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ABSTRACT

An optimisation of the SS No. 7 Transport Capabilities Procedures is verified by specifying both the original

and the optimised TCAP in µCRL, generating transition systems for both using the µCRL tool set, and checking

weak bisimulation equivalence of the two using the Cæsar/Aldébaran tool set, these steps being part of a

iterative process of specification, refinement and verification. As a result, the optimisation design is debugged,

a deeper understanding of the protocol is gained, and the usability of the µCRL tool set is evaluated. In

conclusion, the design of an optimised TCAP indeed benefitted from the verification reported here, and µCRL

and Cæsar/Aldébaran appeared to be a largely adequate combination for the verification at hand; however,

since the characteristics of TCAP were not explicit from the start, and the tools used covered the functionality

required not perfectly, the verification required a good deal of human ingenuity and stamina.
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1. Introduction

This report describes the verification of an optimised design of tcap, a protocol for advanced intelligent
network services [11]. Initially, the goal of the verification was to establish equivalence of the original
and the optimisation, but as verification proceeded the process brought to light not only the usual
minor design errors, but also a number of assumptions about the intended use of tcap that had
remained implicit before. Instead of being just one stage concluding the design process, the verification
appeared to be an iterative process, intensely interacting with the design process, drawing more and
more information from the design, providing more and more feedback, resulting in a series of designs
and specifications of increasing accuracy. It is this process of debugging, learning and polishing that
is reported in this text.

The need for verification arose when the original PLEX1 implementation of tcap in a parallel
architecture, was succeeded by an Erlang ([2, 5]) implementation for a single-processor architecture.

1PLEX is a proprietary language of Ericsson Telecom AB.
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Figure 1: Tcap layer within SS No. 7 protocol

The opportunity for optimisation offered by the transition was taken, but the question whether the
optimised tcap was equivalent to the original remained open.

The answer to this question was found in process algebra. Both the original and the optimised
tcap were specified in µcrl [7] a language rooted in process algebra with data. Using the µcrl tool
set, state spaces were generated for the two, where after these were compared using Aldébaran [6, 9].
Differences found were then traced back into the µcrl specification and corrected until, finally, the
two specifications were exactly equivalent.

The organisation of the report is as follows. Section 2 describes the tcap protocol to be verified, and
Section 3 describes µcrl tools to be utilised for the specification and verification. In Sections 4 and
5 it is described how the original and the optimised tcap are specified in µcrl. Section 6 describes
how the environment, i.e. the context in which tcap is used, is specified. Then Section 7 describes the
actual verification process. Section 8 describes the feedback from the verification to the tcap design
and Section 9 evaluates the use of µcrl for this verification project. Finally, Section 10 describes the
conclusions of the verification, as well as questions raised by this study. Three appendices present the
full and final specifications used.

2. Transport capabilities

The protocol for Transaction Capabilities Procedures (tcap, the standard is described in ITU-T
Recommendation Q.774 [11]2) enables the deployment of advanced intelligent network services in a
telecommunication network. Tcap is, for example, used to determine the routing numbers asso-
ciated to toll-free numbers, to check personal identification numbers of calling card users, and for
authentication, equipment identification and roaming of GSM phone users.

Services that use this protocol are called tc-users. A tc-user interacts with tcap by sending mes-
sages. These messages are interpreted by tcap and passed along to the network that transports it to
another tcap. The latter tcap receives the message, interprets it and sends it to its tc-user.

Tcap messages consist of two parts, a transaction portion with the package identifier and a compo-
nent portion with the application specific data. For our verification purposes we ignore the component
part and we only concentrate on the five transaction primitives that are possible, viz. unidirectional,
begin, continue, end, and abort. Tcap can be seen as a layer between the tc-user and the network.
Names of messages between tc-user and tcap are prefixed by tc , whereas messages between tcap and
the network are prefixed by n . Messages from the tc-user to tcap are called requests and messages

2We considered the 1993 version of tcap, since this was the one used for the implementation.
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Figure 2: Tcap internal structure

from tcap to the tc-user are called indications, therefore suffixed by req and ind respectively. Sim-
ilar, messages from tcap to the network are called requests and from the network to tcap are called
indications (see Figure 1). A request sent to the network will appear as an indication at the side it has
been sent to. Note that this distinction between requests and indications is an artificial extension for
specification and verification purposes. Tcap itself is specified by two layers with two and three finite
state machines, respectively (see Figure 2). A tcap implementation is connected via the network
with another tcap implementation. Both implementations need to be implemented according to the
standard [11], such that they are completely transparent with respect to messages from tc-user and
network side. A typical scenario of this communication is depicted in the message sequence chart
of Figure 3, where tc-user A requests a communication with B, after which a continuation message
follows. Continuation messages contain application specific data, but we abstract from the contents
of the messages.

The optimisation concentrates on the state machines dha, tco and tsm that deal with the transac-
tion portion of the messages. The basic idea of the optimisation is that of changing the design in such
a way that no messages need to be send between the two layers in tcap. The original specification
has been designed with a PLEX implementation in mind in which one has a large degree of parallelism
and in which sending of messages is comparable with direct jumps to the receiver. On a one-processor
architecture with a language such as Erlang in which message sending is a little less efficient, the

� � � � � �
�����

�
�

A
TC-user TCAP Network

TC-user
BTCAP

tc begin req
tr begin req

n begin req n begin ind tr begin ind
tc begin ind

tc continue req
tr continue req

n continue reqn continue ind
tr continue ind

tc continue ind

tc continue req

Figure 3: Two communicating tc-users
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quest for getting rid of superfluous send actions comes naturally.
In Section 4 a translation into µcrl of the original tcap is described and in Section 5 the speci-

fication of the optimisation is given. These specifications have been included in full in Appendices I
and II, respectively.

3. Specifying processes with data in µcrl

The language µcrl was designed with the following objectives in mind. First, it had to be expressive
enough to cover ‘real-life’ concurrent systems. Second, it had to have a foundation strong enough to
facilitate mathematical analysis. Third and final, it had to be operational in the sense that it can be
supported by software tools, assisting verification and analysis of concurrent systems.

3.1 Syntax
A µcrl specification consists of an equational specification of abstract data types and a process-
algebraic specification of processes using these data types. Here, only a concise introduction is given,
a complete description of the syntax can be found in [7].

The specification of a data type, or sort in µcrl terminology, consists of constants and function
symbols, and data manipulations, or mappings, defined by rewrite rules. As an example, Figure 4
contains a definition of the natural numbers.

The processes of a µcrl specification are defined in terms of actions and the process-algebraic
operators for alternative composition, sequential composition and parallel composition (‘+’, ‘·’ and ‘‖’,
respectively. The actions are the smallest building blocks of the specification, composed by operators
to form a process. As an example, Figure 5 shows a specification of a one-datum buffer for natural
numbers.

The example buffer is able to execute two actions, put and get, for putting into, respectively getting
from the buffer a natural number. Obviously, a number can only be got once the number has been
put. Furthermore, in a one-datum buffer, a number can only be put if any number that has been put
earlier has also been got. Thus, the process repeatedly performs one of put(0).get(0), put(1).get(1),
. . . , or, in the language of process algebra put(0).get(0)+put(1).get(1)+ . . . where the ‘·’ represents
sequential execution of actions and the ‘+’ represents a non-deterministic choice between two actions
(with ‘·’ higher precedence than ‘+’). In µcrl a concise sum notation is allowed, resulting in the
specification given in Figure 5.

In order for the buffer to be used by another process, it must be able to communicate with its
environment. Here, µcrl relies on the process algebra notion of communication actions, modeling
synchronous communication.

Synchronous communication is communication for which sending and receiving happens at exactly
the same time. If and only if the sender executes its sending action at the same time as the receiver
performs its receive action, the two do communicate. So, if the sender sends just before the receiver
receives, or vice versa, the two processes do not synchronise, but deadlock instead. As in process

sort Naturals
func0: → Naturals

S: Naturals → Naturals
mapadd: Naturals × Naturals → Naturals
var x, y: Naturals
rew add(0,y) = y

add(s(x),y) = add(x,s(y))

Figure 4: A µcrl abstract data type



3. Specifying processes with data in µcrl 5

act put, get: Naturals
proc Buffer=sum(x:Naturals,put(x).get(x)).Buffer

Figure 5: A µcrl process: access to one-datum buffer

algebra, the ‘|’ operator is used to specify that two actions, say put and get, form a communicating
pair put|get.

In the context of the buffer example, the put into buffer action, executed by its environment, forms
a communicating pair with the put action, executed by the buffer, so if and only if the environment
executes its put action simultaneously with the buffer executing its put, the two match and the
buffer effectively accepts the value put by the environment, and the same holds for the get actions.
However, since the buffer executes its get after its put, in the environment the put into buffer action
will precede the corresponding get from buffer action. Therefore, for two environment processes these
two actions will behave as asynchronous communication. Figure 6 specifies that the put and get
actions communicate with the actions put into buffer and get from buffer, respectively.

The encapsulation mechanism is used to ensure that ‘communicating halves’ cannot occur in isola-
tion, i.e. without their matching counterparts. This is realised by replacing isolated occurrences by
deadlock actions δ using the encaps construction.

Having specified the actions, processes and specifications, the initial process is specified, usually
consisting of a number of processes put in parallel. In µcrl this is specified by means of the init
clause.

In the context of several communicating processes it is common to ‘hide’ certain actions, making
them internal actions which cannot be observed. In process algebra, this is realised by replacing
these by the ‘silent step’ τ ; the corresponding µcrl construction is the hide function. In the running
example of a one-datum buffer, the internal buffer action put and get are hidden (see Figure 7), which
renders them unobservable.

3.2 Semantics
The semantics of µcrl is defined in terms of a transition system, consisting of states connected by
actions. With computerised verification in mind, this operational semantics is the more practical
choice compared to an axiomatic semantics, which use is limited to clarifying the intended meaning
of a specification, or as a justification for more compact notations (for examples, see [7]).

A transition system consists of a number of states, one of which is designated the initial state, and
a number of transitions, each of which connects two states and is labeled with an action. Performing
the action brings the program from the one state into the other. More formally, a transition system
S is defined as a tuple S = 〈S,Act,→, s〉, where S is the set of states, Act is a set of actions and
→: S × Act × S is the transition relation.

A detailed rendering of the operational semantics of µcrl falls outside the scope of this report, but
in order to understand the verification presented, an intuitive understanding of the semantics is helpful.

act put into buffer, get from buffer: Naturals
commput into buffer | put = cin

get from buffer | get = cout

Figure 6: Communication
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init(hide({put,
get },
encaps({ put into buffer, get from buffer, put, get },

Buffer || Environment )))

Figure 7: Initialisation

Therefore, an example transition system is described, together with some notions of equivalence of
transition systems. For a complete definition of the µcrl semantics, the reader is referred to [7],
while for definitions from a classical process algebra point of view the canonical texts [3, 12] are
recommended. A definition of µcrl ‘by example’ is given in Figure 8 where for a number of simple
specification fragments the corresponding transition system is given.

These fragments are explained as follows: (a) either the action free tid or the action free dialogue id is
performed; (b) first a free tid and than a free dialogue id is performed; (c) a free tid and a free dialogue id
are performed interleaved (where both actions can be the first, after which the other action is per-
formed); (d) a free tid is performed after zero or more times a free dialogue id.

A more sophisticated example of transition system is provided by the running example of the one-
datum buffer. Figure 9 show transition systems for the buffer and its environment, as well as for
the parallel composition of the two. In order to enforce a finite transition system, the one-datum
buffer is restricted to a finite domain of two natural numbers. The figure makes explicit how parallel
composition is expressed as the ‘Cartesian product’ of the buffer and the environment.

Closer examination of the environment reveals that it abuses the buffer, in that it possibly tries
to put a second bit into the one-bit buffer. However, the encapsulation ensures that isolated com-
munication actions, depicted by dashed transitions in Figure 9, are deadlocked, indicated by the
dashed transitions, rendering part of the transition system unreachable from the initial state, effec-
tively blocking the environment’s abusive behaviour. The one and only course of action left is that

free_dialogue_id+free_tid

free_dialogue_id.free_tid

free_dialogue_id || free_tid

X=free_dialogue_id.X+free_tid

free_tid

free_dialogue_id

free_tidfree_dialogue_id

free_tid

free_tid

free_dialogue_id free_dialogue_id

free_tidfree_dialogue_id

a)

b)

c)

d)

Figure 8: µcrl semantics by example
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put_into_buffer(0)

get_from_buffer(0)
put(1)

get(1)

put(0)

get(0)

put_into_buffer(1)

put(0)

put_into_buffer(0)

get_from_buffer(0)

get_from_buffer(1)

get_from_buffer(1)

get(0)

put_into_buffer(1)

put(1)

get(1)

Buffer: Environment:

Buffer || Environment:

Figure 9: Transition system for the one-datum buffer

the environment repeatedly puts and gets a 0 bit.
Given two specifications, the question whether these are equivalent boils down to constructing their

transition systems and verifying whether these are equivalent. Equivalence of transition systems is
defined in numerous ways, but in the context of this text, it is sufficient to understand the notions of
strong bisimulation and weak bisimulation.

