
Formal Analysis of Consensus Protocols in

Asynchronous Distributed Systems

Muhammad Atif

16th October 2009

Abstract

This paper presents a formal veri�cation of two consensus protocols for
distributed systems presented in [T. Deepak Chandra and S. Toueg,
Unreliable failure detectors for reliable distributed systems, J. ACM,
1996]. These two protocols rely on two underlying failure detection
protocols. We formalize an abstract model of the underlying failure
detection protocols and building upon this abstract model, formalize
the two consensus protocols. We prove that both algorithms satisfy the
properties of �uniform agreement�, �uniform integrity�, �termination�
and �uniform validity� assuming the correctness of their corresponding
failure detectors.

1 Introduction

In a consensus protocol, each participating process proposes a value and
eventually all (non-crashed) processes should reach a state in which they
decide upon the same value. The decided value has to be chosen from the
set of proposed values by the participating processes [3]. In an asynchronous
environment, there is no upper bound on the delay of (reliable) commu-
nication channels; hence, a process cannot distinguish between a crashed
process, for whose proposed value it does not have to wait, and a process
connected to a very slow communication channel, whose proposed value has
to be taken into account in the �nal result of the consensus. This forms the
basic argument behind the impossibility of solving the consensus problem in
an asynchronous environment in the presence of crash failures [4].

To circumvent this problem, the consensus protocols are built upon fail-
ure detectors, which by a synchronization mechanism can provide us with
information about crashed (i.e., permanently halted) and correct processes.
Upon query at any given time, the failure detector of each process outputs
the list of its suspected processes. The information provided by a failure
detector is not necessarily accurate and hence, failure detectors can only
suspect other processes. The unreliable failure detectors are in turn the

1

result of unbounded delays in the asynchronous communication channels.
Hence, at each moment of time, the output of any two failure detectors can
be di�erent.

We formalize and verify two algorithms (also called protocols) for solv-
ing the consensus problem proposed by [1]; one uses strong completeness
with weak accuracy and the other uses strong completeness with eventual
weak accuracy. Strong completeness refers to suspecting all crashed pro-
cesses, i.e., after a certain amount of time every correct process permanently
suspects each crashed process. Weak accuracy means that some correct pro-
cess is never suspected. Eventual weak accuracy means that after a certain
amount of time, some correct process is never suspected. The �rst consensus
protocol, relying on strongly complete and weakly accurate failure detec-
tors, tolerates N − 1 number of process-failures (N is the total number of
processes in asynchronous systems) whereas the one, relying on a strongly
complete and eventually weakly accurate failure detector, requires a major-
ity of processes to be correct [1]. If the network guarantees the said number
of processes to be correct, we prove that both consensus algorithms satisfy
functional requirements of uniform agreement, uniform integrity, termina-
tion and uniform validity, to be de�ned precisely in the remainder of this
report.

Structure of the paper. We give an informal description of two con-
sensus protocols in Sections 2.2 and 2.3 and process-algebraic speci�cations
of them in Sections 3.2 and 3.3, respectively. The requirements of the pro-
tocols and their results are presented in Section 4. The paper is concluded
in Section 5.

2 Consensus Protocols

Consensus protocols ensure that all correct processes eventually reach a con-
sensus on one value, called the decided value. The decided value is always
selected from a set of values, to which every process (at the beginning of the
protocol) contributes one value, called the proposed value, to this set. The
process will not come to a decision if it fails by crashing, i.e., permanently
halting. A failure pattern, denoted by F in the remaining text, is a func-
tion from T to 2π where T is the set of natural numbers, denoting discrete
time, and π = {p1, p2, . . . , pn} is the set of participating processes. During
the execution of the protocols, a failure detector D makes (possibly unreli-
able) information available about the failure pattern F . Next we explain the
general assumptions on which the forthcoming algorithms rely.

2.1 General assumptions

1. If a process is crashed, it will never recover. Assume that F (t) denotes
the set of crashed processes up to time t then F (t) ⊆ F (t + 1).

2

2. All failure detectors are unreliable. This means that they can suspect
correct processes or unsuspect crashed processes at any time. Hence,
in general for each process p, H(p, t) is unrelated to H(p, t + 1) where
H is a function from π × T to 2π for failure detector history and it
provides the history of a failure detector Dp up to time t, i.e., a timed
trace of lists of processes suspected by pi up to time t. It is assumed
that there is a discrete global clock that acts as a �ctional device and
the processes do not have access to it. Due to unreliability of failure
detectors, it is also possible for two distinct processes p and q that
H(p, t) 6= H(q, t) at some time t.

3. A solution for the consensus problem is proposed in the setting of
asynchronous distributed systems in which there is no upper bound
on:

(a) message delays,

(b) clock drifts, and

(c) the amount of time necessary to execute a step.

4. The failure detectors of all correct process participants satisfy strong

completeness, i.e., eventually every crashed process is permanently sus-
pected by their failure detectors. Due to [1], the following formula for-
malizes this description.

∀F, ∀H ∈ D(F), ∃t ∈ T, ∀p ∈ crashed(F),

∀q ∈ correct(F),∀t′ ≥ t : p ∈ H(q, t′)

D(F) is a set of failure detector histories and correct(F) = π −
crashed(F) where crashed(F) =

⋃
t∈T F (t).

5. Although the failure detectors are unreliable, they are assumed to sat-
isfy some notion of accuracy. A failure detector is weakly accurate

when some correct process is never suspected; it is eventually weakly

accurate, if it eventually never suspects some correct process. The fol-
lowing formula, due to [1], formalizes this description.

