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Abstract

A methodology and an experience for validating a substantial part
of a mobile data standard, ETSI’s General Packet Radio Service, is
presented. The standard was specified in LOTOS, which provided
a formal prototype for the system. Testing processes were
composed with the specification, and temporal logic properties
were checked. At least two major design errors were identified.

1. Introduction

The application of formal methods is becoming a crucial step in detecting
design flaws and in validating the requirements of complex systems. Formal
methods can be used in the specification, development and verification of systems
to increase the confidence in their quality and reliability.

Formal methods have witnessed a growing interest in the past decade in the
areas of prototyping, simulation, and validation of informal requirements. They
are increasingly used as means to build confidence in designs. LOTOS [1][2] is a
formal specification language that is well suited for telecommunication systems
and has been used extensively in the past few years for a wide variety of
applications. Concepts from CSP, CCS, and data algebras have been combined in
LOTOS, making it suitable for specifying protocols and services.

This paper describes our experience in using LOTOS to formally specify a
subset of the General Packet Radio Service (GPRS) and the validation tools and
techniques used. We have focused in this project on the service description stage 1
and stage 2 proposed by ETSI for GPRS. This work has faced many challenges
mainly because of the following reasons:

•  GPRS is a standard under design, hence it is still evolving.
•  GPRS incorporates several features and while it includes some already

known protocols, it also introduces some new ones.
•  GPRS is a packet-switched mobile system. This implies complexity due to

location management issues and packet delivery.
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•  The analysis of complex systems, such as GPRS, is constrained by the well-
known problem of combinatorial state explosion.

We start by describing the approach used to capture the informal requirements
and their translation into a formal specification. We then provide an overview of
the GPRS system and give a background on the main LOTOS operators. We
provide some details related to the LOTOS specification of GPRS before we focus
on the validation activities. Finally we present the properties we have checked and
we discuss in detail two design problems that we found.

2. From requirements to formal specification

Standards documents combine a mixture of text, tables, and visual notations
such as Message Sequence Charts (MSCs) [3]. An iterative process is usually
needed to go from the informal requirements to a high-level abstract and formal
representation (formal specification). The evolving nature of standards, and the
multitude of styles and notations used to describe them, add complexity to the
process. One must not forget that standards tend to be quite unstable at their early
stages and for this reason, the specification should be flexible enough to
accommodate changes. Figure 1 illustrates the steps we used in this process. In the
first step, requirements capture, we identify the architectural requirements which
specify the various objects, processes, or entities of the system and their inter-
relations and interfaces. We also extract the behavioural requirements which
define the expected behaviour of the system. In the second step, requirements
synthesis, we translate these captured requirements into a formal representation in
LOTOS. The iterative nature of this process may reveal incompleteness,
ambiguities, and inconsistencies in the specification. We can revisit the captured
requirements and the original draft documents for several iterations (step 3).

Figure 1. Requirements capture and modeling
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Since it is executable, a LOTOS specification can be considered as a model or
prototype of the system and can serve several purposes:

•  It can be formally validated with respect to several properties.
•  It can be used for system simulation.
•  It can be used to generate scenarios (also called use cases) and test cases.
•  It can be used as a guide for implementation.

We focus in this paper on the specification and validation steps of the
requirements which are to be discussed later. Work related to the translation of
informal requirements into a LOTOS specification can be found in [4].

3. Overview of GPRS

GSM (Global System for Mobile communications) [5] is a European standard
for cellular communications developed by ETSI (European Telecommunications
Standards Institute). GPRS is a set of new GSM bearer services that provide
packet mode transmission within the GSM network and inter-works with external
packet data networks [6]. It is a full digital system and is still an evolving standard
that spans beyond telephony and circuit switched services. GPRS is a major
activity in the phase 2+ of the GSM standard.

GPRS service subscribers will be able to send and receive data in a end-to-end
packet transfer mode. GPRS Services are divided into two categories: Point-to-
Point (PTP) and Point-to-Multipoint (PTM) services.  Possible PTP services
include data base access and information retrieval, the Internet, messaging and
conversational services from user to user, credit card validation, etc. Examples of
PTM services include unidirectional distribution of information such as news and
weather reports. They also include conferencing services between multiple users.