Loosely spoken, two transition systems are strongly bisimular if a relation can be defined between
the states of the two systems with the property that in each pair of related states the same actions
result in related states. Weak bisimulation is defined similarly, ignoring the silent τ steps.

Formally, suppose S1 = 〈S1, Act1,→1, s1〉 and S2 = 〈S2, Act2,→2, s2〉 are transition systems. A
strong bisimulation is a relation R : S1 × S2 with the following properties:

• s1Rs2 and s1
a→1 s′1 ⇒ s2

a→2 s′2 and s′1Rs′2, for some s′2 ∈ S2

• s1Rs2 and s2
a→2 s′2 ⇒ s1

a→1 s′1 and s′1Rs′2, for some s′1 ∈ S1

A weak bisimulation is a relation R : S1 × S2 with the following properties:

• s1Rs2 and s1
a→1 s′1 ⇒ a = τ and s′1Rs2 or s2

τ∗
→2 · a→2 · τ∗

→2 s′2 and s′1Rs′2, for some s′2 ∈ S2

and

• s1Rs2 and s2
a→2 s′2 ⇒ a = τ and s1Rs′2 or s1

τ∗
→1 · a→1 · τ∗

→1 s′1 and s′1Rs′2, for some s′1 ∈ S1

and

Systems that are strong bisimular are also weak bisimular, but not vice versa. The notions are
exemplified in Figure 10.

In conclusion, µcrl specifications are equivalent with respect to some bisimulation relation iff the
state spaces associated are equivalent. It is this notion of equivalence that plays a key part in the
verification presented in this report. In the next section, it is described how these steps are supported
by software tools.
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free_tid

free_dialogue_id

tau

tau

free_tid

free_dialogue_id

free_tid

free_dialogue_id

tau

free_dialogue_id

free_tid

free_dialogue_id

free_tid

free_dialogue_id

tau

tau

free_tidtau

free_dialogue_id

dialogue_terminated

free_dialogue_id

tau

tau
free_dialogue_id

free_tid

free_dialogue_id

tau

tau

free_tid

dialogue_terminated

strong
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strong

weak

strong

weak

strong

weak

Figure 10: bisimulations by example
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3.3 Tool support
In order to prove or disprove equivalence of two µcrl specifications for each of the two a transition
system needs to be generated, after which bisimulation equivalence is to be checked. Both of these
steps are mechanised.

State space generation consists of two steps. First, the µcrl specification is syntactically checked
and linearised, i.e. it is converted to a format that is more suitable for automated processing. Second,
the resulting specification is processed by the instantiator tool, which actually generates the state
space. Both these tools, mcrl and instantiator, are freely available [4]; for the underlying principles,
the reader is referred to [8].

The actual verification is supported by Cæsar/Aldébaran [6, 9] a package featuring efficient equiv-
alence checking and reduction for a variety of equivalence relations, such as strong bisimulation and
weak bisimulation checking, checking of temporal formulae, deadlock checking and state space visual-
isation.

4. Specifying tcap

Before we are able to formally verify that the original tcap and the optimised version are in some
form equivalent, we need to have a formal specification of both protocols. Although the original tcap

is thoroughly specified by ITU [11], this specification is only partly described in a formal language,
viz. the standard Specification and Description Language (sdl) standardised by the CCITT [10],
whereas the other part is described in informal text. With our tools for verification in mind, we
decided to translate the specification given in sdl directly into the specification language µcrl. For
the optimised tcap we had no specification at hand, only an implementation. Together with the
author of this implementation, we derived a specification of it, which as a side-effect resulted in a
better understanding of the implementation.

It is important to note that the writing of the specification cannot be seen as separate from the
actual verification, i.e. the bisimulation checking. More than once, differences between the original
and the optimised tcap were found to be originating from deficiencies in the specification, as opposed
to errors in the optimisation. This section aims at describing the final specification. In Section 7 the
interaction between specification and verification will receive attention, it can be considered as the
history of the specification of this section.

4.1 From sdl to µcrl

The specification of the state machines occurring in this protocol are all given in sdl. Only a few
basic elements of this language are used in the specification, which all map easily to µcrl primitives.

As an example, consider the Idle state of the Transaction State Machine (tsm). The sdl speci-
fication (see Figure 11) should be interpreted as follows: whenever the state machine tsm is in the
idle state, it waits until it receives a begin message, which is supposed to be sent by the tco state
machine. Here we distinguish between a begin received (begin rec) and a begin transaction (begin trans)
message. Furthermore, any other message sent to tsm and received in this state is just discarded.

4.2 Modelling the communication
In the sdl specification for most messages both a sender and a receiver are specified, but sometimes a
state machine and sometimes a layer is mentioned as the receiving/sending party. Carefully checking
the sdl specification reveals that we can be more specific than just mentioning the layer, since for every
message there is only one state machine sending and only one state machine receiving this message3.
We take advantage of this by specifying a communication buffer (or channel) for every state machine
and for the messages to and from the environment, i.e. the tc-user (user) and the network (sccp).
Reading from and writing to a channel is denoted by prefixing the channel name by r and s , e.g.
r tsm(begin rec) indicates an attempt to read begin rec from state machine tsm.

3Being very precise, this should read ‘at most one’, since tr p abort and tr notice ind are sent, but never received (see
Section 4.5).
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Figure 11: sdl specification of the Idle state of tsm

The semantics of sdl enforces that all messages that are sent from one process to another also
actually arrive at the other process. Nothing is said about the capacity to store messages that have
arrived. However, the information is provided that messages that have arrived in a certain state are
discarded if they cannot be read in that state. We have not tried to model this behaviour in µcrl,
since we regard a message that arrives in the wrong state as an error of the protocol. The ultimate
consequence of not specifying the removal of these messages is a deadlock situation, the presence of
which can be verified by Cæsar/Aldébaran. However, the proven absence of deadlocks supports the
view that the communication model chosen is not too restrictive.

We choose to model the communication by means of a one-datum buffer, i.e. a channel that can only
contain one message at a time. In Section 3 we have described how such a one-datum buffer is specified
in µcrl. This one-datum buffer forces state machines to block whenever a channel already contains a
message. Therefore, our specification might be too restrictive with respect to the concurrency of the
state machines.

4.3 Sequence of actions and non-deterministic choices
In our sdl example, after receiving a message, several actions are performed. These actions refer
to some program code, but are left abstract and their implementation is left up to the programmer.
We follow this approach by directly translating the actions into µcrl actions, viz. store remote tid,
store local address, assemble begin message. After the initial sequence of actions a message is sent,
respectively a tr begin indication (tr begin ind) to the layer CSL or an n unitdata request which
contains the assembled begin message (n begin req). At this point the sdl specification is rather
sloppy, but after carefully studying the document, one has to conclude that sending a message after
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assembling a message indicates that the assembled message is sent. In both branches we jump to the
next state after sending the message, viz. Initiation received (IR), and Initiation sent (IS). If we recall
that in µcrl the dot was used to represent sequential actions and the plus is used for non-deterministic
choice, then it is easily seen that the sdl fragment of Figure 11 translates to:

proc tsm Idle=
r tsm(begin rec).

store remote tid.
s dha(tr begin ind).
tsm IR +

r tsm(begin trans).
store local address.
assemble begin message.
s sccp(n begin req).
tsm IS

4.4 Tests and empty transitions
Several tests occur in the sdl specification of tcap, basically checking the contents of a message for
the occurrence of a certain field or specific data item. We have chosen not to specify the contents
of the messages and therefore we are unable to test the contents of specific fields in the messages.
Instead, we specify all tests to be non-deterministic choices, which implies that we expect anything
to be possible with respect to the contents of a message. This is a safe assumption, but it might
introduce more non-determinism than is actually possible.

A test in sdl is denoted by a diamond with the property to test written in it. The diamond has
two alternatives, denoted ‘Yes’ and ‘No’. We translate all diamonds with the ‘+’ operator of µcrl,
where the alternatives are the arguments of the test. See Figure 12 for an example of an sdl test with
its µcrl translation.

Build AUDT
apdu

�

����

����

����

����
No

Yes

Dialogue

info. included? build audt apdu + tau

Figure 12: Translation of: ‘building an audt’ if the ‘dialogue info’ is included in a message

In many cases the arguments consist of different sequences of actions that join later on. In particular
it occurs that an action is only performed whenever a tests succeeds and otherwise we already jump to
the consecutive action, which is translated by the corresponding τ action in µcrl, such as in Figure
12. Note that, by this transformation, we lose the information of what is tested. Moreover, the ‘+’ is
a commutative and associative operator, thus we lose the order in which the tests should be performed
as well.

This is best clarified with an abstract example, in no way related to the tcap verification. Consider
a simple algorithm that computes the maximum of three numbers x, y, and z, by using the test n > m
for numbers n and m. Clearly we can perform the test in several ways. For example we could first
test x > y and, if this succeeds, x > z after which by success the value x is presented and by failure
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the test z > y is performed. Another way of performing the test is to first compare x and z and
consecutively compare y. In a picture we depict these two possibilities by

x > y

x > z

x y > z

y z

��	

��	








�

����

��	 ���

y > z

y > x

y x > z

x z

��	

��	








�

����

��	 ���

In µcrl the resulting specifications are τ ·(max(x) + τ ·(max(y) + max(z))) + τ ·(max(y) + max(z))
and τ ·(max(x) + τ ·(max(x) + max(z))) + τ ·(max(x) + max(z)), which are not equivalent. So, data
abstraction can introduce differences.

This, however, only affects tests that are directly performed after each other, for tests followed by
actions we obtain the same possible sequences of actions. As an example consider the sdl specification4

of the dha machine in the Idle state when a tr uni ind message is received (see Figure 13). The two

Idle

Free
dialogue ID

dialogue ID
Assign

tc_uni_ind
to TCU

components
send

Dialogue portion

Extract dialogue

tr_uni_ind
from TSL

portion

correct?

Dialogue portion
included?

Discard
componets

No

Yes

No

Yes

Figure 13: sdl specification of dha in Idle state receiving tr uni ind

tests are followed by actions and as can be seen in the µcrl specification, we have to copy some of the
actions to two different places. The crucial point is, however, that the ‘discard components‘ is always
preceded by an ‘extract dialogue portion’.

r dha(tr uni ind).
( assign dialogue id.

s user(tc uni ind).

4The test ‘version 1 supported’ has been left out, since the result of this test should always be ‘Yes’.
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send components.
free dialogue id +

extract dialogue portion.
( discard components +

assign dialogue id.
s user(tc uni ind).
send components.
free dialogue id

)
).dha Idle

In the next section we return to the test issue and discuss which consequences it has for the speci-
fication of the optimisation and why it does not harm to translate tests like this in these particular
circumstances.

4.5 Checking the tcap specification
With the above described translation, the µcrl specification is easily obtained from the given sdl

specification. The translation is carried out by hand, a process during which small typeset errors in the
specification were detected: TCM written instead of tsm, ABRT meaning abort etc. There is a severe
risk of introducing such and severer mistakes oneself by performing the manual translation (resulting
in approximately 650 lines of µcrl code). Carefully checking the resulting specification using the tool
sets of µcrl and Cæsar/Aldébaran is therefore necessary, thus eliminating syntax errors and deadlock
situations.

Using these tools we detected that the message tr p abort can be sent from the Idle state of dha,
but there is no state in which this message can be received. Feedback from the implementor of the
protocol taught us that the test ‘version 1 supported’ preceding the sending of this message, always
succeeds, hence we removed the test and the ‘No’ alternative from the specification, such that sending
the tr p abort is no longer an option.

In the Idle state of tco the message tr notice ind can be send to the CSL layer, but nowhere in
the protocol this message can be received. We decided to remove the possibility to send this message
from the specification, i.e. act as if the message is just discarded as soon as it has been sent.

Finally, it was discovered by code inspection that in the implementation handling the internal
local abort message had erroneously been shifted from the active state to the Initiation Received state
of the protocol. It was this error that would have severely hampered the correctness of the optimisation
in practice, more than any other error found!