∀F, ∀H ∈ D(F), ∃p ∈ correct(F), ∀t ∈ T, ∀q ∈ π−F (t) : p /∈ H(q, t)

6. The consensus algorithm that relies on strong completeness with weak
accuracy can tolerate any number of process failures whereas the other
consensus algorithm requiring strong completeness and eventual weak
accuracy, requires the majority of the process to be correct.

7. The communication channel between each pair of processes is reliable.

3

Along with the property of strong completeness, the algorithms discussed
in Sections 2.2 and 2.3 rely on the above assumptions together with the
properties of weak accuracy and eventual weak accuracy, respectively.

2.2 Solving consensus using strong completeness and weak

accuracy

This algorithm assumes the properties of strong completeness and weak ac-
curacy and solves the consensus problem in an asynchronous system provided
that at least one correct process is never suspected by any failure detector.
The algorithm has three phases and each process, if it remains operational, is
supposed to go through all phases (from the �rst to the last). Suppose that
n is the total number of processes in the network. In the �rst phase, each
(non-crashed) process p executes n− 1 rounds. In every round each process
broadcasts a message that contains its proposed value vp and then receives
the same type of message from other non-suspected processes. At the end
of this phase, every process updates its set of proposed values. These values
are obtained either directly from other processes or indirectly in that some
processes are correct but erroneously suspected.
In the second phase, all correct processes exchange their sets of values and
make them identical to each other by dropping values that are not part of
some received set. In the third and last phase, each process decides the �rst
available value in its set. The algorithm for solving the consensus problem
using strong completeness and weak accuracy, due to [1], is given below such
that every process p executes it with a distinct proposed value vp.

4

Algorithm 1 Process(vp)

Vp := 〈⊥, ⊥, . . . , ⊥〉 {p's estimate of the proposed values}
Vp[p] := vp

∆p := Vp {To send/receive proposed values}

Phase 1: {Asynchronous rounds rp, 1 ≤ rp ≤ n − 1}
for rp = 1 to n − 1 do

send (rp, ∆p, p) to all
wait until [∀q : received (rp, ∆q, q) or q ∈ Dp] {Query the failure detector and get
Dp, i.e., a set of suspected processes. If q 6∈ Dp then receive message from q for
round rp}
msgsp[rp] := {(rp, ∆q, q) | received (rp, ∆q, q)}
∆p := 〈⊥, ⊥, . . . , ⊥〉
for k = 1 to n do

if Vp[k] =⊥ and ∃(rp, ∆q, q) ∈ msgsp[rp] with ∆q[k] 6=⊥ then

Vp[k] := ∆q[k]
∆p[k] := ∆q[k]

end if

end for

end for

Phase 2: send Vp to all
wait until [∀q : received Vq or q ∈ Dp]
lastmsgsp := {Vq | received Vq}
for k = 1 to n do

if ∃Vq ∈ lastmsgsp with Vq[k] =⊥ then

Vp[k] :=⊥
end if

end for

Phase 3:

decide (�rst non-⊥ element of Vp)

2.3 Solving consensus using strong completeness and even-

tual weak accuracy

In the previous section, we gave the algorithm to solve consensus using strong
completeness and weak accuracy where at least one process was supposed
to be correct. Now we introduce the algorithm, proposed in [1], to solve the
same problem with strong completeness and eventual weak accuracy. This
algorithm demands a majority of processes to be correct. The protocol is
executed in rounds and in each round, there is a unique coordinator, namely,
the one with identi�er c = (r mod n) + 1. If a process is correct, which may
or may not be suspected, it eventually decides some value with the consent
of the coordinator.

In every round there are four phases. In the �rst phase each process
sends its proposed value (estimate) to the coordinator (timestamped with the
round number). In the second phase, the coordinator receives the estimates
from non-suspected processes and then selects one of them as their new

5

estimate. The selected value is the estimate of a process that has the largest
timestamp. In the same phase, the coordinator broadcasts its estimate. In
the third phase, processes receive the value sent by the coordinator and
send back either ack (acknowledgement message) if the coordinator is not
suspected or otherwise nack (no acknowledgement). In the fourth phase, the

coordinator waits for d (n+1)
2 e replies and if all of them are of type ack then

estimatec is locked, or otherwise it starts a new round and consequently other
processes waiting for a decision also start a new round. The only reason to
send a nack message (in Phase 3) is having suspicion (due to failure detector)

for the coordinator. However, if all of the d (n+1)
2 e acknowledgements (ack

type messages) are received, then the coordinator decides the locked value
and broadcasts it through a channel, called R-broadcast. Every process p
in this protocol executes the following algorithm [1] where the parameter vp

denotes the proposed value.