3.1 Architecture of the GPRS network

GPRS introduces a new functional element to the GSM network (Figure 2):
GSN (GPRS Support Node) which can be either a Serving-GSN (SGSN) or a
Gateway-GSN (GGSN). This addition is necessary for the GSM network in order
to support packet switched data services. We give below a summary of the main
components of the GPRS network and their functions:

SGSN: responsibilities include maintaining the logical link with the Mobile
Station (MS), forwarding incoming packets from the MS to the appropriate
network nodes and vice versa, and authenticating access to GPRS services. Only
one SGSN serves the MS in its service area.

GGSN: provides the interface to external Packet Data Networks (PDNs) and
forwards packets destined for the MS to the SGSN that is serving it.

HLR: the Home Location Register is a database that contains subscriber’s
information. The subscriber’s service profile and location information are stored
in the HLR.
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VLR: the Visitor Location Register is a database that stores temporary
information for visiting subscribers.

MSC: the Mobile Switching Center is in charge of the telephony switching
functions and authenticates access to circuit-switched services.

BTS: the Base Transceiver Station handles radio transmission and reception
devices, including the antennas, and also all the radio interface signal processing.

BSC: the Base Station Controller manages the radio resources and controls
handovers between cells. Several BTSs can be managed by one BSC.

Several interfaces have been introduced in GPRS to define entity-to-entity
interactions. For instance, the Gb interface is required between the BSC and the
SGSN. Two GSNs communicate through a Gn interface, and the SGSN
communicates through the Gr interface with the HLR to send queries and to
receive subscriber information. The Gi interface which connects a GGSN to a
PDN was left open in the standard to accommodate implementation preferences
while the Gs interface between the SGSN and the MSC/VLR was left optional.

Figure 2. GPRS network architecture

The GPRS network is divided into several service areas assigned to different
SGSNs. Each service area is composed of several Routeing Areas (RAs) which in
turn form sets of cells.
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3.3 Mobility management states

The MS is defined to have three possible states: Idle, Ready, and Standby
depending on the level of functionality it requires (Figure 3).

Idle State: a MS in this state is not traceable and can only receive multicast
transmissions. The MS keeps track of cell changes locally. The MS needs to
perform the attach procedure to connect to the GPRS network and become
reachable.

Ready State: data is sent or received in this state and PDP contexts may also be
activated and deactivated. Mobility management in this state happens at the cell
level; the MS updates the SGSN when it changes cell. The MS may request a
detach procedure in which case it moves to Idle. A timer monitors the Ready state
and upon its expiry, the MS goes to the Standby state.

Standby State: a MS which has been inactive for a period of time is put in
Standby state. The MS keeps track of the cell changes locally and informs the
SGSN of  RA changes only. It is possible in this state for the MS to activate PDP
contexts establishing routeing contexts for data transmissions and receptions. The
MS may wish to terminate the connection by requesting a GPRS detach procedure
in which case it returns to Idle. A Standby timer also monitors the MS activity and
causes it to go to Idle upon expiry.

Figure 3. Mobility management state model
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4. LOTOS background

It is not possible in this paper to give a meaningful overview of the language
LOTOS. Below, we list the main operators, however we realize that only readers
familiar with the language will be able to follow the examples of the LOTOS
code.

A LOTOS specification describes a system via a hierarchy of process
definitions. A process performs internal unobservable actions, and interacts with
its environment (other processes) via interaction points called gates. A process
can combine actions and behaviour expressions by means of operators as follows:

a; B: the action prefix operator “;” means that an action or a gate a precedes the
behaviour B.

B1 [] B2: the choice operator means that the process will behave as B1 or as B2

exclusively.
B1 || B2: the full synchronization parallelism operator means that B1 and B2 must

synchronize on every action they offer.
B1 ||| B2: the interleaving operator expresses parallelism between B1 and B2 when

no synchronization is required.
B1 |[g1,g2,..gn]| B2: the selective parallel operator expresses parallelism between B1

and B2 when synchronization is only required on gates g1, g2,..gn.
B1 [> B2: the disable operator means that any time during the execution of B1, B2

can take over, thus terminating B1.
B1 >> B2: the enable operator means that B2 can be activated only after B1

terminates its execution successfully.