5. Specifying optimised tcap

The sdl specification of the original tcap served as a basis for its µcrl counterpart. For the optimised
tcap such a specification was not available. A well-written Erlang program served here as the basis
for a µcrl specification. However, the program is much more detailed than an sdl specification and
abstracting to µcrl is therefore a non-trivial task. A full week has been spent in describing the
program on an abstract level.

In discussions with the implementor of the program, we had to find out which state machines were
implemented in the optimised version and which implicit assumptions were made for the optimisation.

In the implementation several tests and actions had been combined, resulting in performing only
one test. Our idea of specifying tests as non-deterministic choices turned out to be problematic for
these tests (see Section 7). The actions described in the original tcap and those in the optimised
tcap had some dissimilarities because of implementation-specific choices. Manually we had to check
that the semantics of the actions in the original tcap and in the optimised tcap were equivalent.
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5.1 Abstraction of the optimised tcap

As explained in Section 2, the tcap protocol consists of two layers, a component layer and a transaction
layer. The component layer communicates with the tc-user and the transaction layer communicates
with the network (Figs. 1 and 2). The layers communicate and synchronise with each other by means
of messages that are prefixed with tr .

The main idea of the optimisation of tcap is to get rid of the messages in between the layers. The
messages are exchanged between the state machine dha in the components layer and the two state
machines tco and tsm in the transaction layer. Both dha and tsm consist of four states, viz. Idle,
Initiation Sent, Initiation Received and Active. One of the observations of the implementor of the
optimised tcap was that not only the names of the states are the same, but the behaviour of the
state machines is similar as well. Even more, the state machines seem to follow each others state, i.e.
whenever dha goes to Idle then tsm goes to Idle as well, whenever tsm goes to Active, dha goes
to Active as well, etc. Because of this synchronisation behaviour, the implementor decided to merge
dha and tsm into a new state machine with four states, basically merging the states of the separate
machines.

This optimisation idea is best explained by a specification fragment. Consider the situation in the
original tcap where tco and dha are in the idle state (Figure 14). Whenever a tc uni req is received

proc tco Idle= proc dha Idle=
r tco(tr uni req). r user(tc uni req).

assemble uni message. (build audt apdu + tau).
s sccp(n uni req). request components.
tco Idle+ process components.
... assemble tsl data.

s tco(tr uni req).
free dialogue id.
dha Idle+
...

Figure 14: Sequentialising the specification (original)

by dha in this state, a tr uni req is sent to tco. The effect of the message is that tco sends an
n uni req to the network. The idea behind the optimisation is that instead of sending this tr uni req
to tco, the state machine dha is sending the n uni req directly to the network (see Figure 15).

With some additional small changes to the tco state machine, it was claimed that messages from
the tc-user and from the network result in the same observable behaviour when tcap is regarded as
a black box.

In a process of discussion and feedback we obtained the ‘specification’ as given in Figure 16 from
the implementor, describing the two new state machine together with all messages. Actions have
not been specified in this first approach. This picture translates easily to µcrl, where we only have
three communication channels, two to the outside world and one for communication between the
two state machines. Again we choose to specify the channels with a one-datum buffer, although
Erlang has unbounded queues as its communication paradigm and the implementation is such that
a generic server collects all messages from the outside world (tc-user and network) and these internal
messages are communicated to the state machines by call-back functions. From the point of view of
the specification, this implies that at most one message at a time is received and can be sent.
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proc dhatsm Idle=
r user(tc uni req).

(build audt apdu + tau).
request components.
process components.
assemble tsl data.
assemble uni message.
s sccp(n uni req).
free dialogue id.
dhatsm Idle+

...

Figure 15: Sequentializing the specification (optimisation)

5.2 Combining tests and actions
The sdl specification of the original tcap protocol contains several tests and actions that are rather
implementation-specific. For example, analysing a message’s ‘dialogue portion’ is done in several
steps, first checking whether this portion is included in the message, if so, extracting this, and finally
checking if the dialogue portion is correct (e.g. Figure 13). In a language where one explicitly has
to allocate memory for storing the dialogue portion and where one explicitly has to free the memory
afterward, this seems a logical sequence of tests and actions. However, in Erlang with its dynamic
memory allocation and garbage collection, this sequence has been replaced by a combination of a
test and an action, viz. extract a ‘dialogue portion’ from the message (which might be undefined if
it does not exist) and fail if this portion is incorrect, after which the garbage collector automatically
removes the allocated memory and even discards the received message. Also, in Erlang one has a
case construct, which encourages programmes to combine sequences of if-then-else constructs in one
case construct. The specification language µcrl lacks a case construct, hence we have to translate
the Erlang cases to if-then-else statements, or similar to the previous approach, to non-deterministic
choices. Care should be taken in this translation, since from a purely operational point, performing
tests in a different order results in non-equivalent specifications. Therefore, we decided to follow the
original tests and actions as much as possible in the specification of the optimised tcap.

6. Specifying the environment

The specification of tcap describes how incoming messages are treated and which outgoing messages
may occur under which circumstances. Since the informal specification [11] leaves it open in which
order a tc-user sends its messages and what the resulting messages should be, our first ambition
was not to specify an environment, i.e. to allow any possible sequence of messages from the tc-user
and the network. Soon it turned out that we would be unable to prove equivalence of original and
optimised tcap in such a general environment. Modelling behaviour which is far beyond normal
use, for instance, a tc-user starting to communicate by sending a tc end req, introduces problems with
respect to the equivalence we want to prove (we mention an infinite state space as one of the problems).
Since differences between the optimised tcap and its original specification are uninteresting for those
sequences of messages that cannot occur in reality, we tried to isolate all possible realistic sequences.
A drawback of this approach is that these sequences are not specified. Hence, their construction is
based on our and the implementor’s experiences and intuition.
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Figure 16: Initial specification of optimised tcap

6.1 Two tc-users talking
The tcap protocol is one layer in a stack of several protocols where, roughly speaking, lower layers
take care of message delivery and time-outs, and a higher layer is an application that uses tcap. One
connection involves two protocol stacks, connected by a network, thus there are two tc-users, two
tcaps and two sets of lower protocol layers. So, the environment of one instance of tcap consists
of the tc-user on top of it, the network layers below it, the actual network, the network layers at the
other side of the connection, the tcap at the other side and, finally, the tc user at the other side. To
keep things manageable, a more abstract environment was used, consisting of the two parts of the
environment observable by the local tcap: the tc-user and the sccp network layer.

We, naively formalised the environment as a tc-user party and a network party (the sccp) that
both could either send a begin message or receive a begin message, responding to this by changing
state (the engaged state) in which no new begin messages can be received any longer (see Figure 17).

In this formalisation it has been made explicit that after termination, the protocol regains its
idle state, i.e. is open for other connections. However, numerous differences found by Aldébaran
indicated that differences occurred after termination of a connection. Consulting the implementor
of the optimisation brought clarity: the assumption of tcap repeatedly establishing connections was
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proc tc user = proc sccp =
s user(tc begin req). s sccp(n begin req).

tc user engaged+ sccp engaged+
r user(tc begin ind). r sccp(n begin ind).

tc user engaged sccp engaged

proc tc user engaged = proc sccp engaged =
s user(tc continue req). s sccp(n continue req).

tc user engaged+ sccp engaged+
s user(tc p abort req). s sccp(n p abort req).

tc user+ sccp+
s user(tc end req). s sccp(n end req).

tc user+ sccp+
r user(tc continue ind). r sccp(n continue ind).

tc user engaged+ sccp engaged+
r user(tc abort ind). r sccp(n abort ind).

tc user+ sccp+
r user(tc end ind). r sccp(n end ind).

tc user sccp

Figure 17: Iterative two-process environment (tc user process)

incorrect in the context in which tcap was verified.
Tcap, as a complete protocol, creates a new transaction ID for every new connection. Messages

are all labelled with a transaction ID, except for the begin message, which causes a new ID to be
generated. Hence, a running transaction cannot be disturbed by a new begin message or a message
from another connection.

Thus, either a tc begin req or an n begin ind starts a session, depending on whether the local or the
remote tcap initialises the connection. After receiving one of those begin requests, any other begin
request initiates in fact a new connection. We are only interested in one session and therefore, we may
safely assume that after the initial begin request, no other begin message will follow, which is depicted
in Figure 18 for the tc-user side (the sccp side is specified in the same way).

Observations like this are useful for two purposes. First they drastically reduce the size of the state
space, and, even more important, they exclude situations in which the original and optimised protocol
differ, and that are irrelevant in the sense that these do not occur in normal use. For example, in
situations where both an n begin ind and a tc begin req are received, the original and the optimised
protocol end up in non-equivalent states.

We could have tried to also model the assignment of transaction IDs and therewith a more precise
representation of the protocol. In that case we had to model an extra process administering the
IDs and whenever a new transaction is demanded, this administering process assigns a new ID and
creates new processes for all state machines. These state machines are only given the messages that
are determined for them. We have chosen not to model this more complicated behaviour. On the
one hand this extra modelling is outside the scope of this verification study, since the focus is on
verifying the merge of transition machines. On the other hand modelling this behaviour would (if
done correctly) imply dynamic spawning of processes, which is not supported by the language µcrl.

The environment of Figure 18 still contains the problem that we have two processes that can both
start sending a begin message. We could avoid this by starting the tc-user in engaged mode and sccp

in active mode and vice versa. However, we need a stronger synchronisation property. Whenever a
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proc tc user = proc tc user engaged =
s user(tc begin req). s user(tc continue req).

tc user engaged+ tc user engaged+
r user(tc begin ind). s user(tc p abort req).

tc user engaged delta+
s user(tc end req).
delta+

r user(tc continue ind).
tc user engaged+

r user(tc abort ind).
delta+

r user(tc end ind).
delta

Figure 18: One-connection two-process environment (tc user process)

message is sent to tcap, the environment waits for a response and reacts on that. This idea boils
down to using only one process for the environment, having two states, the state in which a begin
message is expected and a state in which the begin has been sent and the parties are communicating
(Figure 19).

With the latter environment we have two problems left. First, we are left with the situation in
which a connection is established and immediately disconnected from the other side. It turned out
that this behaviour was unrealistic (the transaction ID of the other side would not have matched) and
a continue message had always to be sent as a response first. Adding to the environment that the
other party always responses with either a continue message or an abort message solves this problem.
Second, there are messages that are discarded and hence no response to the environment is generated.
In the next section this problem is discussed in more detail.

The basic ideas of the environment are presented in Figure 19, but some details are left out. For
instance, there is also a unidirectional message, which is sent by one party, where after the connection
is terminated. We refer to Appendix I for the complete specification of the environment.

proc environment = proc engaged =
s user(tc begin req). s user(tc continue req).

r sccp(n begin req). r sccp(n continue req).
engaged+ engaged+

s user(n begin ind). s sccp(n continue ind).
r user(tc begin ind). r user(tc continue ind).
engaged engaged+

...

Figure 19: One-connection one-process environment
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6.2 The no message message
Messages that are received by tcap are subjected to a format check. We have not specified this
format, including source and destination addresses, message IDs, message specific data and much
more. However, it is of importance to specify that a certain message might be rejected because of
an erroneous contents. Therefore, we replaced all sdl tests for correctness of the message with non-
deterministic choices in µcrl. This represents the continuously present possibility of receiving an
erroneous message.

The action performed when a message is of the wrong shape, depends on the state of the process
and the contents of the message. If the source address of the message can still be extracted from the
message, an abort could be sent in return. However, when the sender is unclear, the message need be
discarded. In the latter case the sender receives no response.

The environment waiting for the response on a certain message will deadlock in case no return
messages is sent. Since specifying ‘not getting a response, is impossible within µcrl we decided to
use a trick to overcome the problem that this typical kind of deadlock could not be distinguished from
ordinary deadlocks. In those cases where we were sure that no message was returned, we added the
sending of a special return message, the no message message. This no message message is kept by
the environment, which then terminates. This could have been specified by having the environment
enter a deadlock state, but in order to be able to distinguish between an erroneous deadlock and a
recognised termination, the latter has been specified by means of an infinite idle loop.

Clearly, this solution is unsatisfactory, since we changed the actual specification by adding meta
knowledge about the specification. A misinterpretation of us would imply that we have checked a
different protocol than the one we claim we have checked.

