

path tpi1 only because the size of these processes is small. The

test path sets, (TP1, TP2, TP3, TP4), interact concurrently

with each other via the exchange of behavioral/information

messages (i.e., interaction messages). These interaction mes-

sages represent the high level of execution behavior of the

active world model, as shown in the behavioral model (High-

Level), in Fig. 6. The interaction among the processes can

be covered by interaction test paths which represent the

possibilities of execution behavior of the interaction messages.

To avoid cyclic paths, the Simple-path coverage criterion [13],

is used to generate the interaction test paths that cover the

shopping arcade interaction messages. Table III shows six

simple paths, Interaction Test Paths (ITP1, ITP2, . . . , ITP6),

TABLE III: Interaction Test Paths

ITP1 : (participant −→ mobile obstacle −→ participant)

ITP2 : (participant −→ LRF)

ITP3 : (mobile obstacle −→ LRF)

ITP4 : (static obstacle −→ participant)

ITP5 : (static obstacle −→ mobile obstacle)

ITP6 : (static obstacle −→ LRF)

that cover the high level of the active world model for shopping

arcade actors. Each interaction test path combines the internal

test paths of processes TPi that are involved in the interaction

scenario. For instance, ITP1, shown in Table III, covers the

interaction between the participant process and the mobile

obstacle process. Thus, the internal paths of this interaction is

(tp11 → tp21 → tp11). However, the behaviors vary due to the

non-deterministic interactions between the internal test paths.

For instance, in the shopping arcade, when a participant moves

ahead of a cleaning-cart, the cleaning-cart may stop to give the

participant free way, or it may keep moving and alerting the

participant by a beep. The interaction test paths are considered

concurrent paths. The concurrent interaction between internal

test paths that represent multiple processes produces a number

of possible combinations of internal paths. As a result, we

have two types of coverage criteria, path combination and

concurrent test path coverage criteria.

1) Path Combination: In order to cover all possible

combinations of internal paths, path combination coverage

criteria should determine what combinations are required.

Let (TP1, TP2, . . ., TPn) be sets of internal test paths for

(P1, P2, . . . , Pn) where TP1 = {tp11, tp12, . . ., tp1k}, TP2 =
{tp21, tp22, . . ., tp2k}, . . . , and TPj = {tpj1, tpj2, . . ., tpjk}.

Then, the selection of a tp1i from TP1 and a tp2j from

TP2 is called a path combination. Let len(tpij) be the

number of nodes in tpij , the length of tpij . The com-

bination set for interaction test path ITPi, CombITPi
=

{(tpjk, . . ., tpmn)|tpmn ∈ TPm, m = len(ITPi), n =
|TPi|, 1 ≤ j ≤ m, 1 ≤ k ≤ n}. The number of all path

combinations of ITP1, for instance, will be the product of

the number of internal paths of TP1, TP2, and TP1. Each

combination introduces a set of concurrent test paths.

2) Concurrent Test Path Coverage Criteria: The path com-

bination sets do not show how these paths interact concur-

rently. Therefore, concurrent test path coverage criteria are

required. In this work, we apply the all possible serialized

execution sequences coverage criterion. We also use the Ren-

dezvous coverage criterion, as in [14]. These concurrent test

path coverage criteria are defined as follows:

• All Possible Serialized Execution Sequences Coverage

Criterion (APSESCC): Test requirements contain a set

of all possible serialized nodes of the test paths that are

included in each path combination, i.e. each node in

test path tpij can be triggered by each node in test path

tpmn and vice versa. For example, let tpij be a → b and

tpmn be x → y, where tpij and tpmn are in the same

path combination. All serialized execution sequences of

path combination cxy = (tpij , tpmn) will be:

((a → b → x → y), (a → x → b → y), (a → x → y →

b), (x → y → a → b), (x → a → y → b), (x → a → b →

y)).

If a path combination includes two paths and each

one contains three nodes, the all serialized execution

sequences will be 20 possible serializations. All possible

number of serializations of nodes is

|CombITPi
|∑

i=1

(
(
len(cij)∑

j=1

|tpij |)!

len(cij)∏

j=1

(|tpij |)!