As mentioned in the introduction, LOTOS combines ideas from several
preexisting formalisms. Value exchanges between processes are defined similarly
to CSP [7]. Value offers are denoted by “!”, and value acceptances are denoted by
“?”. For example, g ! 3 ? y: int denotes offering a 3 and at the same time accepting
a value for y at gate g. LOTOS formal semantics is mainly based on CCS [8].
Hence LOTOS operators have a number of algebraic properties, and also have
executable semantics based on inference rules. Being executable, a LOTOS
specification provides a formal prototype, or model, of its object system. A
number of LOTOS execution tools exist, and the ones used in this project are
documented in Refs. [9][10][11][12].

5. Formal specification of GPRS

5.1 Scope of the specification

5.1.1 Logical functions. Several groupings of logical functions have been defined for
GPRS. Our specification covers the following functions:

•  Network access control
Registration: the association of a mobile to PDPs and addresses within the
network.
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•  Logical Link Management
Logical link establishment: occurs when the MS attaches to the GPRS
network.
Logical link maintenance: controls the status and state changes of the logical
link
Logical link release: this function de-associates the MS-SGSN logical link.

•  Packet Routeing and Transfer
Routeing: determines the network node to which a message should be
forwarded.
Encapsulation: adds address and control information to PDUs for packet
routeing.
Tunneling: transfers encapsulated PDUs between two end-points in the
network.

•  Mobility Management
Location management: a set of functions responsible for keeping track of the

   mobile station.

5.1.2 Protocol layers. A layered protocol structure is adopted for the transmission
and signalling planes. The functions we specified are supported by several layers
(shaded layers in Figure 4). The SNDCP (SubNetwork Dependent Convergence
Protocol) serves as a mapping of the characteristics of IP/X.25 to the underlying
network. Mobility management functionality is supported by the GMM (GPRS
Mobility Management) and SM (Session Management) layers. The LLC (Logical
Link Control) layer provides a logical link between the MS and the SGSN and
manages reliable transmission while at the same time supporting point-to-point
and point-to-multipoint addressing. The RLC (Radio Link Control), MAC
(Medium Access Control), and GSM RF (Radio Frequency) layers control the
radio link, the allocation of physical channels and radio frequency. LLC PDUs
between the MS and the SGSN are relayed at the BSS.   The BSSGP (Base Station
System GPRS Protocol) layer handles routeing and QoS between the BSS (Base
Station System) and the SGSN.  The GTP (GPRS Tunneling Protocol) is the basis
for tunneling signalling and user PDUS between the SGSN and GGSN. The
remaining layers are already well known and defined protocols.

Figure 4. GPRS signalling and transmission planes from MS to GGSN
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5.1.3 Model used and assumptions. We assume in our specification that the radio
interface details such as the allocation of channels is somehow accomplished
successfully. Since we are concerned mainly with the GPRS entities, we are more
interested in the establishment of a logical link between the MS and the SGSN
than in the medium used. For this reason, we chose to abstract from the details
related to the radio interface in order to simplify the prototype and to focus on
pure GPRS functionality.  Functions related to the BTS and BSC are outside the
scope of our specification. In our model shown in (Figure 5), we chose to adopt
the following assumptions:

•  The GPRS network is composed of four RAs. One RA is composed of two
cells.

•  There are one SGSN and one MSC/VLR for each pair of RAs.
•  There is one HLR in the network.
•  Two GGSNs serve as connections to the external networks. Both SGSNs can

connect to either of them.

In a mobile network, the most interesting functions are usually related to
mobility management (how to keep track of the mobile). In GPRS, complex
location management occurs when the mobile switches SGSNs. By using this
model, we are guaranteed to address this scenario and all the logical functions
outlined above.

Figure 5. GPRS model used
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defined interfaces to other entities.  This choice is natural because it  eases the
mapping of a system’s architecture into a LOTOS specification. System’s
components (resources) are described as LOTOS processes composed in parallel
and interacting through gates. Other styles were used to specify detailed
behaviour. The behaviour of the GPRS network entities (processes) is a collection
of alternative sequences of interactions that depend on the mobility management
states.  The state-oriented style was a perfect choice to specify the behaviour of
the individual processes. In some instances, the monolithic style was applied
because events were presented as ordered collections of alternative sequences of
interactions in branching time.

