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Abstract

The correctness of an optimisation of the Transport Capa-
bilities Application Part of the Signalling System No. 7 is
formalised as a branching bisimulation which is relaxed
to allow certain actions to be executed in any order. It
is demonstrated how this correctness can be checked by
a combination of an automated test of branching bisimu-
lation and a manual test of commutation. Using this ap-
proach, two bugs in the design were found and eliminated.

1 Introduction

Ericsson’s move of the implementation of the Signalling
System No. 7 [14] fromPLEX, a proprietary language for
multi-processor architectures, to ERLANG[1], provided a
splendid opportunity to optimise the design of the Trans-
action Capabilities Application Part (TCAP) of the protocol
stack. Although the applied strategy of merging compo-
nents ofTCAP, making obsolete internal communications,
apparently yielded a more efficient design, the question
whether the optimisation was correct could not readily be
answered. Both the fact that original and optimised design
were specified in different languages, and the fact that the
mere definition of correctness was unclear, made answering
this question a true challenge.

The key to the solution was sought in lifting both the
original and the optimised design to a common abstraction
layer. The two designs were specified inµCRL [12], a lan-
guage rooted in the Algebra of Communicating Processes

(ACP [5]) extended with abstract data types [4]. For both
specifications a labeled transition system was generated,
making it possible to automatically check the equivalence
of the original and the optimized design using a suitable
equivalence relation. However, a relation truly covering the
relevant notion of equivalence was not found in literature.
An answer was found in an extension of branching bisimu-
lation [8] with commutativity of certain pairs of actions.

This paper describes the formalisation of the original
and the optimised design and their equivalence, and the use
of software tools and human wit to establish the correctness
of the optimisation, eliminating several bugs. An overview
of the actual verification process is presented in [2] and a
detailed account including full specifications in [3]. The
current paper is organised as follows: Section 2 describes
TCAP and its optimisation, Section 3 describes how the cor-
rectness of the optimisation was approached, and Section 4
presents the results of the verification. Finally, Section 5
gives the conclusions and pointers to future research.

2 Optimising TCAP

Transaction Capabilities Application Part (TCAP) is a pro-
tocol supporting advanced intelligent services in mobile
telecommunication networks. Examples of these services
are the allocation of routing numbers associated with toll-
free numbers, the identification of calling card users, and
the identification, authentication, and roaming ofGSM

phone users. TheTCAP standard is laid down as part of
the Signalling Stack No. 7 [14].
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Figure 1: The dialogue-handling facilities of TCAP

The TCAP dialogue handling facilities consist of ei-
ther oneunidirectionalrequest or multiple requests over a
connection which is explicitly set up and torn down. The
former case consists of one unidirectional request being is-
sued, while the latter consists of setting up a dialogue which
is then used by an arbitrary number ofcontinue dialoguere-
quests from both sides until it is either gracefully ended or
aborted.

TCAP is originally specified in terms of five finite
state machines organised in two communicating layers.
Thecomponent sublayerconsists of the Dialogue Handling
block (DHA), and the Component Handling block (CHA),
which is further decomposed into a Component Coordi-
nator (CCO) and an Invocation State Machine (ISM). The
transaction sublayerconsists of a Transaction State Ma-
chine (TSM) and the Transaction Coordinator (TCO). The
dialogue handling facilities ofTCAP studied in this paper
only cover the blocks (or finite state machines)DHA, TCO

and TSM (Figure 1). The original protocol is specified in
the Specification and Description LanguageSDL [13] (for
a sample fragment, see Figure 2).

TCAP behaves as follows. In the protocol stack,TCAP

is located between the higher-leveltransport capabilities
user(TC-USER) and the lower-levelSignaling Connection
Control Part(SCCP), which provides the interface to the ac-
tual network. Requests fromTC-USERto TCAP eventually
result in requests toSCCPwhich travel across the network
to show up at the receiving end as indications forSCCP,
passed upward to the receivingTCAP to be, finally, passed
upward to the receivingTC-USER. Internally inTCAP, mes-
sages are passed between the state machines mentioned ear-
lier.

The crux of the optimisation is to merge the two sub-
layers, making communication between the two obsolete.
The resulting protocol consists of just two state machines,
i.e. DHA/TCO andTSM, the former of which is a merge of
the originalDHA and TCO. The state machineDHA/TCO

is obtained by composing the actions fromDHA which re-

sult in the sending of a message to the reactions ofTCO on
receiving this message. For instance, in processing a unidi-
rectional request fromTC-USER, DHA builds a record, re-
quests and processes components and assembles and sends
a request toTCO. Upon receiving this message,TCO as-
sembles a unidirectional message and passes it down to the
SCCPnetwork. The mergeDHA/TCO, on processing a uni-
directional message, executes the same build, request and
process actions, but instead of sending a request toTCO

it directly continues with assembling and passing down the
unidirectional message. The state machineTSM is a slightly
modified version of the originalTSM. The optimisation is
documented as an informal flow chart [15], added for illus-
trative purpose in Figure 3.