).

• Rendezvous Coverage Criterion (RCC): The test require-

ments contain a set of all paths that have rendezvous

nodes. Then the possible number of rendezvous-paths

RZV of the interaction test path ITPi is
n∏

j=1

(TPj+1)−1.

3) Input-space Partitioning Coverage Criteria: The gen-

erated concurrent test paths are still abstract. To transform

these concurrent test paths into executable test cases, test-

data coverage criteria, i.e. input-space partitioning [13], also

are required. The input-space partitioning criteria can be

considered as methods to divide a collection of values (input-

domain) into test-data blocks that make the concurrent test

paths executable. The input-domain is the set of possible

values that input variables can take on. In the shopping arcade

snippet, the behavior execution of actors is controlled by

five input-domains: participant type, participant behaviors,

mobile obstacle actions, static obstacles and LRF detected

objects. There is one block for each. The Participant type

block includes {addressee, side participant, bystander, and

pedestrian}. The Participant behavior block consists of values

{sit, walk, listen, talk, gaze, gesture, eat, drink}. The mo-

bile obstacle actions block consists of {move forward, move

backward, turn right, turn lift, beep, flash lights} while the

static obstacles block includes the messages {“Wet Floor”,

“Do Not Enter”}. The LRF detected objects block contains

{participant, mobile obstacle, and static obstacle}. In this

work, we use All Combinations Coverage (ACoC) which

exercises all possible combinations of test-data. The number of

test-data sets that satisfy ACoC is
Q∏

i=1

(Bi), where Bi is a block

of values for a parameter and Q is the number of parameters.

To compare with ACoC, we also use Each Choice Coverage

(ECC) that selects one value from each block of values. The

number of test-data that satisfy ECC is MAX
Q
i=1 (Bi) [13].

C. Phase 3: Test Generation

The path combinations are represented as ordered references

to internal test paths of the processes involved in the execution.

These combinations may result in a huge number of concurrent

test paths, AWBTCs, although not all of these concurrent test

paths are feasible. We used the serialization algorithm in [14]

to generate these concurrent test paths. The concurrent test

paths are serialized nodes of the internal paths. We expressed

the concurrency of test paths using double-bar “||” as used in

LOTOS for defining concurrency [40]. In the shopping arcade

snippet, each process involved in the interaction is satisfied by

one internal test path only. As a result, each interaction test

path is composed of one combination which represents the

concurrent test path, an AWBTC. Table IV shows the path

combinations and the AWBTCs that satisfy the interaction

test paths presented in Table III. Six path combinations are

created for covering interaction test paths of the shopping

arcade; consequently, six AWBTCs are generated. This num-

ber of AWBTCs is reasonable for this small number of actor

processes. Nevertheless, when we impose the APSESCC and

RCC to serialize these AWBTCs, the total number of test paths

serialized by the APSESCC is 35000 serialized paths while

the RCC produces 244 rendezvous paths. To transform these

AWBTCs into executable test cases, we also apply ACoC and

ECC coverage criteria to generate test-data that meet these

AWBTCs. The five blocks of values described in section IV-B3

meet these criteria. For each interaction test path ITPi, there

TABLE IV: Combinations of Concurrent Test Paths

1. Combination CombITP1(tp11, tp21, tp11) = AWBTC1 :

(tp11[absent
p.attend()
−−−−−−−→ present

p.behave(behavior)
−−−−−−−−−−−−−→

present
p.miss()
−−−−−−→ absent]

||
−→tp21[hidden

mo.appear()
−−−−−−−−−→

visible
mo.act(action)
−−−−−−−−−−−→ visible

mo.disappear()
−−−−−−−−−−−→

hidden]
||
−→tp11[absent

p.attend()
−−−−−−−→

present
p.behave(behavior)
−−−−−−−−−−−−−→ present

p.miss()
−−−−−−→ absent])