The GPRS system is seen as a LOTOS process interacting with the
environment through the external gates ms and ext_net. These gates provide,
respectively, the means to the user to initiate and simulate transactions of the
mobile station and the external networks. They will be of particular use during the
validation phase. By refining the GPRS process, we decompose it into three
processes (Figure 6):

•  The_MS: a set of interleaved Idle Mobile Stations (MS).  The gate Um_Gb
joins the Um and the Gb interfaces and carries messages between the MS and
the SGSN.  We needed this gate since we abstract from the radio link details.

•  GPRSNetwork: an encapsulated process that is mapped to our geographical
model described in Figure 5.  In addition to the Um_Gb gate, messages are
carried to and from the external networks via the Gi gate.

•  The_ExternalNetworks: a set of external networks interleaving. An external
network process is parameterized by a network type (IP or X.25) and
communicates through the Gi and ext_net gates.

Due to the length of the specification, we will limit our explanation to the
general structure of the GPRS network specification and give a high level
description of the SGSN process.

The top level structure of the GPRS specification in LOTOS is shown in Figure
7. From the environment point of view, any message exchange occurring within
the GPRS system is internal and cannot be observed. Only events that take place
at gates ms and ext_net are observable. This explains the use of the hide operator
within the GPRs process. The gates Um_Gb, Gi, STmeout, and RTimeout are
therefore hidden to reflect their internal nature. The three processes The_MS,
GPRS_Network, and ExternalNetworks run in parallel but have to synchronize on
certain gates in order to communicate. This is expressed in LOTOS by using the
selective parallel composition operator |[..]|.
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Figure 6. High-level specification architecture

We also need to add the two special gates STimeout and RTimeout to provide a
mechanism for the SGSN and the MS to synchronize on Standby and Ready
timers expiry, but explicit timing constraints are not modeled.

       specification GPRS_Spec[ms,ext_net]:noexit
 (*Data type definitions omitted*)
          behaviour
          GPRS[ms,ext_net]
         where

     process GPRS[ms,ext_net]:noexit:=
        hide Um_Gb,Gi,STimeout,RTimeout in
          ( The_MS[ms,Um_Gb,STimeout,RTimeout]

                                 |[Um_Gb,STimeout,RTimeout]|
                            GPRSNetwork[Um_Gb,Gi,STimeout,RTimeout]
                           )
                          |[Gi]|
                        ExternalNetworks[ext_net,Gi]

endproc (* GPRS *)
      endspec (*GPRS_Spec*)

Figure 7. Top-level LOTOS specification of GPRS

It is easy to map our GPRS model of the GPRS network into a LOTOS process
(Figure 8).

      process GPRSNetwork[Um_Gb,Gi,STimeout,RTimeout]:noexit:=

hide Gr,map_d,Gs,Gn,inter_sgsn in

     (* Some initilialization *)
     (*One HLR synchronized with two MSC/VLRs interleaving*)

      (HLR[Gr,map_d](InitSet,InitPDPSet)
        |[map_d]|
        (MSC_VLR[Gs,map_d](VLR(1),{} of MscVlrAssSet,0)
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                            |[inter_sgsn]|      (*Two SGSNs synchronized*)
                         SGSN[Um_Gb,Gr,Gn,Gs,inter_sgsn,STimeout,RTimeout](SGSN(2),LA(2)) )

           |[Gn]|                   (*Two GGSNs interleaving*)
         (GGSN[Gi, Gn](GGSN(1))
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           GGSN[Gi, Gn](GGSN(2)) )

        endproc (* GPRSNetwork *)

Figure 8. Specification of the GPRS network process
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By using the appropriate parallel operators, we can compose the various
entities (processes) so that they reflect the architectural requirements. For
instance, the GGSNs do not need to mutually synchronize on any action and
therefore we use the interleaving operator (|||) to express their unsynchronized
parallelism. On the other hand, they must interact with the SGSNs through the Gn
interface. The selective parallel composition operator is appropriate in this case.

The SGSN process consists of several instances of SGSNHandlers
synchronized with a process SGSNManageLLC. Data structures used for routeing
and mobility management purposes are handled by process SGSNContextsDBase.
A handler has been defined for each functionality performed by the SGSN such as
handling mobile requests to attach to the network or routeing update requests. The
handlers are interleaved, but since the detach request may occur at any time, the
process SGSNHandleDetach has been composed with the disable operator ([>).
By doing so, when a mobile user wishes to detach from the network, the request
can disrupt the execution of the other handlers. Figure 9 illustrates the SGSN
process architecture.