The question of whether the optimisation ofTCAP is
correct can be paraphrased as “are theSDL specification,
partly shown in Figure 2, and Figure 3 equivalent?” To
tackle this question, first the notion of equivalence needs to
be defined and, second, it is to be checked. These issues are
addressed in the next section.

3 Approach

An equivalence relation useful for establishing the sound-
ness of the optimisation ofTCAP must satisfy a number of
requirements. First, it must facilitate the abstraction of non-
observable actions, to effectively hide all internal commu-
nications between the finite state machines. This holds in
particular for those betweenDHA andTCO, which are miss-
ing in the optimisation. Second, it must be possible to relax
the equivalence to apply only to situations satisfying certain
conditions, to cover the fact that the optimisation is only
correct under the condition that the protocol is correctly
used. Third, it must be possible that equivalent systems
differ in the order in which certain actions are executed.
This notion of commutativity is introduced to cover the fact
that the order in which certain pairs of actions are executed,
such as freeing a dialogue id and freeing a transaction id, is
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irrelevant, although the optimisation may choose one fixed
order.

A well-understood vehicle for defining equivalence is
provided by labeled transition systems, which formalise a
process as moving from state to state by executing actions.
The existence of a broad range of fundamental research and
practical tools renders this an attractive choice. The restric-
tion of the scope of automated support to finite systems
plays no role here, since infinite behaviour is no issue in
the context ofTCAP.

Definition 1 (labeled transition system) A labeled tran-
sition systemS = hS;Act;!;s0i consists of a set of states
S, a set of actions Act, a transition relation!: S�Act�S
and an initial state s0 2 S

Abstraction of non-observable actions is well-studied, es-
pecially in process algebra where these are formalised as
‘τ-steps’. A common equivalence relation covering this ab-
straction is branching bisimulation [8]; it is supported by
tools like CÆSAR/ALDÉBARAN [6]. Informally speaking,
two systems are branching bisimular if each state of the first
system corresponds to a state of the other system such that
each action that can be executed in the first state can also
be executed in the other state, possibly preceded and suc-
ceeded by a number ofτ steps, after which both systems
end up in corresponding states.

Definition 2 (branching bisimulation) Two labeled tran-
sition systemsS1 = hS1;Act;!1;s1i andS2 = hS2;Act;!2

;s2i are branching bisimular iff there exists a relation R:
S1�S2 which satisfies the following:

� s1Rs2

� if t1Rt2 and t1
a
!1 t 01 then a= τ and t01Rt2, or t1Ru2,

t 01Ru02, t01Rt02 and t2
τ
!�

2 u2
a
!2 u0

2

τ
!�

2 t 02, for states
u2;u0

2; t 02 2 S2

� if t1Rt2 and t2
a
!2 t 02 then a= τ and t02Rt2, or u1Rt2,

u0

1Rt02, t01Rt02 and t1
τ
!�

1 u1
a
!1 u0

1

τ
!�

1 t 01, for states
u1;u0

1; t 01 2 S1

This notion of equivalence has a syntactical counterpart in
process algebras like the Algebra of Communication Pro-
cesses (ACP [5], see [7] for a recent introduction). ACP

processes are defined in terms of atomicactionsby means
of operators, of whichsequential composition(‘ �’), alter-
native choice(‘+’) and parallel merge(‘k’) are the most
important. The semantics ofACP can be defined in two
ways. Theoperational semanticsassociates with each pro-
cess a labeled transition system, extending the definition
of an equivalence like branching bisimulation to apply to
processes. Theaxiomatic semanticsdefines equivalence of
processes in terms of a set of axioms, likex+ y = y+ x
for the commutativity of alternative choice. For branching
bisimulation, an axiomatisation is presented in [8].

The second requirement, conditional equivalence, is
best accounted for by putting the system in parallel with an
environment that restricts its behaviour to those situations
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Figure 3: The optimised design [15]

satisfying the conditions. More concrete, theTCAP specifi-
cation is extended with an environment which ensures that
the protocol is used correctly, excluding erroneous situa-
tions such as a dialogue that is aborted though it has not
been set up properly. It is worth noting that this technique
is independent from the equivalence relation used.

The last requirement, commutativity of actions, is eas-
iest characterised syntactically by adding, for each pair of
actionsa andb which are allowed to commute, the axiom
a�b= b�a to the axiom system which covers the equivalence
relation used. A semantical characterisation, however, is far
from trivial. What comes closest is the notion of partial or-
der reduction [9], which exploits the fact thatindependent
actionscan be executed in either order, both resulting in
the same state. The difference between independency and
commutativity, however, is that both orders of independent
actions do yield equivalent states, whereas both orders of
commutative actions yield equivalent states by definition,
i.e. through extending the equivalence relation.