2. Combination CombITP2(tp11, tp41) = AWBTC2 :

(tp11[absent
p.attend()
−−−−−−−→ present

p.behave(behavior)
−−−−−−−−−−−−−→

present
p.miss()
−−−−−−→ absent]

||
−→tp41[off

lrf.on()
−−−−−−→

On
lrf.detect(object)
−−−−−−−−−−−−→ On

lrf.off()
−−−−−−→ Off])

3. Combination CombITP3(tp21, tp41) = AWBTC3 :

(tp21[hidden
mo.appear()
−−−−−−−−−→ visible

mo.act(action)
−−−−−−−−−−−→

visible
mo.disappear()
−−−−−−−−−−−→ hidden]

||
−→tp41[off

lrf.on()
−−−−−−→

On
lrf.detect(object)
−−−−−−−−−−−−→ On

lrf.off()
−−−−−−→ Off])

4. Combination CombITP4(tp31, tp11) = AWBTC4 :

(tp31[unseen
so.appear()
−−−−−−−−→ seen

so.inform(message)
−−−−−−−−−−−−−−−→

seen
so.disappear()
−−−−−−−−−−→ unseen]

||
−→tp11[absent

p.attend()
−−−−−−−→

present
p.behave(behavior)
−−−−−−−−−−−−−→ present])

5. Combination CombITP5(tp31, tp21) = AWBTC5 :

(tp31[unseen
so.appear()
−−−−−−−−→ seen

so.inform(message)
−−−−−−−−−−−−−−−→

seen
so.disappear()
−−−−−−−−−−→ unseen]

||
−→tp21[hidden

mo.appear()
−−−−−−−−−→

visible
mo.act(action)
−−−−−−−−−−−→ visible

mo.disappear()
−−−−−−−−−−−→ hidden])

6. Combination CombITP6(tp31, tp41) = AWBTC6 :

(tp31[unseen
so.appear()
−−−−−−−−→ seen

so.inform(message)
−−−−−−−−−−−−−−−→

seen
so.disappear()
−−−−−−−−−−→ unseen]

||
−→tp41[off

LRF.ON()
−−−−−−−−→

On
LRF.detect(object)
−−−−−−−−−−−−−→ On])

is a set of test-data that fulfills at least one concurrent test path

that belongs to this ITPi. This set of test-data is selected from

blocks that only are related to the actor processes involved

in the ITPi. For instance, ITP1 represents the interactions

between participant and mobile obstacle; as a result, three

blocks (participant types, participant behaviors, and mobile

obstacle actions) are used to generate test-data for ITP1. The

ACoC results in 429 test-data while the ECC produces 39.

When these 429 test-data are used with the 35000 serialized

paths, this results in 6669486 executable test cases. On the

other hand, the number of executable test cases generated

by ECC with RCC is 1736. Using APSESCC with ACoC is

clearly impractical; however, it presents the upper bound of

test cases. We also consider using ECC with RCC as a lower

bound.

V. REACHABILITY & CRITERIA EFFICIENCY

A. Reachability

To perform reachability analysis on the behavioral models,

we use the Construction and Analysis of Distributed Processes

(CADP) toolbox [41]. For generating all possible states that

a system can reach, CADP transforms the LOTOS code

that represents a CEFSM into a Labelled Transition System

(LTS) graph. The reachability graph generated by CADP, for
four concurrent processes with three nodes each, consists of

352 states connected by 1046 arcs. However, the number of

reachable states grows exponentially as the number or the size

of processes increase. For instance, for 8 processes, the number

of reachable states expands to 1346 states with 3658 arcs.

Although CADP is scalable up to 1013 nodes, a display in

CADP is no longer easily readable.

