
Verifying Erlang Code: A Resource Locker
Case-Study

Thomas Arts1, Clara Benac Earle2, and John Derrick2

1 Ericsson, Computer Science Laboratory
Box 1505, 125 25 Älvsjö, Sweden

thomas@cslab.ericsson.se
2 University of Kent, Canterbury
Kent CT2 7NF, United Kingdom

{cb47,jd1}@ukc.ac.uk

Abstract. In this paper we describe an industrial case-study on the
development of formally verified code for Ericsson’s AXD 301 switch.
For the formal verification of Erlang software we have developed a tool
to apply model checking to communicating Erlang processes. We make
effective use of Erlang’s design principles for large software systems to
obtain relatively small models of specific Erlang programs. By assuming a
correct implementation of the software components and embedding their
semantics into our model, we can concentrate on the specific functionality
of the components. We constructed a tool to automatically translate the
Erlang code to a process algebra with data. Existing tools were used to
generate the full state space and to formally verify properties stated in
the modal µ-calculus.
As long as the specific functionality of the component has a finite state
vector, we can generate a finite state space, even if the state space
of the real Erlang system is infinite. In this paper we illustrate this
by presenting a case-study based on a piece of software in Ericsson’s
AXD 301 switch, which implements a distributed resource locker
algorithm. Some of the key properties we proved are mutual exclusion
and non-starvation for the program.

Keywords: Model checking, formal verification, telecommunication, Er-
lang, process algebra

1 Introduction

Ericsson’s AXD 301 is a high capacity ATM switch [5], used, for example, to
implement the backbone network in the UK. The control software for this switch
is written in the functional language Erlang [1]. The software consists of over
five hundred thousands lines of Erlang code and complete formal verification of
such large projects is too ambitious at the moment. However, for some critical
parts of the software, it is worth spending some effort to increase trust in the
chosen implementation.

L.-H. Eriksson and P. Lindsay (Eds.): FME 2002, LNCS 2391, pp. 184–203, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Verifying Erlang Code: A Resource Locker Case-Study 185

In Ericsson the software in such large projects is written according to rather
strict design principles. For example in the AXD software, a few software compo-
nents have been specified in the beginning of the project. These components can
be seen as higher-order functions for which certain functions have to be given
to determine the specific functionality of the component. About eighty percent
of the software implements code for this specific functionality of one of these
components, the majority of this for the generic server component. The generic
server is a component that implements a process with a simple state parameter
and mechanism to handle messages in a fifo message queue. The generic part
of the component has been extensively tested and carefully thought through. In
other words, if an error occurs in one of the several thousands of server processes,
it is assumed to be an error in the specific functionality of that server causing
the error.

To help increase trust in the particular implementation, we constructed a tool
to translate server processes and their clients into a process algebraic model,
such that we can generate all possible communication patterns that occur in
the software. The model incorporates data as well, since messages sent between
server and clients contain data that influences the behaviour of the protocol.
The process architecture of a system is in general not derivable from the Erlang
code; information about which process is communicating with a certain process
is in principle only visible at runtime. However, the software component to ensure
fault tolerance of the system, the so called supervisor contains static information
about the relation between processes. Again, this component consists of a generic
part and a few functions implementing the specific behaviour. By using the code
of the specific functions of the supervisor processes, we are able to configure
the process algebra models with a fixed (but flexible per translation) number of
processes.

The case-study we had at hand implemented an algorithm for resource man-
agement. A server process, the so called locker, provides access to an arbitrary
number of resources, for an arbitrary number of client processes. The clients may
either ask for shared or exclusive access to the resources.

We used our tool, together with two external tools, on the key portions of the
locker module as it appears in the AXD 301 switch. The external tools were used
to generate the state space, reduce the state space with respect to bisimulation
relations and to model check several properties. We successfully verified mu-
tal exclusion and non-starvation for exclusive locks, priority of exclusive locks
over shared locks and non-starvation of shared locks in the absence of exclu-
sive requests. Proving the safety properties was rather straightforward, but the
non-starvation is normally expressed by a formula with alternating fix points.
Therefore, we used hiding and bisimulation to remove irrelevant cycles from the
state space, and this allowed a simplified property to be checked.

The paper is organised as follows: we start with a brief explanation of the
AXD 301 switch in Sect. 2. Thereafter we explain the software components we
focussed on, viz. the generic server and supervisors in Sect. 3. The actual Erlang
code, given in Sect. 4, is built using those components and along with the code

186 T. Arts, C. Benac Earle, and J. Derrick

we describe the implemented algorithm. The key points of the translation of
Erlang into a process algebra model are presented in Sect. 5. This model is
used to generate the labeled transition system in which the labels correspond to
communication events between Erlang processes. In Sect. 6 we summarize which
properties have been proved for the code using model checking in combination
with bisimulation reduction. We conclude with some remarks on performance
and feasability, and a comparison to other approaches (Sect. 7).

2 Ericsson’s AXD 301 Switch

Ericsson’s AXD 301 is a high capacity ATM switch, scalable from 10 to 160
GBits/sec [5]. The switch is, for example, used in the core network to connect
city telephone exchanges with each other.

From a hardware point of view, the switch consists of a switch core, which
is connected on one side to several device processors (that in their turn are
connected to devices), and on the other side to an even number of processing
units (workstations). The actual number of these processing units depends on
the configuration and demanded capacity and ranges from 2 till 32 (see Fig. 1).