6

Algorithm 2 Process(vp)

estimatep := vp {estimatep is estimated decision value of p}
statep := undecided
rp := 0 {rp is p's current round number}
tsp := 0 {tsp is the last round in which p updated estimatep}

{Rotate through coordinators until decision is reached}

while statep = undecided do

rp := rp + 1
cp := (rp mod n) + 1 {cp is the current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send (p, rp, estimatep, tsp) to cp

Phase 2: {The current coordinator gathers d (n+1)
2

e estimates and proposes a new
estimate}
if p = cp then

wait until [for d (n+1)
2

e processes q : received (q, rp, estimateq, tsq) from q]
msgsp[rp] := {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t := largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep := select one estimateq such that (q, rp, estimateq, t) ∈ msgsp[rp]
send (p, rp, estimatep) to all

end if

Phase 3: {All processes wait for the new estimate proposed by the current coordina-
tor}
wait until [received (cp, rp, estimatecp) from cp or cp ∈ Dp]
if [received (cp, rp, estimatecp) from cp] then {p received estimatecp from cp}

estimatep := estimatecp

tsp := rp

send (p, rp, ack) to cp

else

send (p, rp, nack) to cp {p suspects that cp crashed}
end if

Phase 4: {The current coordinator waits for d (n+1)
2

e replies. If they indicate that

d (n+1)
2

e processes adopted its estimate, the coordinator R-broadcasts a decide mes-
sage}
if p = cp then

wait until [for d (n+1)
2

eprocesses q : received (q, rp, ack) or (q, rp, nack)

if [for d (n+1)
2

e processes q : received (q, rp, ack)] then
R-broadcast (p, rp, estimatep, decide) {reliable broadcast}

end if

end if

end while

{if p R-delivers a decide message, p decides accordingly}

when R-deliver (q, rq, estimateq, decide)
if statep = undecided then

decide (estimateq)
statep := decided

end if

7

3 Formal Speci�cation

In this section, we discuss the formalization of the consensus algorithms,
given in Sections 2.2 and 2.3, respectively. We use mCRL2 [6] as our formal
speci�cation language. We need some data types, functions and operators to
specify the behaviour of the protocols in terms of communication channels,
failure detectors and the di�erent phases of the protocols. In the formal
speci�cation of both algorithms, we use a separate channel for every type of
message in every round to entertain asynchrony with respect to communica-
tion channels. So there is no bound on message delays and a message sent
in a previous round can reach its destination after a message of the current
round.

3.1 Data types

We use the built-in support for data types in mCRL2 like; B (for Boolean,
i.e., true or false), Z (for integers) and N (for natural numbers). The toolset
de�nes both Z and N as unbounded, i.e., there is no largest number in these
data types (and no smallest for Z). The toolset also provides many data
structures, we use one of them, called List, to handle homogeneous data,
e.g., estimates, msgs, lastMsgs etc.

3.2 Consensus with strong completeness and weak accuracy

Before discussing the formalization details of the protocol, we present all
auxiliary functions, which are de�ned in the form of rewrite rules. Function
types are used to de�ne customized transformations on (a combination of)
abstract data types. We de�ne the following customized functions where key-
wordsmap, var and eqn in mCRL2 are used for function signature, variable
declaration and function de�nition (in terms of equations), respectively.

• minus: To subtract a list from another, e.g., if A and B are two lists
of natural numbers then minus(A,B) is also a list having all such
elements of A which do not belong to B. This de�nition is formally
speci�ed as:

map

minus : List(N)× List(N) → List(N);
eliminate : List(N)× N → List(N);
{to eliminate the �rst occurrence of a value from the list}
var

ln, lg : List(N);
m,n : N;

8

eqn

minus([], lg) = []; {[] is an empty list}
minus(ln, []) = ln;
minus(n B ln, m B lg) =
if(m ∈ n B ln,minus(eliminate(n B ln, m), lg),minus(n B ln, lg));
{B is the operator to insert an element at the head of a list}

eliminate(n B ln, m) = if(n ≈ m, ln, n B eliminate(ln, m));

• makeIdentical: This function makes two lists (of the same size) iden-
tical by replacing every element that appears in one but not in the
other with ⊥ (used for null value) at each location. In Phase 2, pro-
cesses exchange their lists of values and using this function make them
identical.

map

makeIdentical : List(N)× List(N) → List(N);
var

ln : List(N);
x, n : N;
eqn

makeIdentical([], ln) = ln;
makeIdentical(ln, []) = [];
makeIdentical(x B lg, n B ln) =
if(x ≈⊥,⊥ BmakeIdentical(lg, ln), n B makeIdentical(lg, ln));

• �ndDecided: This function �nds the �rst available non-⊥ value from a
list. Each process uses this function in Phase 3 to decide a value.

map

�ndDecided : List(N) → N;
var

ln : List(N);
n : N;
eqn

�ndDecided([]) =⊥;
�ndDecided(n B ln) = if(n 6≈⊥, n,�ndDecided(ln));

• updateDelta: ∆ is the list used in every round of Phase 1 to send the
proposed value to all other processes. After sending ∆, each process
initializes it with ⊥ and then updates it with the values received in
the current round but not in the previous rounds. To update the data
values in this list, the function updateDelta is used. This function is
only de�ned when the three lists have the same size.

9

map

updateDelta : List(N)× List(N)× List(N) → List(N);
var

lg, ln, ld : List(N);
x, n, m : N;
eqn

updateDelta([], lg, ln) = [];
updateDelta(n B lg,m B ln, x B ld) =
if(m 6≈ n, m B updateDelta(lg, ln, ld), x B updateDelta(lg, ln, ld));

• updateMsgs: In phases 1 and 2 processes use two lists msgs and
lastmsgs respectively to store the lists of other processes. This func-
tion helps the processes to store a list at a particular location.

map

updateMsgs : N× List(List(N))× List(N) → List(List(N))
var

lg, ln : List(N);
n : N;
msgs : List(List(N));
eqn

updateMsgs(⊥, lg B msgs, ln) = ln B msgs;
updateMsgs(⊥, [], ln) = [ln];
(n > 0) → updateMsgs(n, lg B msgs, ln) =
lg B updateMsgs(Int2Nat(n− 1),msgs, ln);
{Int2Nat function determines the natural number of
an integer value}

• updateCrashed : Failure detectors use this function to add a crashed
process in the list of suspects.

map

updateCrashed : List(N)× N → List(N);
var

ln : List(N);
n : N
eqn

updateCrashed(ln, n) = if(n ∈ ln, ln, n B ln);

Next we discuss the process de�nitions which specify the behaviour of every
participant in the protocol.