7. Checking equivalence

In theory, verifying correctness of the optimised tcap protocol consists of specifying both the original
and the optimisation in µcrl, generating a state space for each, using the instantiator from the µcrl

tool set, and checking bisimulation equivalence of the two state spaces with the Cæsar/Aldébaran
tool set. In practice, however, verification appeared to be more complex, for several reasons. First,
the specifications were hardly accurate from the start. Apart from the usual minor mistakes, the
specification process was repeatedly hampered by a limited understanding of matter by the ‘specifier’.
Second, the bisimulation semantics chosen for comparing the two specifications appeared to be stricter
than needed; no alternative was available. Third, the specification language µcrl misses a language
construct needed for a natural specification of the tcap protocol. Fourth and final, the initial opti-
misation was not correct. The verification process brought to light several minor errors that needed
to be fixed for the verification to be able to proceed. Instead of verification as a concluding step in
the development, it appeared to be a recurring step, repeatedly performed after each iteration of the
processes of specification and, even, implementation, providing essential feedback to each of these.

The Cæsar/Aldébaran tool set is, basically, only used for checking bisimulation equivalence. Its
use in locating the differences found is, by its nature as operating on state spaces, limited. The
output in case of a mismatch consists of a common path to diverging state (for example, see Figure
20). Tracing differences back to a location in the µcrl specification needs to be done manually and
can be problematic, due to µcrl and Cæsar/Aldébaran being independent tools. The simulation
facilities offered by Cæsar/Aldébaran are only useful to some extent, in that these allow one to ‘step
through’ the state space, following actions from state to state, but the drawback is that these force
one into a very restricted view, analysing differences between states, obscuring the view from more
global patterns, such as the ‘parallel diamonds’ described in the next section. The key in isolating
differences is in projecting out parts of the state space by studying scenarios.

Differences found fall in three categories. Some were rather trivial errors like typing errors in
specification that could be fixed instantaneously by consulting the designer of the tcap optimisation.
More interresting are specification shortcomings that rooted in insufficient knowledge of crucial aspects
of the protocol, such as the environment and the communication model of the internal bus. The final



7. Checking equivalence 20

LTSs org omin.aut and opt omin.aut are not related modulo strong bisimulation.
Diagnostic sequences generated by aldebaran:

sequence 1:
initial states
(S1 = 0, S2 = 0)
”c sccp(n begin ind)”
(S1 = 5, S2 = 5)
”assign local tid”
(S1 = 8, S2 = 8)
”cs tsm(begin rec)”
(S1 = 11, S2 = 11)
”cr tsm(begin rec)”
(S1 = 14, S2 = 14)
”store remote tid”
(S1 = 18, S2 = 18)
”extract dialogue portion”
(S1 = 30, S2 = 26)
”set application mode”
(S1 = 22, S2 = 22)
”assign dialogue id”
(S1 = 26, S2 = 30)
”c user(tc begin ind)”
(S1 = 34, S2 = 38)
”c sccp(n end ind)”
(S1 = 35, S2 = 39)
”i”
(S1 = 37, S2 = 9)
Only org omin.aut can do a ”discard received message”-transition from these states

sequence 2:
initial states
(S1 = 0, S2 = 0)
Only opt omin.aut can do a ”discard received message”-transition from these states

sequence 3:
initial states
(S1 = 0, S2 = 0)
Only opt omin.aut can do a ”i”-transition from these states

Figure 20: Comparing state spaces with Aldébaran
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proc Bus=sum(m:Bus message,s- bus(m).r- bus(m).Bus)

Figure 21: Asynchronous communication

category consists of relevant differences between the original and the optimisation.

7.1 Refining the environment
As explained in Section 6, the context in which tcap operates is specified in the environment, which
is the only part of the specification common to both the original and the optimised tcap. This
environment represents all possible situations the protocol can expect, so in order to be able to study
the protocol in certain well-specified situations, the specification of the environment needs to be
restricted, by ‘commenting out’ parts of the specification that are not within the scope of interest. In
some cases, it is possible to restrict the tcap protocol itself, but this is only feasible if the behaviour of
interest can be isolated in both specifications. Often, restricting the environment, being the common
part of the two, is the safer approach.

So, once the rough location of a difference has been found, it can be further tracked down by
restricting the environment to exactly those situations where the difference is expected to occur, after
which the newly generated restricted state space can be analysed in more detail. Usually, this requires
some trial and error, but especially in tracking down more subtle differences this proved to be a useful
technique.

As described in Section 6 the environment developed from a very general one (Figure 17), via a
two-process restricted version (Figure 18), to a one-process environment (Figure 19) where the actual
behaviour had to be refined even more. The environment finally chosen for verification purposes
indeed presents a trustful representation of the assumptions underlying the correct use of tcap. On
the other hand, this implies that the validity of the verification is limited to ‘ideal’ situations, in which
all users of the protocol abide by the rules. In practice, this is indeed the case, as the network layers
tcap is sandwiched in between, i.e. the user and the sccp, have their own protocols.

As a consequence, issues related to fault-tolerance, such as what happens in erratic circumstances
as an sccp line loosing messages, or whether the optimised tcap performs better or worse in this
respect, fall definitely out of the scope of this study. However, the appropriateness of the model-
checking verification approach chosen for addressing fault-tolerance is limited. Fault-tolerance, being
an issue with statistical underpinnings, is probably better addressed in a decent test traject than in
the verification preceding it.

7.2 Refining the communication model
Concurrently with exploring the tcap environment, the internal communication model was refined. It
would be a blatant over-simplification to state that these two refinement were carried out in isolation,
since each of these were developed in small trial and error steps, each of which was thought of as being
final. Instead of the communication model being implicit, as was the case with the environment, the
problem with the communication model was that it was explicitly specified in existing specifications,
but that the semantics of these constructions was implicitly.

The initial problem was that the native µcrl specification primitive is synchronous communication,
whereas the tcap communication is essentially asynchronous. However, synchronous communication
being the simplest of the two, it can be used to specify asynchronous communication, as illustrated
in Figure 21. What remains to be figured out is the precise nature of asynchronous communication.

The fragment of Figure 21 corresponds to a one-datum buffer, but this is not the only option.
Other possibilities are a queue, bounded or unbounded, or a number of one-datum buffers that can
be accessed at random. Experiments demonstrated that each possible choice results in different tcap
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behaviour; moreover, unbounded queues even resulted in an infinite state spaces.
Thorough inspection of the Erlang implementation revealed there was no such thing as one internal

bus [2]. Instead, each of the three state machines has its own private buffer in which messages directed
to it are posted. At certain point, it was concluded that these internal busses correspond to one-datum
buffers, and this was taken as a leading assumption in further verification, but later, after studying
the sdl manuals, it was concluded that these should be really unbounded queues. Although this does
not render invalid the verification presented here, since a one-datum buffer is a very limited case of
an unbounded queue, it does pose an important side mark in the final conclusion that can be drawn
from the verification of tcap (Section 10).

7.3 Differences in non-determinism
Having fixed most of the minor specification errors and settled upon a reasonably accurate models of
environment and internal communication, Aldébaran still signalled non-trivial differences between the
original tcap and the optimisation. It soon appeared that most of the remaining differences could
be categorised of differences of non-determinism. As is not uncommon for optimisation in general,
the tcap optimisation was more deterministic than the original in that it fixed the order of certain
actions where the original left the order unspecified. Intuitively, this is not erroneous but, strictly
spoken, the optimisation differs from the original and that is the conclusion Aldébaran draws.

As an example of where non-determinism arises we refer to Figure 14 in Section 5. In the two
specification fragments, each taken from a different state machine, the two state machines synchronise,
in that the second automata receives an internal message (tr uni req) sent by the first. After the one
state machine has sent the message and the other state machine has received it, the two are free to
proceed. However, the optimised tcap merges the two state machines in a straightforward manner,
with the side-effect of the two courses of actions being fixed in one interleaving (Figure 15).

In the state space, this type of difference can be recognised in the occurrence of ‘parallel diamonds’
in the original that are missing in the optimisation. By careful direct manipulation in the state space
visualisation tool from Cæsar/Aldébaran these patterns can be made explicit manually, though this
is only feasible if the state space is not too large. For example, see Figure 22, where the transitions
and states that are missing in the optimisation are dashed. However, it is not feasible to check by

cr_user(tc_uni_req)

build_audt_apdu

request_components

process_components

assemble_tsl_data

cr_tco(tr_uni_req)

cs_tco(tr_uni_req)

assemble_uni_message

cs_sccp(n_uni_req)

free_dialogue_id

Figure 22: parallel diamonds

hand whether all differences between the two state spaces are indeed of this type. The solution is in
translating these graphical patterns back to the µcrl specification.

Having located a µcrl fragment where the optimisation fixes a course of actions, the verification is
proceeded by replacing the fragment by a fragment where all non-deterministic alternatives are made
explicit (for an example, see Figure 23). If, the resulting spaces are equivalent, then it can be safely
concluded that the optimisation has a lower degree of non-determinism than the original.
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proc Optimization2 Idle=
r user external(tc uni req).
(build audt apdu + tau).
request components.
process components.
assemble tsl data.
( free dialogue id.

assemble uni message.
s sccp external(n uni req)+

assemble uni message.
( free dialogue id.

s sccp external(n uni req)+
s sccp external(n uni req).
free dialogue id)).

Optimization2 Idle+
· · ·

Figure 23: Intermediate specification

So, the differences in non-determinism have been verified in two steps. First, an intermediate
specification is written which is obviously a more non-determinstic version of the optimisation and,
second, this intermediate specification is proven equivalent to the original. The verification of the first
step can be considered a trivial case of theorem proving as opposed to the model-checking approach
of the second. It must be stressed that this approach allowed the verification to proceed thanks to the
small size of the transition system generated. For systems of a higher order of complexity, it is not
realistic to expect that this works; the approach is not scalable. The full intermediate specification is
given in Appendix III.

After this elimination of non-determinism differences, it became obvious that most of the differences
had been eliminated, but not all. The remaining differences appeared to be relevant differences that
really had implications for the correctness of the optimisation.

The first relevant difference is in, again, non-determinism. This time, however, the optimisation is
more non-deterministic than the original. Consider the fragments in Figure 24. After a local abort
has been read, an internal message is sent to the state machine dha, which sends a message to the
tc-user. Meanwhile, tsm returns a tsm is idle message to tco, resulting in a free tid action. The latter
action can only be performed by tco after the discard received message has been performed. Compare
this to the optimisation fragment in Figure 24.

Here, the discard received message action can be freely interleaved with the free tid action. As a
first solution the problem was tackled in a way similar to the non-determinism differences mentioned
above, but after consulting the tcap optimisation designer this proved to be erroneous, due to the
very nature of the free tid and discard received message which will be explained in the next section.

For the time being it is sufficient to know that the action free tid and discard received message are
not supposed to be alternating freely. That is, the discard action must go first and the optimisation
is wrong in that it allows the free tid first. In order to correct this bug, the action that follow the
local abort message are moved to the state machine that sends the local abort. What remains is the
receiving of the local abort, for synchronisation purposes (see Figure 26)
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7.4 Differences in concurrency
In the original protocol it is very well possible that a message is read from, say, the network while the
previous message has not been fully processed by the system, that is, the corresponding message to
the user has not been sent yet. The optimised protocol is more strict in this, in that it requires one
message to be fully processed before a new message can be read.

This difference in behaviour can be explained by the fact that the original protocol has more
internal ‘storage space’ than the optimised protocol, viz. three internal busses versus two, and the
difference should not be considered a real problem, but the real problem is to isolate this difference in
concurrency from other, possibly harmful, differences. The answer lies in reverting to a less concurrent
environment.

Initially, the environment was specified as two independent processes, one for the tcap user and
one for the network. In this environment, it is very well possible that the user sends another message
before the network has received the first message. For this concurrent and realistic environment, the
optimisation is not correct (cf. Section 6).

The less concurrent environment that was subsequently used puts user and network process rigor-
ously in sync by merging them into one process. After a user message has been sent, a corresponding
network message is read, under the assumption that all possible combinations are known. However,
there is one snag in this: the approach of explicitly specifying what messages are received when,
includes specifying when no message is received at all. The latter cannot be specified in the version
of µcrl supported by current tools. A small trick has been used to be able to specify these absence
of messages nevertheless, i.e. if the tcap protocol refrains from sending a message, it explicitly sends
a no message message. The other way round, if the environment receives such a message it infers that
no message has been sent.

The second difference in concurrency is more subtle in the sense that internal actions are concerned,
so that this difference is not visible to the outside world. In the original tcap, there are situations
where sending a message as a response to another message is followed by some internal processing
actions. As an example, see Figure 27, where a fragment of the optimised tcap is shown. Here, it is
explicit how the sending of a tc end ind message to the user may be followed by a send components
action. Summarising, the internal processing extends beyond the processing visible to the outside
world.

The mere difference in internal and external behaviour is not the problem here, although it makes
things more complex. Take a look at the optimised fragment that corresponds to the one in Figure 28.

proc tco Idle= proc dha IS=
r sccp(n abort ind). r dha(tr p abort ind).