Fig. 1. AXD 301 hardware architecture

The workstations operate in pairs for reasons of fault tolerance; one worksta-
tion is assigned to be the call control (cc) node and the other the operation and
maintenance (o&m) node. Simply put, call control deals with establishing con-
nections, and operation and maintenance deals with configuration management,
billing and such. Both the cc and o&m software consists of several applications,
which on their turn implement many concurrently operating processes.

Every workstation runs one Erlang node, i.e., a program to execute Erlang
byte code implementing several thousands of concurrent Erlang processes. The

Verifying Erlang Code: A Resource Locker Case-Study 187

critical data of these processes is replicated and present on at least two nodes in
the system. In case a workstation breaks down, a new Erlang node is started on
the pairing workstation and depending on the functionality of the broken node,
either the cc or the o&m applications are started.

The distributed resource locker is necessary when the broken workstation is
restarted (or replaced) and available again for operation. A new Erlang node
is started at the workstation, and the pairing workstation can leave one of its
tasks to the restarted workstation. Typically o&m will be moved, since that is
easiest to move. Although easiest, this is not without consequences. Every o&m
application may access several critical resources and while doing so, it might be
hazardous to move the application. For that reason the designers of the switch
have introduced a classical resource manager, here called a locker. Whenever any
of the processes in any application needs to perform an operation during which
that application cannot be moved, it will request a lock on the application. The
lock can be shared by many processes, since they all indicate that the application
is to remain at its node. The process that wants to move an application will also
request a lock on that application, but an exclusive one. Using this lock, a process
is guaranteed to know when it can safely move an application.

3 Erlang Software Components

In Ericsson’s large software projects the architecture of the software is described
by means of software components, i.e., the implementation is specified by means
of communicating servers, finite state machines, supervisors and so. In the control
software for the AXD about eighty percent of the software is specified in terms
of such components, the majority of it as processes that behave like servers.

3.1 Generic Server Component

A server is a process that waits for a message from another process, computes a
certain response message and sends that back to the original process. Normally
the server will have an internal state, which is initialised when starting the server
and updated whenever a message has been received.

In Erlang one implements a server by creating a process that evaluates a
(non-terminating) recursive function consisting of a receive statement in which
every incoming message has a response as result.

serverloop(State) ->
receive
{call,Pid,Message} ->

Pid ! compute_answer(Message,State),
serverloop(compute_new_state(Message,State))

end.

Erlang has an asynchronous communication mechanism where any process can
send (using the ! operator) a message to any other process of which it happens

188 T. Arts, C. Benac Earle, and J. Derrick

to know the process identifier (the variable Pid in the example above). Send-
ing is always possible and non-blocking; the message arrives in the unbounded
mailbox of the specified process. The latter process can inspect its mailbox by
the receive statement. A sequence of patterns can be specified to read specific
messages from the mailbox. In the example above the first message in the mail-
box which has the form of a tuple is read, where the first argument of the tuple
should be the atom call, the variable Pid is then bound to the second argument
of this tuple, and Message is bound to its last argument.

Of course, this simple server concept gets decorated with a lot of features in a
real implementation. There is a mechanism to delay the response to a message,
and some messages simply never expect a reply. Certain special messages for
stopping the server, logging events, changing code in a running system and so
on, are added as patterns in the receive loop. Debugging information is provided,
used during development and testing. All together this makes a server a rather
large piece of software and since all these servers have the same structure, it is a
big advantage to provide a generic server implementation. This generic server has
all features of the server, apart from the specific computation of reply message
and new state. Put simply, by providing the above functions compute answer
and compute new state a fully functional server is specified with all necessary
features for production code.

Reality is a bit more complicated, but not much: when starting a server one
provides the name of a module in which the functions for initialisation and call
handling are specified. One could see this as the generic server being a higher-
order function which takes these specific functions, called callback functions, as
arguments. The interface of these functions is determined by the generic server
implementation. The initialisation function returns the initial state. The function
handle call is called with an incoming message, the client process identifier, and
state of the server. It returns a tuple either of the form {reply,Message,State},
where the server takes care that this message is replied to the client and that the
state is updated, or {noreply,State} where only a state update takes place.
The locker algorithm that we present in this paper is implemented as a call-
back module of the generic server, thus the locker module implements the above
mentioned functions for initialisation and call handling.

Client processes use a uniform way of communicating with the
server, enforced by embedding the communication in a function call, viz.
gen server:call. This call causes the client to suspend as long as the server has
not replied to the message. The generic server adds a unique tag to the message
to ensure that clients stay suspended even if other processes send messages to
their mailbox.

3.2 Supervisor Component

The assumption made when implementing the switch software is that any Er-
lang process may unexpectedly die, either because of a hardware failure, or a
software error in the code evaluated in the process. The runtime system provides
a mechanism to notify selected processes of the fact that a certain other process

Verifying Erlang Code: A Resource Locker Case-Study 189

has vanished; this is realized by a special message that arrives in the mailbox of
processes that are specified to monitor the vanished process.

On top of the Erlang primitives to ensure that processes are aware of the
existence of other processes, a supervisor process is implemented. This process
evaluates a function that creates processes which it will monitor, which we refer
to as its children. After creating these processes, it enters a receive loop and
waits for a process to die. If that happens, it might either restart the child or
use another predefined strategy to recover from the problem.

All the processes in the AXD 301 software are children in a big tree of
supervisor processes. Thus, the locker and the clients of the locker also exist
somewhere in this tree. In our case-study we implemented a small supervisor
tree for only the locker and a number of clients (Fig. 2).