The twelve pairs of actions which are known to be
commutative inTCAP are given in [3]. The commutativity
of these was not given beforehand, but in the verification
process it was discovered that the optimised design relied
on it. The designer of the optimisedTCAP acknowledged
that, indeed, these actions were allowed to commute.

Definition 3 Suppose P1 and P2 are ACP processes, then
P1 and P2 are equivalent in the context of process Env un-
der abstraction of a set of actions I and commutation of a
set of pairs of actions C iffτI (P1 k Env) = τI (P2 k Env) is
derivable by the axioms of branching bisimulation and the
axioms of commutativity, i.e. a�b= b�a (ha;bi 2C). Here,
τI denotes the substitution ofτ for the actions from I.

This notion of equivalence, however, hampers practical ver-
ification for several reasons. The first problem is that clas-
sical process algebras, without data, are not very expres-
sive when it comes to specification of real-life processes.
Second, the axiomatic characterisation suggests a theorem-
proving approach to verification, which draws heavily on
the capabilities of a human verifier. The nature ofTCAP,
however, allows the solution to be found in a compromise.

The languageµCRL is a specification language that is
supported by a tool set including an efficient generator of
labeled transition systems [10]. The format of the generated
transition systems can be processed by a popular suite like
CÆSAR/ALDÉBARAN [6], with efficient tools for equiva-
lence checking, model checking and reduction of transition
systems. Thus, on the one hand, branching bisimularity
of specifications can be effectively checked, while on the
other hand, axioms exist that can be applied in combination
with commutativity of actions [11]. However, it is not clear
yet how in general the two can be combined to obtain an



operational tool for checking the equivalence relation from
Definition 3.

For the specific application of the verification of
the TCAP optimisation the answer was found in an
interpolation-style approach. That is, in order to estab-
lish equivalence ofP1 andP2, an intermediate processP12

is to be found which satisfies two properties: (1)P1 and
P12 are equivalent under the restriction that only the ax-
ioms of branching bisimulation are used in the derivation;
(2) P12 andP2 are equivalent with the restriction that only
the axioms of commutation are used. Although success of
this strategy is not guaranteed, for the relevant interpolation
property has not been established, it appears that commu-
tation plays a restricted role, so the strategy sketched above
is well worth trying.

For an example of this approach, consider the merge
of the machinesTCO and DHA as described in the previ-
ous section. The following shows fragments of the rele-
vant µCRL code, which specifies among other things that
TCO, on receiving atr uni req message, executes anas-
sembleuni messageand sends ann uni req message.

% Specification fragment of TCO

r_tco(tr_uni_req).
assemble_uni_message.
s_sccp(n_uni_req)

% Specification fragment of DHA

r_user(tc_uni_req).
build_audt_apdu.
request_components.
process_components.
assemble_tsl_data.
s_tco(tr_uni_req).
free_dialogue_id

The semantics of the parallel composition of these two ma-
chines is illustrated in Figure 4. It can be easily recognised
how this composition is defined as a Cartesian product of
the transition systems of its constituents. Note that the non-
observable actions are represented by dashed arrows. The
corresponding fragment of the optimisation is given in Fig-
ure 5.

% Optimisation fragment of TCO/DHA

r_user(tc_uni_req).
build_audt_apdu.
request_components.
process_components.
assemble_tsl_data.
assemble_uni_message.
s_sccp(n_uni_req).
free_dialogue_id
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Figure 4: The original transition system

The labeled transition system shows a linear course of ac-
tions, clearly not branching bisimular with the original par-
allel merge. This is where commutation is essential. The
freeing of the dialogue is independent from the assembling
of the unidata request and the sending of these, and might
as well be done before, among or after these two actions.
While the optimisation fixes one order, the original allows
each of the three possible orderings.
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request_components
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build_audt_apdu
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free_dialogue_id

assemble_uni_message
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Figure 5: The optimised transition system



It is intuitively clear how to choose the intermediate speci-
fication: it consists of the optimisation with added to it all
orderings occurring in the original.

% Intermediate fragment of TCO/DHA

r_user(tc_uni_req).
build_audt_apdu.
request_components.
process_components.
assemble_tsl_data.
( free_dialogue_id.

assemble_uni_message.
s_sccp(n_uni_req)

+assemble_uni_message.
free_dialogue_id.
s_sccp(n_uni_req)

+assemble_uni_message.
s_sccp(n_uni_req).
free_dialogue_id)

Now it can be verified that the original specification frag-
ment is branching bisimular to the intermediate fragment,
by applying the relevant tool from CÆSAR/ALDÉBARAN

to the labeled transition systems of the original and the in-
termediateTCAP shown in Figure 6.