Figure 9. SGSN process architecture
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through certain desired scenarios. This is done because it is impossible to execute
all behaviour paths and different testing processes can be chosen to select the
scenarios of interest. It is then possible to execute other validation activities such
as model checking on the limited behaviour model narrowed by the test scenarios.

The steps involved in our validation methodology (Figure 10) are the
following:

1. Requirements capture and synthesis: this step was described in Section 2
and its outcome is a formal specification of the requirements. In our case,
this formal specification is expressed in LOTOS.

2. Test definition: we start by identifying the test objectives and then we
derive the corresponding test scenarios.  These scenarios will serve as a
guide to the formal specification to perform specific execution sequences.

3. Formulation: some requirements can be expressed by means of a logical
specification. The result is a set of properties that can be viewed as a partial
correctness specification. In our work, we formulate several properties of
the system using temporal logic.

4. Composition: the test scenarios derived in step 2 are composed with the
formal specification to obtain test specifications. While the formal
specification defines all the possible sequences of execution of the system,
the test specifications are restricted to those sequences that are related to the
test scenarios.

5. Behaviour tree generation: all possible paths in the test specifications are
executed up to a certain depth yielding behaviour trees. These trees are
graphical models representing the possible execution sequences dictated by
the test scenarios.

6. Test exploration: all sequences of execution in the behaviour tree should
normally be conformant to the test scenarios. However, erroneous
sequences can be present indicating faulty behaviour. Most commonly, they
show a situation where a specification deadlocks with a tester. In this step,
we aim at finding such sequences.

7. Model checking: the properties formulated in temporal logic are checked
against the behaviour trees of step 5. A formula that is not satisfied may
reveal an erroneous behaviour. This step complements the test exploration
activities because it addresses specific properties rather than scenarios.

8. Analysis: the tests and model checking results are then explored to identify
the causes of the discovered problems. This step involves extraction of
faulty traces of execution, and the generation of the corresponding MSCs
for inspection.
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Figure 10. Validation methodology
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formal part. For example, in the preamble of the intra-SGSN  routeing update test,
we decide on some necessary information such as system configuration, the initial
cell of the MS, the network connections, etc. To be able to test such a scenario, we
need to attach the MS first, then trigger the routeing update procedure by forcing
the MS to switch to another cell  (cell 3 in this case), then detach the MS from the
network. We reflect these actions in the body of the test and express them in the
LOTOS process (Figure 11). We restrict the number of the Ready state timeouts to
1 to avoid the state explosion problem. We allow however Standby state timeouts
to occur at any time by using the LOTOS disable operator ([ >).

The special event “success” in the LOTOS test process is inserted to mark the
end of every possible sequence of execution. It is used during the test exploration
step to determine the existence of faulty sequences which are those not ending in
“success”.

Note the structure of actions in this process. Because it is a test, all actions
offer values only. Further, each action offers the gate name first (ms), followed by
an identifier that identifies the mobile station (imsi), followed by on or more
parameter values.

Test 4_1

Informal Description
Objective:
        Intra-SGSN Routeing Update
Preamble:
        1 MS with IMSI(1)
        MS in Cell 1
        NSAPI(0) associated with PDPAd(1), IP
        NSAPI(1) associated with PDPAd(1), X.25
        IP network managed by GGSN(1)
        X25 network managed by GGSN(2)
Body:
        GPRS Attach , Select Cell 3, and  GPRS Detach

Conditions:
        1 Ready timeout may occur (restricted to 1 to avoid state explosion)
        StandBy timeouts may occur

Formal Description
LOTOS Process:
process TS4_1[ms,ext_net,success]:exit:=
  let imsi:IMSI = CreateIMSI(1) in  (* Intitialization*)
      ms ! imsi ! GPRSAttach; (* Initiate a GPRS Attach *)
        (ms ! imsi ! cellSelection ! Cell(3); (* Move to Cell 3 triggering intra-SGSN RA update *)
        ms !imsi ! RoutingUpdateAcc;
        ms ! imsi ! GPRSDetach;   (* Initiate a Detach *)
        ms ! imsi ! DetachAcc;
        success;
        exit)
         [>   
        (ms ! imsi ! TimerExpAcc; (* Timeouts are possible *)
          success;
          exit )
 endproc

Figure 11. Test definition example
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4 test suites were identified for our system with a total of 35 tests. The test
suites are organized as follows:
Suite 1 (3 tests): Attach and detach procedures.