Fig. 2. Supervisor tree for locker and clients

The root of the tree has two children: the locker and another supervisor,
which has as children all the client processes. As in the real software, the whole
locker application is started by evaluating one expression, which starts building
the supervisor tree and makes all processes run.

It is important to realize that we use this supervision tree to start the locker
in different configurations. As an argument of the start function for the super-
visor we provide the set of resources that the specific clients want to access.
The expression locker sup:start([{[a],shared},{[a,b],exclusive}]), for
example, would start a supervisor tree with a locker and two clients, one client
repeatedly requesting shared access to resource a, the other repeatedly request-
ing exclusive access to the resources a and b.

4 The Resource Locker Algorithm

In the previous section we described how the locker and client processes are
placed in a supervision tree. We also mentioned that the locker is implemented
as a callback module for the generic server. In this section we present the actual
implementation of the client and locker and we explain the underlying algorithm.

190 T. Arts, C. Benac Earle, and J. Derrick

We present a significant part of the actual Erlang code in order to stress that we
verify Erlang code and to illustrate the complexity of the kind of code we can
deal with. The full case-study contains about 250 lines of code in which many
advanced features of Erlang are used1.

4.1 Code of the Client

The client process is implemented in a simple module, since we have abstracted
from all evaluations in clients that do not directly relate to entering and leaving
the critical section. The generic server call mechanism is used to communicate
with the locker.

-module(client).

start(Locker,Resources,Type) ->
{ok,spawn_link(client,loop,[Locker,Resources,Type])}.

loop(Locker,Resources,Type) ->
gen_server:call(Locker,{request,Resources,Type}),
gen_server:call(Locker,release),
loop(Locker,Resources,Type).

Between the two synchronous calls for request and release is the so called critical
section. In the real implementation some critical code is placed in this critical
section, but we have (manually) abstracted from that. The variable Type is
either instantiated with shared or exclusive and Resources is bound to a list
of resources that the client wants access to.

4.2 Code of the Locker

The code of the locker algorithm is given as a generic server callback module.
The state of this server contains a record of type lock for every resource that
the locker controls.

-module(locker).
-behaviour(gen_server).

-record(lock,{resource,exclusive,shared,pending}).

The lock record has four fields: resource for putting the identifier of the re-
source, exclusive containing the process that is having exclusive access to the
resource (or none otherwise), shared containing a list of all processes that are
having shared access to the resource, and pending containing a list of pending
processes, either waiting for shared or for exclusive access.
1 The code is available at http://www.cs.ukc.ac.uk/people/rpg/cb47/

Verifying Erlang Code: A Resource Locker Case-Study 191

The supervisor process constructs a list of all resources involved from the start-
ing configuration and passes it to the initialisation of the locker. The locker
initialisation function then initialises a lock record for every resource in that
list. The state of the server is built by taking this list and constructing a tuple
together with the lists for all exclusive requests and all shared requests that have
not been handled so far.

init(Resources) ->
{ok,{map(fun(Name) ->

#lock{resource = Name,
exclusive = none, shared = [], pending = []}

end,Resources),[],[]}}.

The latter two (initially empty) lists in the state of the server are used by the
algorithm to optimize the computations performed when deciding which pending
client is the next one that gets access. The first client in the pending list of the
lock record is not necessarily granted permission to obtain the resource. It may
be the case that the same client also waits for another resource, for which another
client has higher priority. The priority could be reconstructed by building a graph
of dependencies between the clients, but it is much easier to store the order in
which the requests arrive.
Whenever a client requests a resource, the function handle call in the locker
module is called. This function first checks whether all requested resources are
available. If so, it claims the resources by updating the lock records. The client
receives an acknowledgement and the state of the server is updated accordingly. If
the resources are not available, the lock records are updated by putting the client
in the pending lists of the requested resources. The priority lists are changed,
resulting in a new state for the server. No message is sent to the client, which
causes the client to be suspended.

handle_call({request,Resources,Type},Client,{Locks,Excls,Shared}) ->
case check_availables(Resources,Type,Locks) of

true ->
NewLocks =
map(fun(Lock) ->

claim_lock(Lock,Resources,Type,Client)
end,Locks),

{reply, ok, {NewLocks,Excls,Shared}};
false ->
NewLocks =
map(fun(Lock) ->

add_pending(Lock,Resources,Type,Client)
end,Locks),

case Type of
exclusive ->
{noreply, {NewLocks,Excls ++ [Client],Shared}};

shared ->

192 T. Arts, C. Benac Earle, and J. Derrick

{noreply, {NewLocks,Excls,Shared ++ [Client]}}
end

end;

A client can release all its obtained resources by a simple release message,
since the identity of the client is sufficient to find out which resources it requested.
After removing the client from the fields in the lock record, it is checked whether
pending processes now have the possibility to access the requested resources. This
happens with higher priority for the clients that request exclusive access, than
for the clients that request shared access. The algorithm prescribes that clients
that requested shared access to a resource but are waiting for access, should be
by-passed by a client that requests exclusive access.

handle_call(release, Client, {Locks,Exclusives,Shared}) ->
Locks1 =
map(fun(Lock) ->

release_lock(Lock,Client)
end,Locks),

{Locks2,NewExclusives} =
send_reply(exclusive,Locks1,Exclusives,[]),

{Locks3,NewShared} =
send_reply(shared,Locks2,Shared,[]),

{reply,done, {Locks3,NewExclusives,NewShared}}.