(s tsm(local abort) + tau). s user(tc p abort ind).
discard received message + dialogue terminated.

r tco(tsm is idle). free dialogue id.
free tid+ dha Idle+

proc tsm IS=
r tsm(local abort).

s dha(tr p abort ind).
s tco(tsm is idle).
tsm Idle+

Figure 24: A problematic difference in non-determinism(original fragment)
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proc tco Idle= proc dhatsm IS=
r sccp(n abort ind). r dha(local abort).

(s tsm(local abort) + tau). s user(tc p abort ind).
discard received message + dialogue terminated.

free dialogue id.
free tid.
dhatsm Idle+

Figure 25: A problematic difference in non-determinism (optimisation fragment)

Though at first sight the two fragments are equivalent, a closer look reveals that the original tcap is
able to proceed with reading a new message right after the tc continue message has been sent, whereas
the optimisation first needs to finish the send components action.

Experiments taught that the difference stuck upon is not as easy to isolate as the earlier differences
in concurrency. Actually, a satisfying solution has not been found yet, since the only way of making
the two equivalent requires that both the original and the optimisation are changed, by swapping the
sending of the tc continue ind message and the send components action, making the sending of the
message the final action. This means that internal and external processing are synchronised, solving
the concurrency problem. Although this ‘hack’ can be defended by noting that the swappings do not
influence the protocol in any meaningful way, it remains a weak point in the verification.

7.5 Evaluation
The verification appeared to be more than just a final step in the tcap optimisation life-cycle. More
than once, verification had more than trivial consequences for the µcrl specifications, which needed
some thoughtful rewriting for the verification to proceed.

• The environment of tcap, modelling the sccp and user protocol layers, was refined more than
once, gradually revealing the presumptions underlying the correct use of tcap. However, as a
consequence fault-tolerance fell out of scope.

• The environment was restricted to a less concurrent one, in order to be able to verify the less
concurrent optimisation.

• The specification of the optimisation was ‘unfolded’ in order to localise differences in concurrency.

proc tco Idle= proc dhatsm IS=
r sccp(n abort ind). r dha(local abort).

(s tsm(local abort). dhatsm Idle+
discard received message.
s user(tc p abort ind).
dialogue terminated.
free dialogue id.
free tid + tau)+

Figure 26: The bug fix
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proc tsm IS= proc dha IS=
r tsm(continue rec). r dha(tr continue ind).

store remote tid. (extract dialogue portion + tau).
s dha(tr continue ind). s user(tc continue ind).
tsm A+ (send components + tau).

dha A+

Figure 27: concurrency (read in parallel with actions after sending)

• In one situation, the optimisation is more non-deterministic than the original. This difference,
which appeared to be a real error will be addressed in Section 8.

The first two of these translate into preconditions bounding the validity of the verification. Although
these are not thought of as severe limitations, it is essential that these play a crucial role in the final
evaluation of this study.

The third requires some more justification, since it results in an intermediate specification that is
not bisimulation-equivalent to the actual optimisation, though it is thought of as equivalent in an
intuitive sense. The foundation for this intuitive ‘equivalence’ is to be found in practice. It needs
to be verified whether the proposed rewritings are sound, and these are issues for which the tcap

implementor is to be consulted. This feedback is described in the next section.

8. Feedback to tcap

We have already stressed before that checking whether the optimised version of tcap was equivalent
to the original one, has been a process of interaction and iteration. In the same line, the final result
of the verification was not a ‘yes’ or ‘no’, but a modified specification of the optimisation and a list
of assumptions under which this specification was equivalent to the original tcap. The assumptions
had to be checked carefully by the implementor and thereafter, the implementation could be slightly
adjusted to meet the new specification. Changing the code is a matter of a few minutes, whereas more
work had to be performed to check that the assumptions hold.

8.1 Handling the right message in the wrong state
The principal error found by the verification process (cf. Section 7) was the deficiency of a local abort
message with corresponding code in the Active state of optimised tcap. It turned out that the code
for this message was wrongly placed, viz. in the Initiation Received state. The presence of capturing

proc dhatsm IS=
r tsm(continue rec).
store remote tid.
(extract dialogue portion + tau).
(s user(tc continue ind).
(send components + tau).
dhatsm A +
...

Figure 28: concurrency (actions after sending before reading)
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this local abort in the wrong state is not as harmful as the absence of capturing it in the Active state.
Consulting the implementor of the optimisation revealed that this error was not just another error in
the µcrl specification or in the informal specification from Figure 16, since it had been replicated in
the Erlang implementation.

8.2 Incorrect increase in non-determinism
It appeared that in the original tcap the actions free tid and discard received message are always
executed in the order mentioned here, while in some cases the optimisation allowed these to be
executed in the reverse order.

Initially, it was assumed that this was another occurrence of a harmless difference in non-determinism,
but when the implementor had explained the very meaning of these actions, the difference was con-
cluded a relevant difference, though not necessarily an error.

The action free tid is an act of garbage collection and discard received message is an act of process
termination, after which no other action can be executed. It is essentially that garbage is collected
before the process is terminated, since swapping the two would imply that no garbage is collected at
all, resulting in a memory leak.

However, the Erlang implementation posed no problems in this respect, since the language Erlang

has its own implicit garbage collection mechanism (see [2]). So, any memory not freed explicitly
by tcap will be freed by Erlang eventually. Nevertheless, it makes sense to have corrected this
shortcoming in the specification of the optimisation, to ensure a smooth implementation traject in
any language other than Erlang.

8.3 Checking order of tests and actions
In Sect. 5.2 we have already treated at length the problem of combining tests and actions induced
by the difference in implementation language. In addition, the verification process brought forward
that the specifications both had several sequences of actions that were more deterministic than the
corresponding sequence in the other specification. As a result, the original specification and optimised
specification differ in various aspects, which were felt irrelevant. However, the harmlessness of these
‘rewritings’ had to be validated by hand.

This validation boils down to checking independence of the pairs of action that were swapped in
the verification process, i.e. checking whether the order in which these are executed is irrelevant.
Superficially spoken, this checking is superfluous, since the original tcap allows these actions to
alternate freely, but there is a snag in this observation.

The complication that plays a role here, is that actions that are equal in the abstract view adhered
to in the specifications, are often not identical at the lower level of detailed design. As argued in
Section 5, the verification presented here focusses on concurrency problems, instead of on the details
of data manipulation. Though this preassumption is felt of as valid when used to compare two traces
of identically-named actions, rearranging actions is a different story, since there might be hidden
interdependencies lost in the abstraction.

The actions involved were only few, as depicted in Figure 29. Careful checking by hand turned out
that the precise order of these actions is not important for the present implementation.

8.4 Evaluation
Evaluating the differences found by the verification required understanding of tcap at a lower level
of abstraction than the level of the µcrl specification. Without knowledge of the details of the
Erlang implementation it was impossible to establish whether differences were specification artefacts,
introduced by the language and tools used, or relevant errors.

It appeared that the ‘unfolded rewritings’ were indeed intuitively correct, justifying the approach
chosen to locate differences in non-determinism. However, the feedback to tcap also shed light onto
a subtle error residing at a low level op abstraction, i.e. the non-commutativity of process killing and
garbage collection. Though the bug located is no real bug in the context of Erlang it is essential
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s user(tc p abort ind) discard received message
s user(tc p abort ind) free tid

dialogue terminated discard received message
dialogue terminated s sccp(n abort req)
dialogue terminated free tid

free dialogue id s sccp(n uni req)
free dialogue id s sccp(n end req)
free dialogue id s sccp(n abort req)
free dialogue id free tid
free dialogue id discard received message
free dialogue id assemble uni message
free dialogue id assemble abort message

Figure 29: commutative pairs of actions

that it is corrected in the specification, in order to facilitate implementation in languages like C.

9. Evaluating µcrl

Just as µCRL has been used to verify the optimisation of tcap, this same tcap has been used to
verify µCRL and the tools associated, including Aldébaran. More precise, this case study was used to
assess the expressive strength of the language µCRL, and the appropriateness of the tools that were
used to generate state spaces and check bisimulation equivalence.

The language µCRL appeared to be fit for the task at hand, to a large extent. It was felt that the
message-driven structure of the protocol fitted neatly into the primitives offered, as can be verified
from the specification fragments offered in Section 3 and the appendices, that let themselves be
understood in a natural way. Complexities arose not in the specification of messages received, but in
the specification of the messages not received.

It was explained in Section 3 that the only way to specify a properly reacting environment is the
introduction of an awkward-looking no-message message. The natural solution would have been to
revert to a time-out, i.e. to wait for a message for a specified amount of time, and to consider a
message that does not arrive in time as not sent. The version of µCRL fully supported by tools,
however, is a timeless variant of process algebra, although its superset as described in [7] does include
time primitives.

Timed µCRL facilitates the explicit specification of the time after which certain actions are to
happen by the ‘ct’ primitive. As an example, consider Figure 30 where it is specified that a read
action is to be performed within timeout time steps. Though a semantics of timed µCRL has been
defined, as are concepts as timed bisimulation, tool support is non-existent as yet.

The state spaces generated for tcap appeared no real match for the high-performance instantiator
tool, developed for µCRL, designed for the generation of huge state spaces containing millions of
states, which is more than Cæsar/Aldébaran can handle. In the context of verification of optimisation,
where issues as concurrency and non-determinism are heavily stressed, the emphasis is on the action
performed, and the order in which they are performed, as opposed to the precise functionality of each

sum (t: Time,readct � t ≤ timeout �δc0)

Figure 30: Time out in timed µCRL
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specification states transitions
original generated 958 2012

reduced 187 358
intermediate generated 829 1981

reduced 187 358
optimised generated 462 822

reduced 159 266

Table 1: The sizes of the state spaces generated

and every action. As a consequence, the data acted upon by the various actions are left unspecified,
yielding a state space that is manageable by all means, i.e. consisting of several hundreds of states
(see Table 1).

The notion of weak bisimulation, accepted on intuitive grounds, could be simply checked by the
Aldébaran tool. More problematic was it to trace differences found back to the µCRL specification.
Given the fact that the two are separate tools, this presented the human verifier with a puzzle that
appeared complex at times. However, the non-determinism difference appeared to be too subtle to be
adequately covered by a concept as strict as bisimulation.

It required a good deal of effort to isolate the non-determinism difference, as was explained in Section
5, but although the specification was not so large as to make this manual checking impossible, the need
for tool support was felt. Existing approaches that touch the problem experienced in this verification
study are to be looked for among formalisations of the the notion of ‘more non-deterministic than’ such
as [1] and the partial order reduction used to prune the state space in model checking [13] have been
located, but the question whether this research could really play a role here has remained unanswered
as yet.

A radically different alternative to the bisimulation-checking approach utilised in this verification
study is to capture the tcap behaviour in a theory in temporal logic, and to verify validity of this
theory in each of the two state spaces, interpreted as a temporal model. In a technical sense, this is a
feasible approach, given the fact that the Cæsar/Aldébaran supports validation of temporal formulae.
The catch is that it requires a precise knowledge of the requirements to be verified, which appeared
rather problematic in the study at hand. The one and only thing known about the tcap protocol
beforehand, was that the original and the optimisation are to be equivalent, and only in the course of
verification the subtleties of tcap were made explicit.

10. Conclusions and further work

Proving equivalence of the original tcap specification and its optimised design turned out to be feasible
by formally specifying both in µcrl, generating state spaces using the µcrl tool set, and checking
weak bisimulation equivalence using the Cæsar/Aldébaran tool set. These techniques on their own
are well established, but actually using them in real-world verification studies is not common; often,
theorem proving or model-checking is used. As indicated at many places throughout this report, the
verification process has been a process of interaction. From the several steps in this interaction, we
have learned different things.

When transforming the sdl specification into a µcrl specification, we found several minor errors
in the former specification. We noticed that two messages could be sent, but were never caught. By
looking at the implementation, we noticed that the specification was in some sense language dependent,
which had consequences for the specification of the optimised version, which was constructed from an
implementation. Although we were able to express the part we were interested in in µcrl we would
have liked to be able to express more details (such as timing and dynamic creation of processes) in
µcrl.
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Obtaining the specification of the optimised implementation turned out to be a time consuming task.
The diagram of Figure 16 was obtained within a few days, but omitting the actions and only specifying
the messages in such a drawing, is only the beginning towards a specification that can be used for our
verification task. Several times after we thought to have modelled the implementation correctly, we
found we had misunderstood a certain aspect. We clearly lacked a tool that could abstract from the
Erlang code and produce something closely corresponding to the µcrl specification we now have
built by hand. The consequent and uniform way in which protocols are implemented in Erlang,
would make it possible to build such a tool, which is now further investigated within Ericsson.