3.2.1 The process for failure detectors:

A failure detector provides a list of suspected processes whenever a process
requires it. In [1], the behaviour of a failure detector is de�ned in terms of
abstract properties. In accordance to these properties, we devise one pro-
cess to represent the failure detectors of all processes as shown in Figure 1,

10

where the processes query the failure detector and get the list of suspects.
To get the reduced state space, we instantiated this process once and allowed
its interaction with other processes in the network where the processes also
communicate with each other in di�erent phases and rounds. This process

p2

p3

Failure detector

p1

Figure 1: Failure detector used in the model for Algorithm 1, where π =
{p1, p2, p3}

eventually realizes the strong completeness property when a crashed process
is permanently added in the list of suspects. Each process can query this pro-
cess like communicating with the local failure detector. This failure detector
is unreliable, so by mistake it can include correct processes (except one, when
it satis�es weak accuracy) among the suspected processes. The property of
weak accuracy is implemented in the process for Phase 1 (discussed in Sec-
tion 3.2.2) to reduce the state space. Initially, it does not care about strong
completeness but non-deterministically at any point (afterwards), it provides
the complete list of crashed process. We de�ne this process by means of a
parameter, i.e., crashed :

• crashed : List(N): The list of the crashed processes, i.e., sent as a reply
to the querying process. In the start this list is empty but eventually
it contains every crashed process.

11

1: FD(crashed : List(N)) =
2:

∑
id:N

rcv_addRequest(id).FD(updateCrashed(crashed, id))

3: +
4:

∑
p:π

send_list(crashed, p).FD(crashed)

The name of the process for the failure detector is FD as shown in line 3.2.1
with one parameter. We implemented the eventuality with the help of a
process, called CrashedProc. CrashedProc is a simple process (not de�ned
here but given in appendices 1 and 2) where a participant can send a mes-
sage to the failure detector to add its ID to the list of crashed failures. It
notices the process crashing and then continuously pings the failure detector
until the ID of the crashed failure is added in the list of suspects. Once
the list with respect to a particular process is updated then afterwards the
failure detector permanently declares this process as suspected but the time
between the crash and the permanent suspicion is not �xed. FD has two
non-deterministic choices; updating a list of crashed processes and replying
the query of a process, which are shown in lines 3.2.1 and 3.2.1, respectively.
So eventually each crashed process becomes part of the list called crashed,
hence we can say that the given failure detector satis�es the property of
strong completeness.

3.2.2 The process for Phase 1:

We de�ne this process with the help of following six parameters:

• myId :N: The ID-number of the process.

• round :N: Every process executes n − 1 asynchronous rounds and this
parameter denotes the current round number. In every round, each
process p waits for the message of each correct process q, if q is not
suspected.

• List(N): The list that contains the proposed values of all non-suspected
processes.

• ∆ : List(N): The list to exchange the proposed values, as discussed in
Section 3.2.

• msg : List(List(N)): A two-dimensional list to store the messages of
every process in each round.

• msg_sent : B: In every round a process sends its message and then
waits without sending the next message. This parameter is used to
keep this sequence.

12

In the following de�nition we assume the existence of a process Correct that
remains operational and never gets suspected where Correct ∈ π.

1: Phase1(myId, round : N, V, ∆ : List(N),
msgs : List(List(N)),msg_sent : B) =

2: (myId 6≈ Correct) →
crashed(myId) · CrashedProc(myId, false, false, false, false)

3: +
4: (round ≤ N − 1) → ((¬msg_sent) → send2all(round,∆,myId)·

Phase1(myId, round, V, ∆,msgs, true)

5: �
6:

∑
lst:List(N)

queryFD(lst,myId)·

WaitandReceive(myId, round, V, ∆,msgs,minus(π, lst))
7:)�
8: Phase2(myId, V, [], false);

9: WaitandReceive(myId, round : N, V, ∆ : List(N),
msgs : List(List(N)), from : List(N)) =

10: (#from > 0) → (
11:

∑
p:π

(p ∈ from) →
∑

∆q :List(N)

receive(round,∆q, p,myId)·

12: (suspected(myId, p, false) ·WaitandReceive(myId, round, V,
[⊥,⊥,⊥], updateMsgs(p, msgs,∆q),minus(from, [p]))

13: +
14: (p 6≈ Correct) → suspected(myId, p, true)·

WaitandReceive(myId, round, V, [⊥,⊥,⊥],msgs,minus(from, [p]))
15:)
16: +
17: rcv_stopWaiting(p) ·WaitandReceive(myId, round, V,

[⊥,⊥,⊥],msgs,minus(from, [p]))
18:)
19: �
20: Phase1(myId, round + 1, update_V(V,msgs),

updateDelta(V, update_V(V,msgs), [⊥,⊥,⊥]),msgs, false);

The above de�nition shows that a process in Phase 1, can crash or can
send a message to others as shown in lines 3.2.2 and 3.2.2, respectively.
WaitandReceive is another process, de�ned in line 3.2.2, used to wait until
a process receives all current round message from non-suspected processes.
While waiting if it learns from the failure detector that some correct process
q has crashed and q ∈ Dp, it stops waiting for the respective message as