The function send reply checks for a list of pending clients (either requesting
exclusive or shared access) whether they can be granted access. If so, the client
receives the acknowledgement that it was waiting for, and the state of the server
is updated.

send_reply(Type,Locks,[],NewPendings) ->
{Locks,NewPendings};

send_reply(Type,Locks,[Pending|Pendings],NewPendings) ->
case all_obtainable(Locks,Type,Pending) of

true ->
gen_server:reply(Pending,ok),
send_reply(Type,

map(fun(Lock) ->
promote_pending(Lock,Type,Pending)

end,Locks),Pendings,NewPendings);
false ->
send_reply(Type,Locks,Pendings,NewPendings ++ [Pending])

end.

The above mentioned Erlang functions in the locker combine message passing
and computation. The rest of the function is purely computational and rather
straight forward to implement. Here we only show the more interesting aspects.

The function check availables is used to determine whether a new request-
ing client can immediately be helped. A resource is available for exclusive access

Verifying Erlang Code: A Resource Locker Case-Study 193

if no client holds the resource and no other client is waiting for exclusive ac-
cess to it. Note that it is not sufficient to only check whether no client accesses
the resource at the time, since this could cause a starvation situation. Imagine
two resources and three clients, such that client 1 requests resource A, client
2 requests resource B, and thereafter client 3 requests both resources. Client 1
releases and requests resource A again, client 2 releases and requests B again. If
this repeatedly continues, client 3 will wait for ever to get access, i.e., client 3
will starve.

A B A B
access 1 access 1 2

pending pending 3 3

access 1 2 access 1
pending pending 3 3

access 1 2 access 1 2
pending 3 3 pending 3 3

access 2
...

pending 3 3

This scenario indicates that in general one has to pay a price for optimal resource
usage: viz. a possible starvation. Therefore, in the implementation it is checked
whether a client is waiting for a certain resource. Similar to the exclusive case, for
shared access the resource is available if no process holds the resource exclusively,
neither is a client waiting for access to it.
The function add pending simply inserts the client in the pending lists of the
resources it is requesting. An optimisation is applied when inserting clients in
the pending list: clients requesting exclusive access are mentioned before the
ones requesting shared access. This allows a quick check to see if there is a client
exclusively waiting for a resource, such a client should then be at the head of
the pending list.
The difference between the functions check available and all obtainable is
that in the latter the clients have already been added to the pending lists of
the requested resources and therefore it should be checked that they are at the
head of these lists instead of checking that these lists are empty. Moreover, there
might be several clients able to get access to their resources after only one release,
e.g. resources that were taken exclusively can be shared by several clients and a
client that occupied several resources can free those resources for a number of
different clients.

5 Translating Erlang into Process Algebra

In order to check that certain properties hold for all possible runs of the pro-
gram, we automatically translate the Erlang modules into a process algebraic

194 T. Arts, C. Benac Earle, and J. Derrick

specification. The translation approach means that we do not have to make an
efficient state space generation tool ourselves, it also allows us to distinghuish
in a formal way communication actions and computation, and allows us to use
tools developed for analyzing process algebra’s.

The process algebra we used to translate to is µCRL [15], where we in par-
ticular used the fact that we can express data in this algebra. Several tools have
been developed to support verification of µCRL specifications [9,24]. We mainly
used the state space generation tool and experimented with static analysis tools
to obtain specifications that resulted in smaller state spaces after generation.

We have experimented with translating the synchronous communication im-
posed by the call primitive of the generic server component directly in a synchro-
nizing pair of actions in µCRL. This results in comfortably small state spaces,
much smaller than when we implement a buffer for a server and use both syn-
chronization between client and buffer of the server and synchronization between
buffer and server. The latter is, however, necessary if we use the more extended
functionality of the generic server, where we also have an asynchronous way of
calling the server.

The buffer associated with each process is parameterized by its size and by
default unbounded; during the verification process the buffer is bound to a cer-
tain size to allow the verifier to experiment with the size. The latter is important,
since some errors cause a buffer overflow, which induces a non-terminating gener-
ation of the state space. However, if the message queue is bound to a low enough
value, the buffer overflow is visible as an action in the state space. We use the
knowledge about the generic server component to implement a restricted buffer
in µCRL: the generic server uses a fifo buffer structure. This is in contrast with a
classic Erlang buffer where an arbitrary Erlang process can read messages from
the buffer in any order.

Moreover, we add several assertions that, if not fullfilled, cause the Erlang
program to crash. These assertions mainly originate from pattern matching
in Erlang, which is not as easily expressed in µCRL. As soon as the action
assertion(false) occurs in the state space, the corresponding Erlang process
would have crashed and we obtain for free a path from the initial state to the
location where this happens. We provided the possibility to add user defined
actions. By annotating the code with dummy function calls, we may add extra
actions to the model to allow us to explicitly visualize a certain event. This fea-
ture was used, for example, when proving mutual exclusion, as is described in
the next section.

Erlang supports higher-order functions, but µCRL does not. Luckily, in prac-
tice only a few higher-order alternatives are used, like map, foldl, foldr, etc.
For the purpose of this locker version we wrote a source to source translation on
the Erlang level to replace function occurrences like

map(fun(X) -> f(X,Y1,...,Yn) end, Xs)

by a call to a new function map f(Xs,Y1,...,Yn) which is defined and added
to the code as

Verifying Erlang Code: A Resource Locker Case-Study 195

map_f([],Y1,...,Yn) -> [];
map_f([X|Xs],Y1,...,Yn) -> [f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)].

By using this transformation we automatically get rid of all map functions in the
Erlang code.