The specification of the environment turned out to be a very tricky point. We had to restrict the
possible sequences of messages and therefore we pre-assumed certain behaviour of the protocol, but
it is hard to distinguish whether this restriction is to severe.

The main effort in the comparison has led in constructing the right specification for the optimised
tcap. Much effort has been put in localising differences between the original tcap and consecutive
versions of the optimised tcap specification. Ample tool support was provided for this task, such that
small changes of the specification had great impact on the work that had to be re-done for localisation
of differences.

The absence of a mechanism in µcrl to detect that a process is in a state in which the environment
cannot receive any message from this process, gave rise to a the no-message message solution. Except
for the necessity of changing the specification at several places, this solution has as its main drawback
that knowledge about the behaviour of the protocol is hard-coded in the protocol itself.

Both specifications turned out to be more deterministic than the other for some sequences of actions.
Although not hard to realise, we had no tool support for identifying ‘more deterministic’ sequences,
such that we had to expand the least deterministic sequences by hand.

Given the fact that the combination of tests and actions were specified implementation dependent,
it would probably have been better to transform the tests to µcrl tests, instead of non-deterministic
choices. This would have caused more specification work and an enormous increase of the state space.

The implementation of the optimised tcap was not correct, which underpins the usefulness of our
verification task. At least one serious error could be detected in the code. Several smaller mistakes
had already been eliminated by the process of formalising the design. For about three man months
work, Ericsson now possesses a specification of an optimised version of tcap, which can be used in
future implementations of the SS No. 7 protocol stack. Verification as part of the development and/or
optimisation pays off and is more valuable than applying the techniques in a final and separate step.

Now that the specifications have been proved equivalent, we plan to investigate a refinement of
the communications model and a generalisation of the environment. Interesting to know is in which
respect the one-datum buffer plays a crucial role and how a more general environment influences the
equivalence of the specifications.
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Appendix I

Tcap original

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% The specification of the original TCAP protocol
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Datatype Bool

sort Bool
func T,F:→Bool
map or,and:Bool#Bool→Bool

not:Bool→Bool
var b:Bool
rew or(T,b)=T

or(b,T)=T
or(b,F)=b
or(F,b)=b
and(T,b)=b
and(b,T)=b
and(b,F)=F
and(F,b)=F
not(T)=F
not(F)=T
not(not(b))=b

% Datatypes for the natural numbers

sort Nat
func 0:→Nat

S: Nat → Nat
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map eq: Nat # Nat → Bool
var x,y:Nat
rew eq(0,0)=T

eq(S(x),0)=F
eq(0,S(x))=F
eq(S(x),S(y))=eq(x,y)

% Datatype for the messages to SCCP

sort sccp message
func n begin req, n begin ind,

n continue req, n continue ind,
n uni req, n uni ind,
n end req, n end ind,
n abort req, n abort ind,
n no message :→ sccp message

map eq: sccp message # sccp message → Bool
i:sccp message → Nat

var m1,m2:sccp message
rew eq(m1,m2)=eq(i(m1),i(m2))

i(n begin ind)=0
i(n begin req)=S(i(n begin ind))
i(n continue ind)=S(i(n begin req))
i(n continue req)=S(i(n continue ind))
i(n uni ind)=S(i(n continue req))
i(n uni req)=S(i(n uni ind))
i(n end ind)=S(i(n uni req))
i(n end req)=S(i(n end ind))
i(n abort ind)=S(i(n end req))
i(n abort req)=S(i(n abort ind))
i(n no message)=S(i(n abort req))

% Datatype for the messages to tc user

sort user message
func tc uni req, tc uni ind,

tc begin req, tc begin ind,
tc end req, tc end ind,
tc continue req, tc continue ind,
tc u abort req, tc u abort ind,
tc p abort ind,
tc no message :→ user message

map eq: user message # user message → Bool
i:user message → Nat

var m1,m2:user message
rew eq(m1,m2)=eq(i(m1),i(m2))

i(tc uni req)=0
i(tc begin req)=S(i(tc uni req))
i(tc end req)=S(i(tc begin req))
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i(tc continue req)=S(i(tc end req))
i(tc u abort req)=S(i(tc continue req))
i(tc uni ind)=S(i(tc u abort req))
i(tc begin ind)=S(i(tc uni ind))
i(tc end ind)=S(i(tc begin ind))
i(tc continue ind)=S(i(tc end ind))
i(tc u abort ind)=S(i(tc continue ind))
i(tc p abort ind)=S(i(tc u abort ind))
i(tc no message)=S(i(tc p abort ind))

% Datatype for the messages to TCO

sort TCO message
func tr uni req, tr begin req, tr end req, tr continue req,

tr u abort req, tr notice req, tr p abort req,
tsm is idle :→ TCO message

map eq: TCO message # TCO message → Bool
i:TCO message → Nat

var m1,m2:TCO message
rew eq(m1,m2)=eq(i(m1),i(m2))

i(tr uni req)=0
i(tr begin req)=S(i(tr uni req))
i(tr end req)=S(i(tr begin req))
i(tr continue req)=S(i(tr end req))
i(tr u abort req)=S(i(tr continue req))
i(tr notice req)=S(i(tr u abort req))
i(tr p abort req)=S(i(tr notice req))
i(tsm is idle)=S(i(tr p abort req))

% Datatype for the messages to DHA

sort DHA message
func tr uni ind, tr begin ind, tr end ind, tr continue ind,

tr u abort ind, tr notice ind, tr p abort ind :→ DHA message
map eq: DHA message # DHA message → Bool

i:DHA message → Nat
var m1,m2:DHA message
rew eq(m1,m2)=eq(i(m1),i(m2))

i(tr uni ind)=0
i(tr begin ind)=S(i(tr uni ind))
i(tr end ind)=S(i(tr begin ind))
i(tr continue ind)=S(i(tr end ind))
i(tr u abort ind)=S(i(tr continue ind))
i(tr notice ind)=S(i(tr u abort ind))
i(tr p abort ind)=S(i(tr notice ind))

% Datatype for the messages to TSM
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sort TSM message
func begin trans, begin rec,

end trans, end rec,
continue trans, continue rec,
abort trans, abort rec,
local abort :→ TSM message

map eq: TSM message # TSM message → Bool
i:TSM message → Nat

var m1,m2:TSM message
rew eq(m1,m2)=eq(i(m1),i(m2))

i(begin trans)=0
i(end trans)=S(i(begin trans))
i(continue trans)=S(i(end trans))
i(abort trans)=S(i(continue trans))
i(local abort)=S(i(abort trans))
i(begin rec)=S( i(local abort))
i(end rec)=S(i(begin rec))
i(continue rec)=S(i(end rec))
i(abort rec)=S(i(continue rec))

% Actions

act s user, s- user, cs user,
r user, r- user, cr user: user message
s sccp, s- sccp, cs sccp,
r sccp, r- sccp, cr sccp: sccp message
s tco, s- tco, cs tco,
r tco, r- tco, cr tco : TCO message
s tsm, s- tsm, cs tsm,
r tsm, r- tsm, cr tsm: TSM message
s dha, s- dha, cs dha,
r dha, r- dha, cr dha: DHA message

assemble abort message
assemble begin message
assemble continue message
assemble end message
assemble tsl data
assemble uni message
assign dialogue id
assign local tid
build aare apdu
build aarq apdu
build abort message
build abort apdu
build audt apdu
dialogue terminated
discard components
discard received message
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extract dialogue portion
free dialogue id
free tid
idle
process components
request components
send components
set application mode
store local address
store new local address
store remote tid

% Asynchronous communications

comm s- user | s user = cs user
r- user | r user = cr user
s- sccp | s sccp = cs sccp
r- sccp | r sccp = cr sccp
s- tco | s tco = cs tco
r- tco | r tco = cr tco
s- tsm | s tsm = cs tsm
r- tsm | r tsm = cr tsm
s- dha | s dha = cs dha
r- dha | r dha = cr dha

% Processes

% Synchronous communications

proc INTtco=sum(m:TCO message,s- tco(m)· r- tco(m)· INTtco)
INTtsm=sum(m:TSM message,s- tsm(m)· r- tsm(m)· INTtsm)
INTdha=sum(m:DHA message,s- dha(m)· r- dha(m)· INTdha)
EXTuser=sum(m:user message,s- user(m)· r- user(m)· EXTuser)
EXTsccp=sum(m:sccp message,s- sccp(m)· r- sccp(m)· EXTsccp)

% State machine TCO

proc tco Idle=
( r sccp(n uni ind)·

(discard received message·
s user(tc no message)+
s dha(tr uni ind))+

r sccp(n begin ind)·
(discard received message·

s user(tc no message)+
assemble abort message·

s sccp(n abort req)·
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discard received message +
assign local tid·

(build abort message·
s sccp(n abort req) +

s tsm(begin rec)))+
r sccp(n continue ind)·

(discard received message·
s user(tc no message)+

assemble abort message·
s sccp(n abort req)·
discard received message+

assemble abort message·
s sccp(n abort req)·
s tsm(local abort)·
discard received message+

s tsm(continue rec))+
r sccp(n end ind)·

(s tsm(local abort)·
discard received message +

discard received message·
s user(tc no message) +

s tsm(end rec))+
r sccp(n abort ind)·

(s tsm(local abort)·
discard received message +

discard received message·
s user(tc no message) +

s tsm(abort rec))+
r tco(tsm is idle)·

free tid+
r tco(tr uni req)·

assemble uni message·
s sccp(n uni req)+

r tco(tr begin req)·
s tsm(begin trans)+

r tco(tr continue req)·
s tsm(continue trans)+

r tco(tr end req)·
s tsm(end trans)+

r tco(tr u abort req)·
s tsm(abort trans)

)· tco Idle

% State machine TSM in states Idle, IS, IR and A

proc tsm Idle=
r tsm(begin rec)·

store remote tid·
s dha(tr begin ind)·
tsm IR+
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r tsm(begin trans)·
store local address·
assemble begin message·
s sccp(n begin req)·
tsm IS

tsm IR=
r tsm(continue trans)·

store new local address·
assemble continue message·
s sccp(n continue req)· tsm A+

r tsm(end trans)·
(assemble end message·

s sccp(n end req) +
s sccp(n no message))·

s tco(tsm is idle)·
tsm Idle+

r tsm(abort trans)·
assemble abort message·
s sccp(n abort req)·
s tco(tsm is idle)·
tsm Idle

tsm IS=
r tsm(continue rec)·

store remote tid·
s dha(tr continue ind)·
tsm A+

r tsm(end rec)·
s dha(tr end ind)·
s tco(tsm is idle)·
tsm Idle+

r tsm(abort rec)·
(s dha(tr u abort ind)+ s dha(tr p abort ind))·
s tco(tsm is idle)·
tsm Idle+

r tsm(local abort)·
s dha(tr p abort ind)·
s tco(tsm is idle)·
tsm Idle+

r tsm(end trans)·
s sccp(n no message)·
s tco(tsm is idle)·
tsm Idle+

r tsm(abort trans)·
s tco(tsm is idle)·
tsm Idle

tsm A=
r tsm(continue rec)·

s dha(tr continue ind)·



39

tsm A+
r tsm(continue trans)·

assemble continue message·
s sccp(n continue req)·
tsm A+

r tsm(end rec)·
s dha(tr end ind)·
s tco(tsm is idle)·
tsm Idle+

r tsm(end trans)·
(assemble end message·

s sccp(n end req)+
s sccp(n no message))·

s tco(tsm is idle)·
tsm Idle+

r tsm(abort rec)·
(s dha(tr u abort ind)+ s dha(tr p abort ind))·
s tco(tsm is idle)·
tsm Idle+

r tsm(local abort)·
s dha(tr p abort ind)·
s tco(tsm is idle)·
tsm Idle+

r tsm(abort trans)·
assemble abort message·
s sccp(n abort req)·
s tco(tsm is idle)·
tsm Idle