13

shown in line 3.2.2. The process WaitandReceive has the same parameters
like the process Phase1, except a list called from. Initially, this list is equal to
the non-suspected processes, i.e., π−suspects and upon receiving a message
from an arbitrary process, say p, it is updated as from := from−[p]. It is clear
from the informal speci�cations of Algorithm 1, that a process p is interested
to get the list of suspects and to know whether some process q belongs to Dp

or not whenever p receives a message from q. So a process in Phase 1 always
has two non-deterministic choices (suspect or unsuspect) for a process that is
sending messages. If the last argument in an action suspected (given in lines
3.2.2 and 3.2.2) is true then the sender of the message is suspected, so its
sent message is discarded. Whereas the value false in the same action points
to non-suspicion and thus the list ∆q is added to msgs using a function,
called updateMsgs. The condition given in line 3.2.2 takes into account a
correct process that is never suspected. The empty list (called from) in line
3.2.2 shows that there is no process to wait for, so every process moves to
Phase 1.

3.2.3 The process for Phase 2

The process in Phase 2 uses three parameters of Phase 1 (myId, round and
V) and a list, called lastmsgs to store the lists of other processes.

1: Phase2(myId : N, V : List(N), lastmsgs : List(List(N)),
V _sent : B) =

2: (myId 6≈ Correct) → send_crashed(myId) · CrashedProc(myId)
3: +
4: (¬V _sent) → send2all(0, V, myId) · Phase2(myId, V, lastmsgs, true)
5: �
6:

∑
lst:List(N)

queryFD(lst,myId)·

WaitandReceive2 (myId, V, lastmsgs,minus(π, lst))

7: WaitandReceive2(myId : N, V : List(N), lastmsgs : List(List(N)),
from : List(N)) =

8: (#from > 0) →
∑

q:N
∑

Vq :List(N) receive(Vq, q,myId)·
9: WaitandReceive2(myId, V, updateMsgs(q, lastmsgs, Vq),

minus(from, [q]))
10: �
11: Phase3(myId, updateLastmsgs(lastmsgs, V));

In this phase, a process has a choice to crash if it is not the correct process
(as it has a possibility of erroneous suspicion by the failure detector). The
second choice, shown in line 3.2.3, is to �rst send the list of values and

14

then receive from all non-suspected correct processes. Line 3.2.3 shows that
process queries the failure detector before waiting and then waits by initiating
a process called WaitandReceive2 de�ned in line 3.2.3. Every participant in
this process receives the list of proposed values from other processes and
then moves to Phase 3 after making its list similar to others.

3.2.4 The process for Phase 3:

The process for Phase 3 is very simple. Each participant decides the �rst
non-⊥ value from its list of available proposed values. The process for Phase3
takes two parameters, the process ID and the list of values which has been
already updated in Phase 2. The de�nition of this process is:

1: Phase3(myId : N, V : List(N)) = decide(myId,�ndDecided(V))

The above speci�cation shows that each process in Phase 3, decides a
value (non-⊥) from the proposed values and then stops.

3.3 Consensus with strong completeness and eventual weak

accuracy

The speci�cation settings for this protocol use the functions discussed in
Section 3.2. In this protocol di�erent message types are sent and received in
di�erent phases. For example, in Phase 1, processes send their estimates, in
Phase 3 acknowledgement messages (ack or nack) are communicated and in
Phase 4 either they receive the decided value or start the next round. So we
de�ne di�erent channels according to their message types. In this protocol,
at a time, only the coordinator is either a source or destination of every mes-
sage, i.e, other processes send their messages to the coordinator and receive
messages from the coordinator only. To realize eventual weak accuracy, we
de�ne the following processes with the assumption that Correct ∈ π is one of
the correct processes that is never suspected after a certain amount of time.

3.3.1 The process for failure detector

In this protocol the majority of the processes remains correct and we im-
plement this property with the help of a failure detector. It keeps track of
the number of crashes (f) and guarantees that f < d (n+1)

2 e. There are three
parameters used in the de�nition;

• crashed :List(N): A list to store the ID-number of the crashed process.

• totalCrashed :N: To keep track of the number of crashes.

• weaklyAccurate:B: To determine whether the failure detector satis�es
weak accuracy or not.

15

1: FD(crashed : List(N), totalCrashed : N, weaklyAccurate : B) =
2: (totalCrashed ≈ 0) →

∑
id:N

rcv_crashed(id)·

FD(crashed, totalCrashed+1,weaklyAccurate)
3: +
4:

∑
id:N

rcv_addRequest(id)·

FD(updateCrashed(crashed, id), totalCrashed,weaklyAccurate)
5: +
6: (¬weaklyAccurate) → weakAccuracy.FD(crashed, totalCrashed, true)
7: +
8: (weaklyAccurate) →

∑
round:N

∑
p:π

replyQuery(crashed, p, round)

9: �
10:

∑
round:N

∑
p:π

(replyQuery(crashed, p, round)

11: +
12: replyQuery(Addcrashed([Correct], crashed), p, round)

) · FD(crashed, totalCrashed,weaklyAccurate);

In line 3.3.1, the failure detector determines the number of already crashed
processes. If they are less than N

2 (i.e., equal to 0, if N=3) and any other
process crashes in the meanwhile then the counter for crash failures increases
without immediately adding such process to the crashed processes. To meet
the property of strong completeness, a crashed process is eventually added
to the crashed processes as shown in line 3.3.1. In the same way, the weak
accuracy is also eventual, so non-deterministically at some point the failure
detector becomes weakly accurate (line 3.3.1), i.e., from on, it will not con-
sider a particular correct process as crash failure (line 3.3.1). Otherwise, due
to unreliability of the failure detector, it can send a list of crashed processes
containing a correct process as shown in line 3.3.1.