With some minor tricks the side-effect free part of the Erlang code is rather
easily translated into a term rewriting system on data, as necessary in a µCRL
model. With respect to the part with side-effects, we are faced with two problems:

1. in µCRL we have to specify exactly which processes start and with which
arguments they are started,

2. in µCRL a process is described with all side effects as actions on the top
level. Thus, a function with side-effect cannot return a result.

The first problem is tackled by using the supervision tree that describes the
Erlang processes that should be started. Using this structure, a translation
to µCRL’s initial processes is performed automatically. The second problem
is solved by analyzing the call graph of functions that contain side-effects, i.e.,
functions that call the server or handle this call. We implement a stack process
comparable to a call-stack when writing a compiler. Given the call graph, we
can replace the nested functions with side-effect by functions that send as their
last action a message to the stack process to push a value, since returning it is
not possible. The stack process implements a simple stack with push and pop
operations. A pop message is sent to the stack process directly after the point
where the nested function has been called. This solution works fine, but, clearly,
increases the state space.

With our translation tool for Erlang we can automatically generate µCRL
models for Erlang programs like the one presented in Sect. 4. We build such mod-
els for a certain configuration in the same way as we start the code in a certain
configuration. In Sect. 3.2 we explained how to start the locker process, for exam-
ple, by evaluating locker sup:start([{[a],shared},{[a,b],exclusive}]).
Evaluating the same expression in our tool instead of in the Erlang runtime
system, results in a µCRL model2 for this configuration.

By using the state space generation tool for µCRL, we obtain the full state
space, in the form of a labeled transition system (LTS), for the possible runs of
the Erlang program. The labels in this state space are syntactically equal to func-
tion calls in Erlang that accomplish communication, e.g. gen server:call and
handle call. This makes debugging the Erlang program easy when a sequence
in the state space is presented as counter example to a certain property.

Once we have obtained the state space, the Cæsar/Aldébaran toolset [14]
is used for verifying properties, as is described in the next section.

2 For completeness one of these automatically generated µCRL models is available at
http://www.cs.ukc.ac.uk/people/rpg/cb47/

196 T. Arts, C. Benac Earle, and J. Derrick

6 Checking Properties with a Model Checker

The verification of safety and liveness properties are crucial in this application
and were the key requirements that the AXD 301 development team were in-
terested in. Safety properties include mutual exclusion for exclusive locks and
priority of exclusive locks over shared locks. These and other properties have
succesfully been verified and here we explain in detail how mutual exclusion
(Sect. 6.1) and non-starvation (Sect. 6.2) are proved. The liveness property,
non-starvation, is the more difficult of the two.

In order to verify the properties we have used the Cæsar/Aldébaran
toolset which provides a number of tools including an interactive graphical
simulator, a tool for visualization of labeled transition systems (LTSs), sev-
eral tools for computing bisimulations (minimizations and comparisons), and
a model checker [14]. Many aspects of the toolset were found useful for exploring
the behaviour of the algorithm, but here we concentrate on the model checker.

Model checking (e.g. [7]) is a formal verification technique where a property
is checked over a finite state concurrent system. The major advantages of model
checking are that it is an automatic technique, and that when the model of the
system fails to satisfy a desired propery, the model checker always produces a
counter example. These faulty traces provide a priceless insight to understanding
the real reason for the failure as well as important clues for fixing the problem.

The logic used to formalize properties is the regular alternation-free µ-
calculus which is a fragment of the modal µ-calculus [20,11], a first-order logic
with modalities and least and greatest fixed point operators. Logics like CTL or
ACTL allow a direct encoding in the alternation free µ-calculus.

6.1 Mutual Exclusion

To prove mutual exclusion we formulate a property expressing that when a client
gets exclusive access to a resource, then no other client can access it before this
client releases the resource. In order to simplify checking this we add two actions,
use and free, to the Erlang code which are automatically translated into the
µCRL specification3. As soon as a client process enters its critical section, the
use action is applied with the list of resources the client is requesting as an
argument.

Before the client sends a release message to the locker process, it performs
a free action. In the logic we specify the action in plain text or with regular
expressions. However, the formalism does not permit binding a regular expression
in one action and using it in another. Therefore, we have to specify mutual
exclusion for every resource in our system. We defined a macro to help us improve
readability:

BETWEEN (a1, a2, a3) = [-∗ . a1 . (¬a2)∗ . a3]false

3 The tools allow renaming of labels in the LTS, which could have been used as well.

Verifying Erlang Code: A Resource Locker Case-Study 197

stating that ‘on all possible paths, after an (a1) action, any (a3) action must be
preceded by an (a2) action’.

The mutual exclusion property depends on the number of resources. For a
system with two resources, A and B, the mutual exclusion property is formalized
by

MUTEX (A, B) =
BETWEEN (′use(.∗A.∗, exclusive)′, ′free(.∗A.∗)′, ′use(.∗A.∗,.∗)′) ∧
BETWEEN (′use(.∗B.∗, exclusive)′, ′free(.∗B.∗)′, ′use(.∗B.∗,.∗)′)

Informally the property states that when a client obtains exclusive access to
resource A no other client can access it until the first client frees the resource,
and the same for resource B.

The mutual exclusion property has been successfully checked for various con-
figurations up to three resources and five clients requesting exclusive or shared
access to the resources.

For example, a scenario with five clients requesting exclusive access to three
resources where client 1 requests A, client 2 requests B, client 3 requests A, B and
C, client 4 requests A and B, and client 5 requests C, contains about 30 thousand
states. Building an LTS for this example takes roughly thirteen minutes, while
checking the mutual exclusion property takes only nine seconds. A bigger state
space of one million states needs one hour to be built and four minutes to be
checked for mutual exclusion. Part of the reason that building the LTS takes
much more time than checking a property is that we deal with data and that
a lot of computation is done inbetween two visible actions (only visible actions
correspond to states in the LTS).