Suite 2 (8 tests): PDP context activation and deactivation procedures.
Suite 3 (13 tests): Data delivery (from MS to external network and vice versa).
Suite 4 (11 tests): Routeing update procedures and data delivery.

6.2 Composition

  To compose a test process with the GPRS specification, we explored two
different LOTOS tools. We first used LOLA [10] which performs the composition
automatically. However, for some test processes containing interleaved sequences,
LOLA was unable to handle the composition. We then resorted to RTL [12] to
overcome this problem. The generation of the test specifications is done manually
by synchronizing the test process and the GPRS specification using the LOTOS
selective parallel operator (|[..]|).

6.3 Behaviour tree generation

The result of the execution of all paths of a LOTOS formal specification is a
graphical model or representation describing the complete behaviour of the system
it represents. This representation is called a Labeled Transition System (LTS)
[8][15].  An LTS intuitively encodes the operational behaviour of a process. It
contains the set of states the process may enter, and the set of actions the process
may perform at each state. An LTS is a state transition machine where each edge
is labeled by a LOTOS action.

For systems with infinite behaviour, a complete LTS cannot be generated. This
problem is usually solved by specifying limits for the execution such as a
maximum number of actions for each path. Another serious drawback is related to
the well-known state explosion problem. In our system, the state explosion
problem is due to two main reasons:

•  Several processes run in an interleaved manner causing the number of
possible actions and global states to increase very rapidly with time.

•  The GPRS standard describes timers to monitor the mobility management
state transitions. Timeouts are expressed in our system as events that can
occur at any time. This multiplies further the number of actions and states
to be explored.

We made some restrictions as to the number of timeouts allowed depending on
the complexity of the tests to keep the state space tractable. Also, since we do not
generate the LTS from the formal specification but rather from its composition
with the tests, the size of our LTSs is controllable because they include only
actions dictated by the test scenarios.
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We used the RTL tool [12] to translate the LOTOS test specifications into
LTSs. We then reduce the resulting LTSs with respect to some equivalence
relations [15] using the Aldebaran tool [16].

6.4 Test exploration

A test is successful if all execution sequences of its composition with the
behaviour terminate normally. We have seen (Figure 11) that the “success” event
is inserted at the end of the test processes to indicate a successful termination. The
presence of an execution sequence in the LTS that does not end with the “success”
event indicates the possibility of a deadlock situation. Our task is then to find out
if such abnormal terminations exist in the LTS.

In testing theory [14], the composition of a formal specification with a test
leads to one of the following test results:

•  Must pass: all the possible executions terminate successfully.
•  May pass: some executions terminate successfully.
•  Reject: none of the executions terminate successfully.

All the failing tests in our suites had a May pass result. This implied the
existence of some abnormal sequences. To be able to inspect such sequences, we
needed to extract them from the LTS. We used the Exhibitor tool of the CADP
toolbox [10] for this purpose. Given an LTS, Exhibitor is capable of finding paths
with certain given characteristics.

6.5 Model checking

Starting from the captured requirements, we identified a set of correctness
properties (over twenty) to verify against our GPRS specification. To formulate
these properties, we used a variation of the propositional µ-calculus [17]
interpreted over the actions of the LTS. µ-calculus is sufficiently powerful to
express safety and liveness properties. The formulas expressing the properties are
therefore a combination of µ-calculus syntax and LOTOS actions. We used the
model checker of the CADP toolbox [10] to accomplish this step.

6.5.1 Examples of correctness properties. We do not present the syntax and semantics
of µ-calculus here, and we only show one property expressed in its precise syntax.
We list in natural language a subset of the properties verified to give an idea of the
type of properties we addressed.