Thus, by applying commutativity of the freeing of the
dialogue id with the assembling of the unidirectional re-
quest and the sending of these, by simple theorem proving
it can be verified that the intermediate fragment is equiva-
lent to the optimisation.

Finding the intermediate specification requires a good
deal of inventiveness and trial and error, especially since
the commuting pairs are not given beforehand, but have to
be discovered in the process. Moreover, bugs in the op-
timisation severely obscure a clear view on the notion of
commutativity. Nevertheless, a fruitful combination of tool
support and human wit allowed the verification to be com-
pleted.

4 Results

Both the original and the optimisedTCAP were specified in
µCRL and, using trial and error, an intermediateTCAP spec-
ification was found which made it possible to complete the
verification as outlined in the previous section. The full
specifications, each covering about 700 lines of code, in-
cluding the specification of theTCAP environment are in-
cluded in [3] and an overview of the actual verification pro-
cess is given in [2]. This section focuses on the results of
the verification.

The sizes of the transition systems generated and the
reductions modulo branching bisimulation are shown in Ta-
ble 1. This table clearly illustrates two characteristics of
TCAP. First, the sizes of the transition systems are modest,
which really helped in the trial and error process of

request_components

process_components

r_user(tc_uni_req)

free_dialogue_id

assemble_tsl_data

build_audt_apdu

s_sccp(n_uni_req)

assemble_uni_message

Figure 6: The intermediate transition system

localising bugs and commutative pairs in the intermediate
specification. Second, the originalTCAP has a larger tran-
sition system than the optimisation, which can be attributed
to the difference in non-determinism between the two.

The verification revealed two bugs in the design of
the optimisation. The first bug consists of the automaton
DHA/TCO handling a so-calledlocal abort message in the
wrong state. Code inspection revealed that this bug was not
just present in theµCRL specification and in the informal
design from Figure 3: it had survived the implementation
process and showed up in the ERLANG code.

The second bug consists of the optimisation being able
to free a transaction id, by issuing afree tidcommand,after
it terminates itself by means of adiscard receive message
command. Of course, the only correct order to execute the
commands is to first free the transaction id and then to ter-
minate: doing it the other way around means that after ter-
mination there is no process left to free the id. This bug,
which only shows up in certain circumstances, manifests
itself as a memory leak in the implementation.

Of these bugs, the first one would have showed up
early in a test, the optimisation misbehaving consistently.
Also, it would have been easily located as a code fragment
inserted at the wrong place. The second bug, however, does
not manifest itself necessarily in terms of observable sys-
tem behaviour; memory leaks are typically observed using
runtime analysis tools. Both noticing and diagnosing this
bug would have been a non-trivial task in a testing situa-
tion.

Impressive as this result may seem, it must be admit-
ted that finding this memory leak in the optimised design



specification states transitions
original generated 958 2012

minimised 187 358
intermediate generated 829 1981

minimised 187 358
optimised generated 462 822

minimised 159 266

Table 1: The sizes of the labeled transition systems

is not very useful in the current context. Although the de-
sign shows a memory leak, the ERLANG implementation
does not, since the ERLANG language has its own garbage
collection. However, if the design with this bug is ever im-
plemented in another language without similar garbage col-
lection then a memory leak is inevitable.

5 Conclusions and future research

This paper studied the correctness of an optimised design
of TCAP by formalising the original and the optimised de-
sign in µCRL and checking equivalence of the two. The
equivalence relation used was introduced as a relaxation
of branching bisimulation which allows certain actions to
commute. Checking this relation required finding an in-
termediate specification, and establishing the branching
bisimularity of the original and the intermediateTCAP us-
ing theµCRL and the CÆSAR/ALDÉBARAN tool sets, and
proving the intermediate and the optimisedTCAP commu-
tation equivalent by simple manual theorem proving.

The verification revealed two bugs, one of which
would not have been easily found by testing. Therefore,
the verification method used has a surplus value with re-
spect to a testing approach. However, this method is ex-
pensive in terms of human wit, needed to find the required
intermediate specification, which is a non-trivial task in the
presence of bugs.

This price could be reduced if a suitable formalisation
of commutation can be found, including tool support. Suit-
able algorithms may have a high complexity, since some-
how large numbers of permutations will have to be con-
sidered. This is where future research should be aimed
at. Other research areas that can speed up verification ap-
proaches like this one for TCAP are the automatic transla-
tion of both ERLANG andSDL into µCRL.

The added value of the current study is that now Erics-
son has at its disposal a correct redesign ofTCAP which can
be used as a solid basis for implementations. Although test-
ing remains necessary, it is good to know that the rationale
underlying the optimisation is sound. Finally, the theory of
the algebra of communicating processes is enriched with a

new equivalence relation, which is clearly justified by the
study of the correctness of an optimisedTCAP.
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