As stated in the previous section, model checking is a powerful debugging
tool. Imagine that the code of the locker contains the following error: the function
check available is wrongly implemented such that when a client requests a
resource there is no check that the resource is being used by another client. Now
consider a scenario with two clients, client 1 and client 2, requesting the same
resource A. Given the LTS for this scenario and the property MUTEX (A), the
model checker returns false and the counter example as shown in Fig. 3.

Fig. 3. mutex counterexample

The counter example generated depicts an execution trace of client 1 request-
ing and obtaining resource A and client 2 requesting and obtaining resource A,

198 T. Arts, C. Benac Earle, and J. Derrick

that is, both processes enter the critical section and, therefore, mutual exclusion
is not preserved. The numbers that appear inside the circles correspond to the
numbers of the states as they appear in the complete LTS. By keeping the Erlang
code and our µCRL specification as close as possible, this trace helps us easily
identify the run in the Erlang program.

Although we only use a small number of clients and resources, this already
illustrates the substantive behaviour. Like with testing software, we choose our
configurations in such a way that we cover many unique situations, however, in
contrast to testing, we explore all possible runs of a certain configuration. Faults
that occur when ten clients request sets out of eight resources are most likely
found as well in configurations with five clients and four resources.

6.2 Non-starvation

Starvation is the situation where a client that has requested access to resources
never receives permission from the locker to access them. Because exclusive ac-
cess has priority over shared access, the algorithm contains potential starva-
tion for clients requesting shared access to resources that are also exclusively
requested. More precisely, the clients requesting exclusive access have priority
over all clients that are waiting for shared access, therefore the ones requesting
shared access can be withheld from their resources.

Within the use of the software in the AXD at most one client is requesting
exclusive access to the resources (the take-over process). In that setting, the
starvation of clients requesting shared access cannot occur, as we prove below.
The reason is the synchronized communication for the release. As soon as the
client requesting exclusive access sends a release to the locker, all waiting shared
clients get access to the resources they requested (they share them). Only after
this is an acknowledgement sent on the release.

Here we look at more general cases where more than one client is requesting
exclusive access to the resources (since this type of scenarios may occur in a
more general setting).

Because of the fact that the algorithm contains a certain form of starvation,
the property one wants to check for non-starvation has to be specified with
care. The following cases have been verified: non-starvation of clients requesting
exclusive access and non-starvation of clients requesting shared access in the
presence of at most one exclusive request.

Non-starvation for exclusive access. Proving that there is no starvation for
the clients requesting exclusive access to the resources turned out to be tricky.
This is caused by the fact that there are traces in the LTS that do not correspond
to a fair run of the Erlang program.

The Erlang run-time system guarantees that each process obtains a slot of
time to execute its code. However, in the LTS there are traces where certain
processes do not get any execution time, even though they are enabled along
the path. To clarify this, let us consider a scenario with two resources and three
clients.

Verifying Erlang Code: A Resource Locker Case-Study 199

Client 1 requests resource A and obtains access to it, client 2 request resource
A and has to wait. Thereafter client 3 requests B, obtains access to it, releases
the resource and requests it again. In the LTS there is a clear starvation situation
for client 2, viz. infinitely often traversing the cycle that client 3 is responsible
for (4 → 23 → 10 → 24 → 4 → . . . in Fig. 4). The above scenario, however, does

0

4

17

22

10

23

6

24

33

7

12

gen_server:call(Locker,{request,[B],exclusive},C3)

reply(ok,C3)

reply(ok,C1)

gen_server:call(Locker,release,C1)

gen_server:call(Locker,release,C3)

gen_server:call(Locker,{request,[A],exclusive},C2)

gen_server:call(Locker,{request,[A],exclusive},C3)

call(locker,release,C1)

gen_server:call(Locker,{request,[A],exclusive},C1) gen_server:call(Locker,release,C1)

reply(done,C3)

Fig. 4. Unreal starvation of client 2

not reflect the real execution of the program since the Erlang run-time system
will schedule client 1 to execute its code. Client 1 will sooner or later release
resource A, which causes client 2 to get access to the resource. In the LTS, it is
visible that client 2 has the possibility to access resource A, but the unfair cycle
of client 3 hides the fact that this will happen. Note, though, that we cannot
simply forget about every cycle. If the cycle would be shown with resource A
instead of B mentioned, then this would indicate a real starvation.

One could think of a number of solutions to solve the problem of cycles in the
LTS that do not correspond to fair infinite computations in the Erlang program.
For example, one could explicity model the Erlang run-time scheduler. However,
modelling the scheduler is a rather complex solution that would increase the size
of the LTS notably. Besides, we would be scheduling the actions in the µCRL
code, not in the real Erlang code. Thus we would not be sure that starvation
really occurs in the Erlang implementation.

Another possible solution is to encode the unrealistic cycles, i.e., the ones
that the real scheduler would exclude, in the property so that they are ignored.
In order to do that we need to characterize the unrealistic cycles. An unrealistic
cycle corresponds to unfair execution of a number of clients that is independent
of the client one wants to prove non-starvation for.