B. Criteria Efficiency

It is clear that the number of generated concurrent test paths

depends on several factors: the number of actor processes that

are involved in the execution and the size of these processes,

the combination criteria selected to combine the internal

paths of these actor processes, the coverage criteria chosen

to serialize these internal paths, and the coverage criteria

TABLE V: Test Criteria Efficiency

Interaction
Test
Path

Test-paths C. Test-data C. APSESCC
with
ACoC

RCC
with
EECAPSESCC RCC ACoC ECC

ITP1 34650 124 192 8 6652800 992

ITP2 70 24 96 8 6720 192

ITP3 70 24 18 6 1260 144

ITP4 70 24 96 8 6816 192

ITP5 70 24 18 6 1260 144

ITP6 70 24 9 3 630 72

Total 35000 244 429 39 6669486 1736

chosen to generate test-data. We use APSESCC and RCC

coverage criteria on six interaction test paths to serialize the

generated AWBTCs. We then apply ACoC and ECC coverage

criteria to generate test-data in oder to transform the serialized

test paths into executable test cases. Table V illustrates the

efficiency of these coverage criteria. As mentioned above,

although exercising AWBTCs generated by APSESCC on test-

data sets selected by ACoC is not practicable, it is considered

as an upper bound. On the other hand, exploiting RCC on

ECC is more feasible and efficient.

VI. CONCLUSION AND FUTURE WORK

This paper presented the applicability of a model-based test

generation approach [12] that allows testing of autonomous

systems in their active world. We modeled an active world

of an autonomous system. A test generation process is ap-

plied. Path serialization techniques APSESCC and RCC are

imposed. The APSESCC is also compared withx RCC. The

findings indicate that RCC is practically feasible. To transform

the generated AWBTCs into executable test cases, we also

exploited ACoC and ECC coverage criteria to generate test-

data. The findings also show that the number of executable

test cases depends on the size of generated test-data and

the size/number of actor processes that are involved in the

execution. The CADP toolbox is used for reachability analysis.

Future work will explore other testing techniques such as

search-based testing techniques to handle path-selection and

test-data generation of the concurrent processes. Future work

will also investigate the effectiveness of this approach by

executing the generated test cases.

VII. ACKNOWLEDGMENTS

This work was supported, in part, by NSF IUCRC grant

#0934413, 1127947, 1332078, and 1439693 to the University

of Denver.

REFERENCES

[1] L. Steels, “When are robots intelligent autonomous agents?” Robotics

and Autonomous Systems, vol. 15, no. 12, pp. 3–9, 1995, the Biology
and Technology of Intelligent Autonomous Agents.

[2] S. Franklin and A. Graesser, “Is it an agent, or just a program?:
A taxonomy for autonomous agents,” in Intelligent Agents III Agent

Theories, Architectures, and Languages, 1997, pp. 21–35.
[3] H. Cheng, Autonomous Intelligent Vehicles: Theory, Algorithms, and

Implementation, 1st ed. Springer London Dordrecht Heidelberg, New
York: Springer-Verlag, 2011.

[4] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from
the control perspective,” Journal of Intelligent and Robotic Systems,
vol. 72, no. 2, pp. 147–165, 2013.

[5] M. A. Goodrich and A. C. Schultz, “Human-robot interaction: A survey,”
Found. Trends Hum.-Comput. Interact., vol. 1, no. 3, pp. 203–275, Jan.
2007.

[6] Y.-W. Bai and M.-F. Hsueh, “Using an adaptive iterative learning
algorithm for planning of the path of an autonomous robotic vacuum
cleaner,” in Proceedings of the 1st IEEE Global Conference on Con-

sumer Electronics (GCCE), 2012, pp. 401–405.
[7] J. Li and W. Wong, “Automatic test generation from communicating

extended finite state machine (CEFSM)-based models,” in Proceedings

of 5th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing. (ISORC 2002), 2002, pp. 181–185.
[8] R. Lill and F. Saglietti, “Model-based testing of autonomous systems

based on coloured petri nets,” in ARCS Workshops (ARCS), 2012, pp.
1–5.

[9] J. Tretmans, “Model based testing with labelled transition systems,” in
Formal Methods and Testing, ser. Lecture Notes in Computer Science,
R. Hierons, J. Bowen, and M. Harman, Eds. Springer Berlin Heidelberg,
2008, vol. 4949, pp. 1–38.