1. When in Standby, the MS is not allowed to move to Idle unless a detach or
Standby timer timeout occur.

Formulation: to express this property, we need to check that for every path in
the LTS starting with a Standby state action “state !IMSI1 !STANDBY”, an Idle
state action “state !IMSI1 !IDLE” is observed only after a confirmation of detach
“ms !IMSI1 !DetachAcc” or a timer expiry “ms !IMSI1 !TimerExpAcc”.
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ALL (
      ["state !IMSI1 !STANDBY"]
      SU (["state !IMSI1 !IDLE"]F)
         (<"ms !IMSI1 !DetachAcc”>T or <"ms !IMSI1 !TimerExpAcc”>T)
        )

2. Data transfers (PTP) to and from the MS are not possible during Idle.
3. After a successful attach to the network, it should be possible to detach.
4. The MS cannot receive or send PTP data in Standby.
5. A PDP context shall be activated before the MS can be paged, or can send, or

receive data.

6. During an inter-SGSN routeing update, the new SGSN should request the MS
context from the old SGSN.

6.6 Analysis and results

Whether we use testing processes or model checking, the difficult task remains
to find the causes of the abnormal sequences or failing properties. In case of
testing, inspecting the traces of execution can be tedious and time consuming.
Model checking on the other hand requires an elaborate diagnostics system to
explain why a property was not satisfied by the system. To facilitate our task, we
relied heavily on automatic generation of MSCs from traces of executions. Faulty
sequences could then be inspected visually in a more efficient way. MSCs are also
generated for correct sequences of execution and compared with the original
MSCs defined in the standard documents. Alternative solutions to a specific
scenario can be provided in this way. Figure 12 shows an example MSC that was
generated for a successful attach procedure. We chose to show this simple MSC
because it is impossible to provide a more complex trace of execution without
compromising its readability.

 Several specification problems were detected using our validation techniques.
The two main ones are described below:

1. Mobility Management state conflicts: these problems are due to timer expiry
during the reception of data destined to the MS by the SGSN. The SGSN and
the MS have to agree on the mobility management states. In our analysis, we
identified a case where the SGSN and the MS engaged in a conflict. While the
MS switched to Standby, the SGSN was still in the Ready state. Packets
arriving to the SGSN could not be forwarded properly to the MS. This
problem was addressed in later versions of the standard by adding recovery
mechanisms from inconsistent mobility management states in the MS and the
SGSN.

2. Routeing updates and data delivery conflicts: these conflicts occur when
incoming packets destined to the MS arrive at the SGSN during a routeing
update procedure. During an intra-SGSN update, the SGSN needs to forward
the data to the new RA. On the other hand, the old SGSN needs to forward the
data to the new SGSN during an inter-SGSN update. When a routeing update
procedure is in progress, the data gets lost. This issue was addressed later in
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the standard by adding a buffering mechanism that allows the SGSN to hold
the data until it completes successfully the routeing update procedure, and
then forward it to the right destination.

Figure 12. Successful attach procedure (MSC)

7. Conclusion

In the mobile data communication area, market forces oblige standard
committees to develop new standards rapidly. These standards include complex
protocols that should be checked for correctness before they are implemented,
otherwise problems will result, leading to high development costs, customer
dissatisfaction or even the failure of major systems that use the standards.

In this paper, we have presented an experience in the use of formal methods for
the verification of crucial properties of a forthcoming standard. Although the
methods used are based on existing ideas, the application to this complex system
has required a lot of ingenuity, from developing a suitable formal model for the
system, which was continuously being modified, to making the tools work
towards our goals.

IMSI1

M S

S G S N 1 S G S N 2 H L R M S C / V L R 1

S G S N S G S N H L R M S C / V L R

IDLE At tachReq [ IMSI1 !ClassA !CombAt tach !RA1]

UpdateLocat ion [ IMSI1 !SGSN1]

InsertSubscr iberData [ IMSI1]

Inser tSGSNContext

Inser tSubscr iberDataAck[ IMSI1]

UpdateLocat ionAck [ IMSI1]

Locat ionUpdat ingReq[LA1 ! IMSI1 SGSN1 !CombAt tach !C lassA]

Locat ionpdat ingAcc

At tachAcc[TLLI1]

R E A D Y

MSC T13: Attach Procedure
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At least two significant design errors were found. Each one of them, if not
addressed, would have led to faulty functioning of the system, possibly involving
loss of data or of connectivity to the mobile user.

This experience confirms the usefulness of formal methods in the design of
dependable critical systems.
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