3.3.2 The process for Phase 1

It is assumed that every sent message will be eventually delivered but the
protocol speci�cation gives us no information about a message that is sent
from a process and the only recipient, i.e., the coordinator crashes before
receiving it. Due to the asynchronous behaviour of the distributed system,
the delays in channels are unbounded and there is no guarantee that messages
will be delivered in the same order in which they are sent. To alleviate this
problematic situation, we modeled the process for Phase 1 in a way that
every process uses a separate channel for a message in each round. In this
way the algorithm demonstrates the asynchronous behaviour. But to reach
the terminated state, a process can go through several asynchronous rounds

16

[1], so we modeled the Phase 1 in a manner that if the algorithm does not
terminate in N rounds (N is the number of processes) then the round number
is reset to its initial value, shown in line 3.3.2. In every round, there is a
new coordinator. So, the recipient varies with respect to round number. We
de�ne this process by means of four parameters, myId, round, estimate and
ts where ts is the last round number in which a process has updated its
estimate (default is 0).

1: Phase1(myId, round, estimate, ts : N) =
2: (round ≤ N) → send(1,myId, round, estimate, ts) ·

Phase2(myId, round, estimate, ts, π, 0)
�
send(1,myId, 0, estimate, ts) · Phase2(myId, 0, estimate, ts, π, 0)

3: +
4: (myId 6≈ Correct) → send_crashed(myId) ·

CrashedProc(myId, round,minus(π, [myId]), false)

3.3.3 The process for Phase 2

Every process initiates this phase from Phase 1 but only the coordinator
executes it and the rest of the processes jump to Phase 3. This phase is
formally speci�ed as:

1: Phase2(myId, round, estimate, ts : N, from : List(N), i : N) =
2: (myId 6≈ Correct) → send_crashed(myId)·

Crashed(myId, round,minus(π, [myId]), false)
3: +
4: ((round mod N) + 1 ≈ myId && #from > 0) →
5: ((i < (N + 1) div 2) →
6:

∑
q,estimateq ,tsq :N rcvfrom(1, q, round, estimateq, tsq,myId)·

7: Phase2(myId, round, updateEstimate(estimate, estimateq, ts, tsq),
isGreater(ts, tsq),minus(from, [q]), i + 1)

8: �
9: send(2,myId, round, estimate, ts)·

Phase3(myId, round, estimate, ts)
10:)
11: �
12: Phase3(myId, round, estimate, ts);

Line 3.3.3 shows that a process can crash if it is not a process due to which
this protocol satis�es weak accuracy. In line 3.3.3, the coordinator waits for
at least d (n+1)

2 e processes. If a process q sends its message such that tsq > tsc,
then the coordinator adopts the q's estimate. For this purpose it uses a

17

speci�cally de�ned function, called updateEstimate, shown in line 3.3.3. After
receiving the messages from the majority, the coordinator broadcasts its
estimate and proceeds for Phase 3, as shown in line 3.3.3.

3.3.4 The process for Phase 3

We de�ne the process for Phase 3 as:

1: Phase3(myId, round, estimate, ts : N) =
2: (myId 6≈ Correct) → send_crashed(myId)·

Crashed(myId, round,minus(π, [myId]))
3: +
4: rcv_CFailure(myId, round) · Phase1(myId, round + 1, estimate, ts)
5: +
6:

∑
estq ,tsq :N

rcvfrom(2, (round mod N) + 1, round, estq, tsq,myId)·

7:
∑

lst:List(N)

rcv_list(lst,myId, round)·

8: ((round mod N) + 1 ∈ lst) →
send3(myId, round, nack, (round mod N) + 1)·
Phase4(myId, round, estimate, ts, 0, π)

9: �
10: send3(myId, round, ack, (round mod N) + 1)

·Phase4(myId, round, estq, tsq, 0, π);

Crashing of any process at this phase is shown in line 2, whereas line 4 shows
the crashing of coordinator and if this happens then every process restarts
Phase 1 with the next round number. According to round number, the new
coordinator is designated and the other processes send their estimates to the
current coordinator. If both the process and the coordinator are not crashed
then the process receives the estimate of coordinator (line 3.3.4) and quires
the failure detector (line 3.3.4) to send either ack or nack. The message ack,
if coordinator is not in the list of suspects(line 3.3.4) otherwise the message
nack is sent as a reply (line 3.3.4).

3.3.5 The process for Phase 4

In this phase either all of the processes including the coordinator agree upon
a value or move to the next round. We de�ne the process with two extra
parameters from Phase 3; i : N and from : List(N). The �rst one is used
for counting the received messages and second one (initially π) is used to
receive one message from each process.