[10] M. Shirole and R. Kumar, “UML behavioral model based test case
generation: A survey,” Softw. Eng. Notes, SIGSOFT, vol. 38, no. 4, pp.
1–13, Jul. 2013.

[11] M. Iqbal, A. Arcuri, and L. Briand, “Empirical investigation of search
algorithms for environment model-based testing of real-time embedded
software,” in Proceedings of the 2012 International Symposium on

Software Testing and Analysis, ser. ISSTA 2012. New York, NY, USA:
ACM, 2012, pp. 199–209.

[12] A. Andrews, M. Abdelgawad, and A. Gario, “Towards world model-
based test generation in autonomous systems,” in Proceedings of the 3rd

International Conference on Model-Driven Engineering and Software

Development (MODELSWARD) 2015. SCITEPRESS Digital Library,
2015, pp. 165–176.

[13] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed.
32 Avenue of the Americas, New York, NY 10013, USA: Cambridge
University Press, 2008.

[14] R. Yang and C.-G. Chung, “A path analysis approach to concurrent
program testing,” in Proceedings of the 9th Annual International Phoenix

Conference on Computers and Communications, Mar 1990, pp. 425–
432.

[15] A. Dias-Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, “A
survey on model-based testing approaches: A systematic review,” in
Proceedings of the 1st ACM International Workshop on Empirical

Assessment of Software Engineering Languages and Technologies: Held

in Conjunction with the 22Nd IEEE/ACM International Conference on

Automated Software Engineering (ASE) 2007. ACM, 2007, pp. 31–36.
[16] J. Zander, I. Schieferdecker, and P. J. Mosterman, Model-based testing

for embedded systems, 1st ed. CRC Press, 2012.
[17] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based

testing approaches,” Softw. Test. Verif. Reliab., vol. 22, no. 5, pp. 297–
312, August 2012.

[18] M. Shafique and Y. Labiche, “A systematic review of state-based test
tools,” International Journal on Software Tools for Technology Transfer,
pp. 1–18, 2013.

[19] A. Jacoff, E. Messina, B. Weiss, S. Tadokoro, and Y. Nakagawa, “Test
arenas and performance metrics for urban search and rescue robots,” in
Proceedings of the IEEE International Conference on Intelligent Robots

and Systems (IROS), vol. 4, Oct 2003, pp. 3396–3403 vol.3.

[20] C. Pepper, S. Balakirsky, and C. Scrapper, “Robot simulation physics
validation,” in Proceedings of the 2007 Workshop on Performance

Metrics for Intelligent Systems, ser. PerMIS ’07. New York, NY, USA:
ACM, 2007, pp. 97–104.

[21] I. Ghete, M. Heizmann, A. Belkin, and J. Beyerer, “World modeling for
autonomous systems,” in KI 2010: Advances in Artificial Intelligence,
ser. Lecture Notes in Computer Science, R. Dillmann, J. Beyerer,
U. Hanebeck, and T. Schultz, Eds. Springer Berlin Heidelberg, 2010,
vol. 6359, pp. 176–183.

[22] A. Furda and L. Vlacic, “An object-oriented design of a world model
for autonomous city vehicles,” in Intelligent Vehicles Symposium (IV),

IEEE, June 2010, pp. 1054–1059.
[23] M. Iqbal, A. Arcuri, and L. Briand, “Environment modeling with

UML/MARTE to support black-box system testing for real-time embed-
ded systems: Methodology and industrial case studies,” in Model Driven

Engineering Languages and Systems, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010, vol. 6394, pp. 286–300.