% State machine DHA in states Idle, IS, IR and A

proc dha Idle=
r user(tc uni req)·

(build audt apdu + tau)·
request components·
process components·
assemble tsl data·
s tco(tr uni req)·
free dialogue id·
dha Idle+

r user(tc begin req)·
(set application mode· build aarq apdu + tau)·
request components·
process components·
assemble tsl data·
assign local tid·
s tco(tr begin req)·
dha IS+

r dha(tr uni ind)·
(assign dialogue id·
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s user(tc uni ind)·
send components·
free dialogue id +

extract dialogue portion·
(discard components·

s user(tc no message)+
assign dialogue id·

s user(tc uni ind)·
send components·
free dialogue id))· dha Idle+

r dha(tr begin ind)·
(extract dialogue portion·

(build abort apdu·
discard components·
s tco(tr u abort req)·
dha Idle+

set application mode·
assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dha IR) +

assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dha IR)

dha IR=
r user(tc continue req)·

(build aare apdu + tau)·
request components·
process components·
assemble tsl data·
s tco(tr continue req)·
dha A+

r user(tc end req)·
(s tco(tr end req)·

dialogue terminated·
free dialogue id·
dha Idle +

(build aare apdu + tau)·
request components·
process components·
assemble tsl data·
s tco(tr end req)·
dialogue terminated·
free dialogue id·
dha Idle)+

r user(tc u abort req)·
(build aare apdu + build abort apdu + tau)·
s tco(tr u abort req)·
dialogue terminated·
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free dialogue id·
dha Idle

dha IS=
r user(tc end req)·

s tco(tr end req)·
dialogue terminated·
dha Idle+

r user(tc u abort req)·
s tco(tr u abort req)·
dialogue terminated·
dha Idle+

r dha(tr end ind)·
(extract dialogue portion + tau)·
(s user(tc end ind)·

(send components + tau) +
discard components·

s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dha Idle+

r dha(tr continue ind)·
((extract dialogue portion + tau)·

(send components + tau)·
s user(tc continue ind)·
dha A +

discard components·
s user(tc p abort ind)·
build abort apdu·
s tco(tr u abort req)·
dialogue terminated·
free dialogue id·
dha Idle

)+
r dha(tr u abort ind)·

(s user(tc u abort ind)+ s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dha Idle+

r dha(tr p abort ind)·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id·
dha Idle

dha A=
r user(tc continue req)·

request components·
process components·
assemble tsl data·
s tco(tr continue req)·
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dha A+
r user(tc end req)·

(s tco(tr end req)+
request components·

process components·
assemble tsl data·
s tco(tr end req))·

dialogue terminated·
free dialogue id·
dha Idle+

r user(tc u abort req)·
(build abort apdu + tau)·
s tco(tr u abort req)·
dialogue terminated·
free dialogue id·
dha Idle+

r dha(tr end ind)·
(s user(tc end ind)·

(send components + tau) +
discard components·

s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dha Idle+

r dha(tr continue ind)·
((send components + tau)·

s user(tc continue ind)·
dha A +

discard components·
s user(tc p abort ind)·
(build abort apdu + tau)·
s tco(tr u abort req)·
dialogue terminated·
free dialogue id·
dha Idle)+

r dha(tr u abort ind)·
(s user(tc u abort ind)+ s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dha Idle+

r dha(tr p abort ind)·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id·
dha Idle

% Successful termination

proc terminate=
idle· terminate
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% Environment

proc environment =
s user(tc begin req)·

(r sccp(n begin req)+ r sccp(n no message)·
terminate)·

(s sccp(n continue ind)·
(r user(tc continue ind)·

user engaged+
r user(tc no message)·

terminate+
r sccp(n abort req)·

terminate)·
s sccp(n abort ind)·

(r user(tc p abort ind)+ r user(tc u abort ind)+ r user(tc no message))·
terminate)+

s sccp(n begin ind)·
(r user(tc begin ind)+ r user(tc no message)·

terminate +
r sccp(n abort req)·

terminate)·
(s user(tc continue req)·
(r sccp(n continue req)·

sccp engaged+
r sccp(n no message)·

terminate)·
s user(tc u abort req)·

(r sccp(n abort req)+ r sccp(n no message))·
terminate) +

s user(tc uni req)·
(r sccp(n uni req)+ r sccp(n no message))·
terminate+

s sccp(n uni ind)·
(r user(tc uni ind)+ r user(tc no message))·
terminate

user engaged =
s user(tc continue req)·

(r sccp(n continue req)·
engaged+

r sccp(n no message)·
terminate)+

s sccp(n continue ind)·
(r user(tc continue ind)·

user engaged+
r user(tc no message)·

terminate+
r sccp(n abort req)·
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terminate)+
s user(tc end req)·

(r sccp(n end req)·
terminate+

r sccp(n no message)·
terminate)+

s user(tc u abort req)·
(r sccp(n abort req)·

terminate+
r sccp(n no message)·

terminate)+
s sccp(n abort ind)·

(r user(tc u abort ind)·
terminate+

r user(tc p abort ind)·
terminate+

r user(tc no message)·
terminate)

sccp engaged =
s user(tc continue req)·

(r sccp(n continue req)·
engaged+

r sccp(n no message)·
terminate)+

s sccp(n continue ind)·
(r user(tc continue ind)·

sccp engaged+
r user(tc no message)·

terminate+
r sccp(n abort req)·

terminate)+
s sccp(n end ind)·

(r user(tc end ind)·
terminate+

r user(tc p abort ind)·
terminate+

r user(tc no message)·
terminate)+

s user(tc u abort req)·
(r sccp(n abort req)·

terminate+
r sccp(n no message)·

terminate)+
s sccp(n abort ind)·

(r user(tc u abort ind)·
terminate+

r user(tc p abort ind)·
terminate+

r user(tc no message)·
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terminate)

engaged =
s user(tc continue req)·

(r sccp(n continue req)·
engaged+

r sccp(n no message)·
terminate)+

s sccp(n continue ind)·
(r user(tc continue ind)·

engaged+
r user(tc no message)·

terminate+
r sccp(n abort req)·

terminate)+
s user(tc end req)·

(r sccp(n end req)·
terminate+

r sccp(n no message)·
terminate)+

s sccp(n end ind)·
(r user(tc end ind)·

terminate+
r user(tc p abort ind)·

terminate+
r user(tc no message)·

terminate)+
s user(tc u abort req)·

(r sccp(n abort req)·
terminate+

r sccp(n no message)·
terminate)+

s sccp(n abort ind)·
(r user(tc u abort ind)·

terminate+
r user(tc p abort ind)·

terminate+
r user(tc no message)·

terminate)

% Initial process

init

% Internal communications are hidden

hide ({
cs tco, cr tco,
cs tsm, cr tsm,
cs dha, cr dha},
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% Isolated communications are deadlocked

encap ({ s- user, s user, r- user, r user,
s- sccp, s sccp, r- sccp, r sccp,
s- tco,s tco, r- tco,r tco,
s- tsm,s tsm, r- tsm,r tsm,
s- dha,s dha, r- dha,r dha},

% State machines, channels and environment run in parallel

tco Idle ‖ tsm Idle ‖ dha Idle ‖
INTtco ‖ INTtsm ‖ INTdha ‖ EXTuser ‖ EXTsccp ‖
environment ))
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Appendix II

Tcap optimised

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% The specification of the optimised TCAP protocol
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% The specification of datatypes, actions, communications and environment
% is identical to those of the original in Appendix I

% State machine TCO

proc tco Idle=
(r sccp(n uni ind)·

(discard received message·
s user(tc no message) +

tau·
(assign dialogue id·

s user(tc uni ind)·
send components·
free dialogue id +

extract dialogue portion·
(discard components·

s user(tc no message) +
assign dialogue id·

s user(tc uni ind)·
send components·
free dialogue id)))+

r sccp(n begin ind)·
(discard received message·

s user(tc no message) +
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assemble abort message·
s sccp(n abort req)·
discard received message +

assign local tid·
(build abort message·

s sccp(n abort req) +
s tsm(begin rec))) +

r sccp(n continue ind)·
(discard received message·

s user(tc no message) +
assemble abort message·

s sccp(n abort req)·
discard received message +

assemble abort message·
s sccp(n abort req)·
s tsm(local abort)·
s user(tc p abort ind)·
dialogue terminated·
discard received message·
free dialogue id·
free tid+

s tsm(continue rec)+
discard received message·

s user(tc no message) +
assemble abort message·

s sccp(n abort req)·
discard received message) +

r sccp(n end ind)·
(s tsm(local abort)·

s user(tc p abort ind)·
dialogue terminated·
discard received message·
free dialogue id·
free tid+

s tsm(end rec)+
discard received message·

s user(tc no message))+
r sccp(n abort ind)·

(s tsm(local abort)·
s user(tc p abort ind)·
dialogue terminated·
discard received message·
free dialogue id·
free tid+

s tsm(abort rec)+
discard received message·

s user(tc no message))
)· tco Idle
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% State machine DHATSM with states Idle, IS, IR, A
% is a merge of the original automata DHA and TSM

proc dhatsm Idle=
r user(tc uni req)·

(build audt apdu + tau)·
request components·
process components·
assemble tsl data·
assemble uni message·
s sccp(n uni req)·
free dialogue id·
dhatsm Idle+

r user(tc begin req)·
(set application mode· build aarq apdu + tau)·
request components·
process components·
assemble tsl data·
assign local tid·
store local address·
assemble begin message·
s sccp(n begin req)·
dhatsm IS+

r tsm(begin rec)·
store remote tid·
(extract dialogue portion·

(build abort apdu·
discard components·
assemble abort message·
s sccp(n abort req)·
free tid·
dhatsm Idle +

set application mode·
assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dhatsm IR) +

assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dhatsm IR)

dhatsm IR=
r user(tc continue req)·

(build aare apdu + tau)·
request components·
process components·
assemble tsl data·
store new local address·
assemble continue message·
s sccp(n continue req)·
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dhatsm A+
r user(tc end req)·

(build aare apdu + tau)·
request components·
process components·
assemble tsl data·
(assemble end message·

free tid·
dialogue terminated·
free dialogue id·
s sccp(n end req)+

tau·
dialogue terminated·
free dialogue id·
s sccp(n no message)·
free tid)·

dhatsm Idle+
r user(tc u abort req)·

(build aare apdu + build abort apdu + tau)·
assemble abort message·
s sccp(n abort req)·
free tid·
dialogue terminated·
free dialogue id·
dhatsm Idle

dhatsm IS=
r user(tc end req)·

free tid·
dialogue terminated·
dhatsm Idle+

r user(tc u abort req)·
free tid·
dialogue terminated·
dhatsm Idle+

r tsm(end rec)·
(extract dialogue portion + tau)·
(s user(tc end ind)·

(send components + tau) +
discard components·

s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dhatsm Idle+

r tsm(continue rec)·
store remote tid·
tau·
((extract dialogue portion + tau)·

(send components + tau)·
s user(tc continue ind)·
dhatsm A +
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discard components·
s user(tc p abort ind)·
build abort apdu·
s sccp(n abort req)·
free tid·
dialogue terminated·
free dialogue id·
dhatsm Idle)+

r tsm(abort rec)·
(tau·

(s user(tc u abort ind)+ s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
free tid+

tau·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id·
free tid)·

dhatsm Idle+
r tsm(local abort)·

dhatsm Idle

dhatsm A=
r user(tc continue req)·

request components·
process components·
assemble tsl data·
store new local address·
assemble continue message·
s sccp(n continue req)·
dhatsm A+

r user(tc end req)·
(request components·

process components·
assemble tsl data+

tau)·
(assemble end message· s sccp(n end req) + s sccp(n no message))·
free tid·
dialogue terminated·
free dialogue id·
dhatsm Idle+

r user(tc u abort req)·
(build abort apdu + tau)·
assemble abort message·
s sccp(n abort req)·
free tid·
dialogue terminated·
free dialogue id·
dhatsm Idle+

r tsm(end rec)·
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(s user(tc end ind)·
(send components + tau) +

discard components·
s user(tc p abort ind))·

dialogue terminated·
free dialogue id·
free tid·
dhatsm Idle+

r tsm(continue rec)·
((send components + tau)·

s user(tc continue ind)·
dhatsm A +

discard components·
s user(tc p abort ind)·
(build abort apdu + tau)·
assemble abort message·
s sccp(n abort req)·
free tid·
dialogue terminated·
free dialogue id·
dhatsm Idle)+

r tsm(abort rec)·
(tau·

(s user(tc u abort ind)+s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
free tid+

(tau·
s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
free tid)·

dhatsm Idle+
r tsm(local abort)·

dhatsm Idle

% Successful termination

proc terminate=
idle· terminate

% Initial process

init

% Internal communications are hidden

hide ({ cs tsm, cr tsm},
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% Isolated communications are deadlocked

encap ({ s- user, s user, r- user, r user,
s- sccp, s sccp, r- sccp, r sccp,
s- tsm,s tsm, r- tsm,r tsm},

% State machines, channels and environment run in parallel

tco Idle ‖ dhatsm Idle ‖
INTtsm ‖ EXTuser ‖ EXTsccp ‖
environment ))
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Appendix III