18

1: Phase4(myId, round, estimate, ts, i : N, from : List(N)) =
2: (myId 6≈ Correct) → send_crashed(myId)·

Crashed(myId, round,minus(π, [myId]), false)
3: +
4: ((round mod N) + 1 ≈ myId) →
5: ((i < (N + 1) div 2) →
6: (

∑
q:N

∑
msg_type:Ack_Type

rcvAckNack(q, round,msg_type,myId)·

7: (msg_type ≈ ack) →
8: Phase4(myId, round, estimate, ts,

i + 1,minus(from, [q]))
9: �

10: StartNextRound(myId, round, estimate,
ts,minus(from, [q]))

11:) �
12: sendDecision(myId, estimate, true)·

decide(myId, estimate)·δ {δ denotes the deadlock}

13:)
�

14: Wait4decision(myId, round, estimate, ts, false, false);
15:

16: Wait4decision(myId, round, estimate, ts : N, decided,�nish : B) =
17: waiting4decision(myId)·
18: (rcv_CFailure(myId, round) · Phase1(myId, round + 1, estimate, ts)
19: +
20:

∑
v:N

∑
done:B

rcvDecisioFrom(v, done, myId) · (done) → decide(myId, v).δ

21: �
22: Phase1(myId, round + 1, estimate, ts)

);

The option for a process to crash is shown in line 3.3.5 and line 4 shows
that it waits for d (n+1)

2 e messages if it is a coordinator. If a majority send
ack messages, t`he coordinator decides and sends the decided value to all
processes as shown in line 3.3.5 and respective channel ensures that this
decided value is delivered.

4 General Requirements

The general requirements of a consensus problem given in [1] are:

R1. Uniform Agreement: �No two processes decide di�erently�.

19

R2. Uniform Integrity: �Each process decides at most once�.

R3. Termination �All correct processes eventually decide on some value�.

R4. Uniform Validity �If a process decides on value v, then v has been
proposed by some process�.

4.1 Requirement speci�cation in the µ-calculus

In order to verify the requirements with respect to the formalization, they
are speci�ed in the modal µ-calculus ([7], extended with data-dependent
processes and regular formulae).

R1. According to �uniform agreement� in [9] any two processes always de-
cide the same value, i.e., the decision of all processes is unanimous
[1, 8]. We devise the following formula for any two processes p, p′ ∈ π,
to ensure that their decided values cannot be di�erent. Assume that
V is the set of all values.

∀v,v′∈V ∀p,p′∈π[true∗ · decide(p, v) · true∗ · decide(p′, v′)](v = v′)

R2. The following formula speci�es for each process p, the action decide(p, v),
for any arbitrary value v appears at most once in each trace. This in
turn guarantees uniform integrity.

∀p∈π,∀v ,v ′∈V [true∗ · decide(p, v).true∗ · decide(p, v′)]false

R3. Termination of a process can be viewed in two di�erent scenarios;
crashed and correct. If a process is crashed before reaching the last
phase, according to both Algorithms 1 and 2, it cannot decide a value.
On the other hand, if it remains correct throughout the execution, it
eventually decides a value provided that the respective failure detector
satis�es certain properties regarding accuracy and completeness. This
requirement for Algorithm 1 is expressed in the µ-calculus as follows:

∀p∈π µX · ([crashed(p) ∧ (∀v∈V decide(p, v))]X∧ < true > true)

Where p ∈ π and V is the set of proposed values. This formula states
that either the action crash or decide must unavoidably be taken. The
formula does not speak about strong completeness because according
to LEMMA 5 in [1] Algorithm 1 is blocked forever if a process p is
waiting for a message from a crashed process q and q 6∈ Dp, i.e., no
strong completeness. According to the speci�cation in [1], there is a
time after which Dp satis�es strong completeness, i.e., q ∈ Dp, hence
waiting forever is ultimately avoided. The same holds for Algorithm 2

20

where the property of eventual weak accuracy is also mandatory but
the time required for its adoption by the failure detector is not �xed. To
handle this eventuality, we introduce an action for the failure detector,
called weakAccuracy (discussed in Section 3.3.1) to determine whether
the failure detector is weakly accurate or not. As soon as it satis�es
this property, every non-crashed process is supposed to either reach to
a decision or crash. So, for Algorithm 2, we express this requirement
in µ-calculus as:

∀p∈π[(crashed(p) ∧ (∀v∈V decide(p, v)))∗.weakAccuracy]

µX · ([crashed(p) ∧ (∀v∈V decide(p, v))]X∧ < true > true)

R4. In Phase 1 of both Algorithms 1 and 2, every correct process proposes
a value and in the last phase, it decides a value. According to this
requirement, the decided value can only be a proposed value by some
participant. The formalization of this requirement in the µ-calculus is:

∀p∈π,∀v∈V [(∀p′∈πsend(p′, v))∗ · decide(p, v)]false

4.2 Veri�cation results

To verify whether the above-mentioned requirements are satis�ed or vio-
lated, we use the Evaluator model checker (version 1.5) of the CADP toolset
[2, 5] and found that both protocols meet all of these requirements. Model
checking was done for three number of processes and we use Pentium Dual
Core (1.8 GHz) machine with 2 GB of RAM. The amount of time spent on
the veri�cation of each property is reported in Table 1. We use strong bisim-
ulation reduction technique to reduce the size of the state space, hence the
time mentioned in Table 1 also includes this reduction time. The following
commands in given sequence make the results available where the INFILE
contains formal speci�cation and the FORMULA �le contains a µ-calculus
formula.

1. mcrl22lps -v -D INFILE.mcrl2 OUTFILE.lps
To translate an mCRL2 process speci�cation from INFILE.mcrl2 to
a linear process speci�cation (LPS), to be stored in the �le named,
OUTFILE.lps. The option v (verbose) displays the short intermediate
messages while the option D (delta) is necessary to enforce the un-
timed semantics of mCRL2 (i.e., to allow for arbitrary time steps in
all reachable states).