[24] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, “Automatic
generation of system test cases from use case specifications,” in
Proceedings of the 2015 International Symposium on Software Testing

and Analysis, ser. ISSTA 2015. New York, NY, USA: ACM, 2015,
pp. 385–396. [Online]. Available: http://doi.acm.org/10.1145/2771783.
2771812

[25] H. Yanco and J. Drury, “Classifying human-robot interaction: an updated
taxonomy,” in Proceedings of the IEEE International Conference on

Systems, Man and Cybernetics, vol. 3, Oct 2004, pp. 2841–2846 vol.3.
[26] A. Steinfeld, T. Fong, D. Kaber, M. Lewis, J. Scholtz, A. Schultz,

and M. Goodrich, “Common metrics for human-robot interaction,” in
Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-

robot Interaction, ser. HRI ’06. New York, NY, USA: ACM, 2006, pp.
33–40.

[27] J. MacDougall and G. Tewolde, “Tour guide robot using wireless based
localization,” in Proceedings of the IEEE International Conference on

Electro/Information Technology (EIT), May 2013, pp. 1–6.
[28] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,

D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive
museum tour-guide robot,” Artif. Intell., vol. 114, no. 1-2, pp. 3–55, Oct.
1999.

[29] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Minerva:
a second-generation museum tour-guide robot,” in Proceedings of the

IEEE International Conference on Robotics and Automation, vol. 3,
1999, pp. 1999–2005 vol.3.

[30] D. Bohus, C. W. Saw, and E. Horvitz, “Directions robot: In-the-wild
experiences and lessons learned,” in Proceedings of the 2014 Interna-

tional Conference on Autonomous Agents and Multi-agent Systems, ser.
AAMAS ’14. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2014, pp. 637–644.

[31] T. Kanda, H. Ishiguro, T. Ono, M. Imai, T. Maeda, and R. Nakatsu,
“Development of robovie as a platform for everyday-robot research,”
Electronics and Communications in Japan (Part III: Fundamental Elec-

tronic Science), vol. 87, no. 4, pp. 55–65, 2004.
[32] D. Brscić, H. Kidokoro, Y. Suehiro, and T. Kanda, “Escaping from

children’s abuse of social robots,” in Proceedings of the Tenth Annual

ACM/IEEE International Conference on Human-Robot Interaction, ser.
HRI ’15. New York, NY, USA: ACM, 2015, pp. 59–66.

[33] T. Kanda, D. Glas, M. Shiomi, and N. Hagita, “Abstracting people’s tra-
jectories for social robots to proactively approach customers,” Robotics,

IEEE Transactions on, vol. 25, no. 6, pp. 1382–1396, Dec 2009.
[34] M. Shiomi, D. Sakamoto, T. Kanda, C. Ishi, H. Ishiguro, and N. Hagita,

“Field trial of a networked robot at a train station,” International Journal

of Social Robotics, vol. 3, no. 1, pp. 27–40, 2011.
[35] M. Shiomi, T. Kanda, H. Ishiguro, and N. Hagita, “A larger audience,

please!: Encouraging people to listen to a guide robot,” in Proceedings

of the 5th ACM/IEEE International Conference on Human-robot Inter-

action. IEEE Press, 2010, pp. 31–38.
[36] ——, “Interactive humanoid robots for a science museum,” in Pro-

ceedings of the 1st ACM SIGCHI/SIGART Conference on Human-robot

Interaction. ACM, 2006, pp. 305–312.
[37] M. Bouchard, J. Haegele, and H. Hexmoor, “Crowd dynamics of be-

havioural intention: train station and museum case studies,” Connection

Science, pp. 1–24, 2014.

[38] D. Brand and P. Zafiropulo, “On communicating finite-state machines,”
J. ACM, vol. 30, no. 2, pp. 323–342, Apr. 1983.

[39] K. T. Cheng and A. Krishnakumar, “Automatic functional test generation
using the extended finite state machine model,” in Proceedings of the

30th International Design Automation Conference, ser. DAC ’93. New
York, NY, USA: ACM, 1993, pp. 86–91.

[40] M. Sighireanu, C. Chaudet, H. Garavel, M. Herbert, R. Mateescu, and
B. Vivien, “LOTOS NT user manual,” 2000.

[41] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2011: a
toolbox for the construction and analysis of distributed processes,”
International Journal on Software Tools for Technology Transfer, vol. 15,
no. 2, pp. 89–107, 2013.