Tcap rewritten

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
% The specification of the optimised TCAP protocol
% rewritten to cover differences in non-determinism
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% The specification of datatypes, actions, communications and environment
% is identical to those of the original in Appendix I

% State machine TCO

proc tco Idle=
(r sccp(n uni ind)·

(discard received message·
s user(tc no message) +

tau·
(assign dialogue id·

s user(tc uni ind)·
send components·
free dialogue id +

extract dialogue portion·
(discard components·

s user(tc no message) +
assign dialogue id·

s user(tc uni ind)·
send components·
free dialogue id)))+

r sccp(n begin ind)·
(discard received message·

s user(tc no message) +
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assemble abort message·
s sccp(n abort req)·
discard received message +

assign local tid·
(build abort message·

s sccp(n abort req) +
s tsm(begin rec))) +

r sccp(n continue ind)·
(discard received message·

s user(tc no message) +
assemble abort message·

s sccp(n abort req)·
discard received message +

assemble abort message·
s sccp(n abort req)·
(s tsm(local abort)·

(discard received message·
(s user(tc p abort ind)·

(dialogue terminated·
(free dialogue id·

free tid +
free tid·

free dialogue id)+
free tid·

dialogue terminated·
free dialogue id)+

free tid·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id) +

s user(tc p abort ind)·
(discard received message·

(dialogue terminated·
(free dialogue id·

free tid +
free tid·

free dialogue id)+
free tid·

dialogue terminated·
free dialogue id) +

dialogue terminated·
(discard received message·

(free dialogue id·
free tid +

free tid·
free dialogue id)+

free dialogue id·
discard received message·
free tid ))))+

s tsm(continue rec) +
discard received message·
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s user(tc no message) +
assemble abort message·

s sccp(n abort req)·
discard received message)+

r sccp(n end ind)·
(s tsm(local abort)·
(discard received message·

(s user(tc p abort ind)·
(dialogue terminated·

(free dialogue id·
free tid +

free tid·
free dialogue id)+

free tid·
dialogue terminated·
free dialogue id)+

free tid·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id) +

s user(tc p abort ind)·
(discard received message·

(dialogue terminated·
(free dialogue id·

free tid +
free tid·

free dialogue id)+
free tid·

dialogue terminated·
free dialogue id) +

dialogue terminated·
(discard received message·

(free dialogue id·
free tid +

free tid·
free dialogue id)+

free dialogue id·
discard received message·
free tid )))+

s tsm(end rec)+
discard received message·

s user(tc no message))+
r sccp(n abort ind)·

(s tsm(local abort)·
(discard received message·

(s user(tc p abort ind)·
(dialogue terminated·

(free dialogue id·
free tid +

free tid·
free dialogue id)+
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free tid·
dialogue terminated·
free dialogue id)+

free tid·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id) +

s user(tc p abort ind)·
(discard received message·

(dialogue terminated·
(free dialogue id·

free tid +
free tid·

free dialogue id)+
free tid·

dialogue terminated·
free dialogue id) +

dialogue terminated·
(discard received message·

(free dialogue id·
free tid +

free tid·
free dialogue id)+

free dialogue id·
discard received message·
free tid )))+

s tsm(abort rec)+
discard received message·

s user(tc no message))
)· tco Idle

% State machine DHATSM with states Idle, IS, IR, A
% is a merge of the original automata DHA and TSM

proc dhatsm Idle=
r user(tc uni req)·

(build audt apdu + tau)·
request components·
process components·
assemble tsl data·
(free dialogue id·

assemble uni message·
s sccp(n uni req)+

assemble uni message·
(free dialogue id· s sccp(n uni req)+
s sccp(n uni req)· free dialogue id))·

dhatsm Idle+
r user(tc begin req)·

(set application mode· build aarq apdu + tau)·
request components·
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process components·
assemble tsl data·
assign local tid·
store local address·
assemble begin message·
s sccp(n begin req)·
dhatsm IS+

r tsm(begin rec)·
store remote tid·
(extract dialogue portion·

(build abort apdu·
discard components·
assemble abort message·
s sccp(n abort req)·
free tid·
dhatsm Idle+

set application mode·
assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dhatsm IR)+

assign dialogue id·
s user(tc begin ind)·
(send components + tau)·
dhatsm IR)

dhatsm IR=
r user(tc continue req)·

(build aare apdu + tau)·
request components·
process components·
assemble tsl data·
store new local address·
assemble continue message·
s sccp(n continue req)·
dhatsm A+

r user(tc end req)·
(build aare apdu + tau)·

request components·
process components·
assemble tsl data·
(assemble end message·

(s sccp(n end req)·
(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free dialogue id· free tid+
free tid· free dialogue id ))+

dialogue terminated·
(free dialogue id· s sccp(n end req)· free tid+
s sccp(n end req)·

(free dialogue id· free tid+free tid· free dialogue id)))+
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dialogue terminated·
(tau·

(free tid· free dialogue id+free dialogue id· free tid )·
s sccp(n no message)+

free dialogue id·%
(assemble end message· %

s sccp(n end req)+ %
s sccp(n no message))·
free tid+

assemble end message·
(free dialogue id· s sccp(n end req)· free tid+
s sccp(n end req)·

(free dialogue id· free tid+free tid· free dialogue id)))+

tau·
(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free dialogue id· free tid+ free tid· free dialogue id))·
s sccp(n no message))·

dhatsm Idle+

r user(tc u abort req)·
(build aare apdu + build abort apdu + tau)·

(dialogue terminated·
(assemble abort message·

(free dialogue id·
s sccp(n abort req)·
free tid+

s sccp(n abort req)·
(free dialogue id·

free tid+
free tid·

free dialogue id))+
free dialogue id·

assemble abort message·
s sccp(n abort req)·
free tid)+

assemble abort message·
(dialogue terminated·

(s sccp(n abort req)·
(free dialogue id·

free tid+
free tid·

free dialogue id)+
free dialogue id·

s sccp(n abort req)·
free tid)+

s sccp(n abort req)·
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(dialogue terminated·
(free tid·

free dialogue id+
free dialogue id·

free tid)+
free tid·

dialogue terminated·
free dialogue id)))·

dhatsm Idle

dhatsm IS=
r user(tc end req)·

(free tid· dialogue terminated+
dialogue terminated· free tid)·
dhatsm Idle+

r user(tc u abort req)·
(free tid· dialogue terminated+
dialogue terminated· free tid)·
dhatsm Idle+

r tsm(end rec)·
(extract dialogue portion + tau)·
(s user(tc end ind)·

(send components + tau) +
discard components·

s user(tc p abort ind))·
dialogue terminated·
free dialogue id·
dhatsm Idle+

r tsm(continue rec)·
store remote tid·
tau·
((extract dialogue portion + tau)·

(send components + tau)·
s user(tc continue ind)·
dhatsm A +

discard components·
s user(tc p abort ind)·
build abort apdu·
(assemble abort message·

(dialogue terminated·
(free dialogue id· s sccp(n abort req)· free tid+

s sccp(n abort req)·
(free tid· free dialogue id+free dialogue id· free tid))+

s sccp(n abort req)·
(dialogue terminated·

(free dialogue id· free tid+free tid· free dialogue id)+
free tid· dialogue terminated· free dialogue id))+

dialogue terminated·
(free dialogue id· assemble abort message· s sccp(n abort req)· free tid+
assemble abort message·



61

(free dialogue id· s sccp(n abort req)· free tid+
s sccp(n abort req)·

(free tid· free dialogue id+free dialogue id· free tid))))·
dhatsm Idle)+

r tsm(abort rec)·
(tau·

((s user(tc u abort ind)+ s user(tc p abort ind))·
(free tid· dialogue terminated· free dialogue id+

dialogue terminated·
(free tid· free dialogue id+free dialogue id· free tid))+

free tid·
(s user(tc u abort ind)+ s user(tc p abort ind))·
dialogue terminated·
free dialogue id) +

tau·
(s user(tc p abort ind)·

(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free tid· free dialogue id+free dialogue id· free tid))+
free tid·

s user(tc p abort ind)·
dialogue terminated·
free dialogue id))·
dhatsm Idle+

r tsm(local abort)·
dhatsm Idle

dhatsm A=
r user(tc continue req)·

request components·
process components·
assemble tsl data·
assemble continue message·
s sccp(n continue req)·
dhatsm A+

r user(tc end req)·
(request components·

process components·
assemble tsl data + tau)·

(assemble end message·
(s sccp(n end req)·

(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free dialogue id· free tid+free tid· free dialogue id))+
dialogue terminated·

(free dialogue id· s sccp(n end req)· free tid+
s sccp(n end req)·

(free dialogue id· free tid+free tid· free dialogue id)))+
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dialogue terminated·
(s sccp(n no message)·

(free tid· free dialogue id+free dialogue id· free tid)+
free dialogue id·

(assemble end message·
s sccp(n end req)+

s sccp(n no message))·
free tid+

assemble end message·
(free dialogue id· s sccp(n end req)· free tid+
s sccp(n end req)·

(free dialogue id· free tid+free tid· free dialogue id)))+

s sccp(n no message)·
(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free dialogue id· free tid+ free tid· free dialogue id)))·

dhatsm Idle+

r user(tc u abort req)·
(build abort apdu + tau)·
(assemble abort message·

(dialogue terminated·
(free dialogue id·

s sccp(n abort req)·
free tid+

s sccp(n abort req)·
(free tid· free dialogue id+free dialogue id· free tid))+

s sccp(n abort req)·
(dialogue terminated·

(free tid· free dialogue id+free dialogue id· free tid)+
free tid· dialogue terminated· free dialogue id))+

dialogue terminated·
(assemble abort message·

(free dialogue id·
s sccp(n abort req)·
free tid+

s sccp(n abort req)·
(free tid· free dialogue id+free dialogue id· free tid))+

free dialogue id·
assemble abort message·
s sccp(n abort req)·
free tid))·

dhatsm Idle+
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r tsm(end rec)·
(s user(tc end ind)·

(((send components + tau)·
(dialogue terminated·

(free dialogue id· free tid+free tid· free dialogue id)+
free tid·

dialogue terminated·
free dialogue id))+

free tid·
(send components + tau)·
dialogue terminated·
free dialogue id)+

discard components·
(s user(tc p abort ind)·

(free tid·
dialogue terminated·
free dialogue id+

dialogue terminated·
(free tid· free dialogue id+free dialogue id· free tid))+

free tid·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id)+

free tid·
(discard components·

s user(tc p abort ind)·
dialogue terminated·
free dialogue id+

s user(tc end ind)·
(send components + tau)·
dialogue terminated·
free dialogue id))·

dhatsm Idle+
r tsm(continue rec)·

((send components + tau)·
s user(tc continue ind)·
dhatsm A +

discard components·
s user(tc p abort ind)·
(build abort apdu + tau)·
(assemble abort message·

(dialogue terminated·
(free dialogue id·

s sccp(n abort req)·
free tid+

s sccp(n abort req)·
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(free tid· free dialogue id+
free dialogue id· free tid))+

s sccp(n abort req)·
(dialogue terminated·

(free tid· free dialogue id+
free dialogue id· free tid)+
free tid· dialogue terminated· free dialogue id))+

dialogue terminated·
(free dialogue id·

assemble abort message·
s sccp(n abort req)·
free tid+

assemble abort message·
(s sccp(n abort req)·

(free tid· free dialogue id+
free dialogue id· free tid)+

free dialogue id· s sccp(n abort req)· free tid)))·
dhatsm Idle)+

r tsm(abort rec)·
(tau·

((s user(tc u abort ind)+ s user(tc p abort ind))·
(free tid· dialogue terminated· free dialogue id+
dialogue terminated·

(free tid· free dialogue id+free dialogue id· free tid))+
free tid·

(s user(tc u abort ind)+ s user(tc p abort ind))·
dialogue terminated·
free dialogue id) +

tau·
(s user(tc p abort ind)·
(free tid· dialogue terminated· free dialogue id+

dialogue terminated·
(free tid· free dialogue id+free dialogue id· free tid))+

free tid·
s user(tc p abort ind)·
dialogue terminated·
free dialogue id))·

dhatsm Idle+

r tsm(local abort)·
dhatsm Idle

% Successful termination

proc terminate=
idle· terminate
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% Initial process

init

% Internal communications are hidden

hide ( {cs tsm, cr tsm},

% Isolated communications are deadlocked

encap ({ s- user,s user, r- user,r user,
s- sccp,s sccp, r- sccp,r sccp,
s- tsm,s tsm, r- tsm,r tsm},

% State machines, channels and environment run in parallel

tco Idle ‖ dhatsm Idle ‖
INTtsm ‖ EXTuser ‖ EXTsccp ‖
environment ))