In our specific case a client depends on another client when the disjunction
of the sets of resources they request is non-empty. Given that one is interested
in proving non-starvation of a certain client, then computing the clients that
are independent of this client is done by taking the complement of the reflex-
ive, transitive closure of this dependency relation. If we now consider all actions
of independent clients to be internal actions (τ actions in process algebra ter-
minology), then non-starvation of the client C we are interested in, could be

200 T. Arts, C. Benac Earle, and J. Derrick

expressed by the guaranteed occurence of ′reply(ok ,C)′ in any path starting
from ′gen server :call(.∗request .∗, C)′, modulo possible cycles with only τ steps.
This can be expressed by the following formula in the µ-calculus, where we allow
only finite cycles of actions that are neither τ , nor ′reply(ok ,C)′ actions. Infinite
sequences of only τ actions are, however, permitted:

[-∗ . ′gen server :call(.∗request .∗, C)′]
µX.(νY.(〈-〉true ∧ [¬τ ∧ ¬′reply(ok ,C)′]X ∧ [τ]Y)).

The disadvantage with the above formula is that it has alternating fixed point
operators and hence the model checker cannot verify this property.

The solution is to reduce the state space by use of observational equivalence
[23] and a facility to do this is provided by the Cæsar/Aldébaran toolset. By
applying this reduction we replaced actions of independent processes by internal
actions, we obtain a model in which pure τ cycles no longer occur. Thus, we
removed all unfair cycles.

Modulo observational equivalence, the formula to prove non-starvation be-
comes much simpler and in particular is alternation-free:

NONSTARVATION (C) =
[-∗ . ′gen server :call(.∗request .∗, C)′]µX.(〈-〉true ∧ [¬′reply(ok ,C)′]X)

Verification of non-starvation for a configuration of clients and resources is
now performed by consecutively selecting a process that requests exclusive ac-
cess to a set of resources. We manually determine the set of processes that is
independent of this process, and then hide the labels of the independent pro-
cesses The LTS obtained is reduced modulo observational bisimulation, and we
can then verify the above given property on the reduced LTS.

In this way we successfully verified non-starvation of the clients requesting
exclusive access to resources in several configurations. We also found a counter
example, by checking this property for a process that requests shared access to
resources in a configuration where two clients ask exclusive access to resource A
and a third requests shared access to A. In this case we see that the third client
is starving. This is exactly as we expect, since clients demanding exclusive access
have priority over clients asking for shared access.

Non-starvation for shared access. Even though clients that request shared
access to a resource may potentially starve, as explained above, we can still prove
non-starvation of all the clients in the system, provided that at most one client
demands exclusive access.

In analogy to the procedure described above, we hide the actions of inde-
pendent processes and verify NONSTARVATION (C) for every client C in the
configuration. As such, the verification is performed successfully.

Verifying Erlang Code: A Resource Locker Case-Study 201

7 Conclusions

In this paper we describe an approach to verify properties of Erlang code. The
approach consists of the following steps. First, the Erlang code is automatically
translated to a µCRL specification. Second, a labeled transition system (LTS) is
generated from this µCRL specification by using tools from the µCRL toolset.
We then code up the property of interest in the alternation-free µ-calculus, and
the LTS is checked against this property using the Cæsar/Aldébaran toolset.
For some properties we transform the LTS (e.g., using hiding for non-starvation)
so that we can model check with a simple formulation of the property of interest
(e.g., one without alternating fixed points).

The case-study we have at hand, a critical part of the AXD 301 software
consisting of about 250 lines of Erlang code, implements a resource locking
problem for which we prove the obvious properties, viz. mutual exclusion and
non-starvation. Mutual exclusion algorithms have been studied before (e.g. [10,
19,21,22]) and these algorithms have been proved correct. Automatically prov-
ing the same properties on a slightly different algorithm implemented in a real
programming language, however, lifts formal methods from an academic exercise
to industrial practice.

Similar projects for different programming languages exist, such as the ver-
ification on Java code [8,16] using the specification language Promela and LTL
model checker SPIN [17]. The difference with those approaches is that we make
extensive use of components on top of the language primitives, therewith obtain-
ing smaller state spaces for similar problems. Moreover, the underlying logics for
the model checkers differ, which makes different properties expressible in both
approaches.

For Erlang there are also other relevant verification tools developed, e.g., a
theorem prover with Erlang semantics build into it [3,13] and the model checker
of Huch [18]. Huch’s model checker works on Erlang code directly and provides
the possibility to verify LTL properties.

The main difference between Huch’s approach and the approach we sketch
in this paper, is that Huch uses abstract interpretation to guarantee small (fi-
nite) state spaces. In Huch’s approach all data is abstracted to a small, fixed set
and tests on the data are often translated to non-deterministic choices. This ap-
proach is not suitable for our situation, since a non-deterministic choice whether
a resource is available or not will result in error messages that do not reflect
reality. That is, the properties we wish to verify are very data dependent and
thus this particular approach to abstract interpretation will not work here.

The Erlang theorem prover can be used to prove similar properties, in partic-
ular if one uses the extra layer of semantics for software components added to the
proof rules [4]. However, such a proof has to be provided manually, in contrast
to more automatic approach we have explained here 4. However, an advantage of
the theorem prover is that one can reason about sets of configurations at once,
and not fix the number of clients and resources per attempt.
4 However, tactics can increase the degree of automation for the theorem prover

202 T. Arts, C. Benac Earle, and J. Derrick

The translation of Erlang into µCRL is performed automatically. Our tool
can deal with a large enough part of the language to make it applicable for serious
examples. The tool computing the state spaces for µCRL models [9] is very well
developed and stable. However, despite the many optimisations, it takes a few
minutes up to hours to generate a state space. Whenever the model is obtained,
model checking with the Cæsar/Aldébaran toolset [14] takes a few seconds up
to a few minutes. Thus, the generation of the state space is rather slow compared
to verifying it, which is partly due to the computation on the complex data
structures we have in our algorithm. In particular, in the case when the property
does not hold, creating the whole state space is often unnecessary: a counter-
example could be provided without having all states available. A collaboration
between both providers of the external tools recently resulted in an on-the-fly
model checker to overcome this inconvenience. At the same time a distributed
state space generation and model checking tool are being built as cooperation
between CWI and Aachen University [6]. With such a tool, a cluster of machines
can be used to quickly analyse rather large state spaces. Experiments showed
the generation of an LTS with 20 million states in a few hours. We have not
found serious performance problems and by these new developments we expect
to push them forward even more.

Formal verification of Erlang programs is slowly becomming practically pos-
sible, particularly the development of new programs [2]. We plan to extend our
translation tool to cover a few more components and to deal with fault tolerance.
At the moment, crashing and restarting of processes is not considered inside the
µCRL model, so that properties about the fault tolerance behaviour cannot be
expressed. In the near future we plan to verify more software and construct a
library of verified Erlang programs that can be used within Ericsson products.

Acknowledgements. We thank Ulf Wiger from Ericsson for providing us with
the case-study and clarifying the use of this code. Specially helpful were the
tool development teams at INRIA Rhône-Alpes and CWI with their support
and advices, and Lars-Åke Fredlund and Dilian Gurov from SICS with their
contribution in the discussions. We thank Howard Bowman from the University
of Kent for useful explanations.

References

[1] J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikström. Concurrent
Programming in Erlang. Prentice Hall International, 2nd edition, 1996.

[2] T. Arts and C. Benac Earle. Development of a verified distributed resource
locker, In Proc. of FMICS, Paris, July 2001.

[3] T. Arts, M. Dam, L-Å. Fredlund, and D. Gurov. System Description: Verifi-
cation of Distributed Erlang Programs. In Proc. of CADE’98, LNAI 1421, p.
38–42, Springer-Verlag, Berlin, 1998.

[4] T. Arts and T. Noll. Verifying Generic Erlang Client-Server Implementations.
In Proc. of IFL2000, LNCS 2011, p. 37–53, Springer Verlag, Berlin, 2000.

Verifying Erlang Code: A Resource Locker Case-Study 203

[5] S. Blau and J. Rooth. AXD 301 – A new Generation ATM Switching System.
Ericsson Review, no 1, 1998.

[6] B. Bollig, M. Leucker, and M. Weber. Local Parallel Model Checking for the
Alternation Free µ–Calculus. tech. rep. AIB-04-2001, RWTH Aachen, 2001.

[7] E.M. Clarke, O. Grumberg, D. Peled. Model Checking, MIT Press, December
1999.

[8] J. Corbett, M. Dwyer, L. Hatcliff. Bandera: A Source-level Interface for Model
Checking Java Programs. In Teaching and Research Demos at ICSE’00, Limer-
ick, Ireland, 4-11 June, 2000.

[9] CWI. http://www.cwi.nl/∼mcrl. A Language and Tool Set to Study Commu-
nicating Processes with Data, February 1999.

[10] E. W. Dijkstra. Solution of a Problem in Concurrent Programming Control. In
Comm. ACM, 8/9, 1965.

[11] E.A. Emerson and C-L. Lei. Efficient Model Checking in Fragments of the
Propositional Mu-Calculus, In Proc. of the 1st LICS, p. 267-278, 1986.

[12] Open Source Erlang. http://www.erlang.org, 1999.
[13] L-Å. Fredlund, et. al. A Tool for Verifying Software Written in Erlang, To appear

in: STTT, 2002.
[14] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M.

Sighireau. Cadp (Cæsar/Aldébaran development package): A protocol val-
idation and verification toolbox. In Proc. of CAV, LNCS 1102, p. 437–440,
Springer-Verlag, Berlin, 1996.

[15] J. F. Groote, The syntax and semantics of timed µCRL. Technical Report SEN-
R9709, CWI, June 1997. Available from http://www.cwi.nl.

[16] K. Havelund and T. Pressburger, Model checking Java programs using Java
PathFinder. STTT, Vol 2, Nr 4, pp. 366–381, March 2000.

[17] G. Holzmann, The Design and Validation of Computer Protocols. Edgewood
Cliffs, MA: Pretence Hall, 1991.

[18] F. Huch, Verification of Erlang Programs using Abstract Interpretation and
Model Checking. In Proc. of ICFP’99, Sept. 1999.

[19] D. E. Knuth. Additional Comments on a Problem in Concurrent Programming
Control. In Comm. ACM, 9/5, 1966.

[20] D. Kozen. Results on the propositional µ-calculus. TCS, 27:333-354, 1983.
[21] L. Lamport. The Mutual Exclusion Problem Part II - Statement and Solutions.

In Journal of the ACM, 33/2, 1986.
[22] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc. San

Francisco, California, 1996.
[23] R. Milner. A Calculus of Communicating Systems, Springer 1980.
[24] A. G. Wouters. Manual for the µCRL tool set (version 2.8.2). Tech. Rep. SEN-

R0130, CWI, Amsterdam, 2001.

	Introduction
	Ericsson's AXD 301 Switch
	Erlang Software Components
	Generic Server Component
	Supervisor Component

	The Resource Locker Algorithm
	Code of the Client
	Code of the Locker

	Translating Erlang into Process Algebra
	Checking Properties with a Model Checker
	Mutual Exclusion
	Non-starvation

	Conclusions
	References