2. lpsconstelm -v OUTFILE.lps temp.lps
To reduce the linear process speci�cation by removing spurious con-
stant process parameters from the OUTFILE.lps and write the result
to temp.lps.

21

3. lpssumelm -v temp.lps OUTFILE.lps
To remove super�uous summations from the temp.lps and write the
result to OUTFILE.lps.

4. lpsparelm -v OUTFILE.lps temp.lps
To remove unused parameters from the OUTFILE.lps and write the
result to temp.lps.

5. lps2lts -v -ftree temp.lps OUTFILE.svc
To generate a labelled transition system (LTS) from the temp.lps and
write the result to OUTFILE.svc. The option ftree is used to store
state internally in tree format for e�cient usage of memory.

6. ltsconvert -ebisim -v OUTFILE.svc OUTFILE.aut
To convert the labelled transition system (LTS) in OUTFILE.svc to
OUTFILE.aut after applying the modulo strong bisimilarity as min-
imisation method.

7. bcg_io OUTFILE.aut OUTFILE.bcg
To convert graphs from OUTFILE.aut into the Binary Coded Graphs
(BCG) format, which is the input format for CADP toolset.

8. bcg_open OUTFILE.bcg evaluator -verbose -bfs -diag FORMULA.mcl
To diagnose that whether the formula given in FORMULA.mcl satis-
�ed or not. In case it is refuted then a trace showing the counter
example is displayed due to the option diag where the option bfs is
used for breadth �rst search.

Algorithm 1 Algorithm 2

Time to generate state space 9h54m0s 1h37m0s

Number of states 1507990 45329

R1 12m13.470s 0m22.013s

R2 12m4.160s 0m22.135s

R3 7m17.847s 0m9.490s

R4 0m5.573s 0m0.315s

Table 1: Time required for the veri�cation using the CADP toolset

We also apply another tool for model-checking, called PBES2Bool (ver-
sion June 2009), which is part of the mCRL2 toolset and give the required
amount of time for the veri�cation in Table 2. The advantage of this tool,
compared to the Evaluator tool, is that it does not require generation of
state space and the time required for the veri�cation of each individual re-
quirement is less than the time needed to both generate the state space and
verify the same requirement in CADP, shown in Table 2. However, the total

22

time for the veri�cation of all the requirements is little bit longer: namely
1h38m24.304s for PBES2Bool vs 1h37m53.953s for generating state-space
plus modelchecking in CADP. We could verify the requirements only for Al-
gorithm 2 with n = 3 because of its smaller number of transitions. To get
the results we use the following commands in the given order after generat-
ing linear process speci�cation in temp.lps �le (after step 4 given above) and
specify µ-calculus formulae in FORMULA.mcf �le.

1. lps2pbes -f FORMULA.mcf temp.lps OUTFILE.pbes
To convert the state formula in FORMULA.mcf and the LPS in temp.lps
to a parameterized boolean equation system (PBES) and save it to
OUTFILE.pbes.

2. pbesparelm -v temp.pbes OUTFILE.pbes
To apply parameter elimination on temp.pbes and write it to OUT-
FILE.pbes.

3. pbes2bool -vprjittyc OUTFILE.pbes -s1
To solve the parameterized boolean equation system (PBES) in OUT-
FILE.pbes. The option vprjittyc is combination of multiple abbrevi-
ations; v to display short intermediate messages, p to precompile the
pbes for faster rewriting and r to use the rewrite strategy, called jittyc
[10].

Algorithm 2

R1 40m58.730s

R2 42m15.587s

R3 14m59.494s

R4 0m10.493s

Table 2: Time required for veri�cation using the mCRL2 toolset

5 Conclusions

In fault-tolerant distributed systems, the consensus problem plays a funda-
mental role [9]. In the consensus problem, every process proposes a value
and if it remains non-crashed during execution then it eventually decides a
value with the property that the decision is irrevocable and unanimous [8].
Consensus cannot be solved in asynchronous distributed systems with crash
failures [4]. Hence to implement consensus, participating processes rely on a
notion of the failure detector. A failure detector is called perfect, if it never
suspects a correct process but eventually suspects every crashed process. In
asynchronous systems, it is impossible to devise a perfect failure detector be-
cause it cannot di�erentiate between a crashed failure and a slow process. In

23

[1], unreliable failure detector are introduces to solve the consensus problem
in an asynchronous system with crash failures provided that they satisfy the
properties of completeness and accuracy.

In this paper, we formalized two distributed algorithms for the consensus
problem with their requirements. Our veri�cation shows that all of the
requirements are satis�ed by both algorithms. We presented our approach
for speci�cation of the protocols in the mCRL2 syntax and the requirements
in the modal µ-calculus. We devised a common failure detector that satis�es
weak accuracy and strong completeness (or eventual strong completeness).
We model-checked the behaviour of the protocols with three participating
process.

Acknowledgements

The author would like to thank MohammadReza Mousavi, Jan Friso Groote
and Muhammad Rizwan Asghar for reviews and valuable comments.

References

[1] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors
for reliable distributed systems. J. ACM, 43(2):225�267, 1996.

[2] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Laurent
Mounier, Radu Mateescu, and Mihaela Sighireanu. Cadp - a protocol
validation and veri�cation toolbox. In CAV, pages 437�440, 1996.

[3] Michael J. Fischer. The consensus problem in unreliable distributed
systems (a brief survey). In Marek Karpinski, editor, FCT, volume 158
of Lecture Notes in Computer Science, pages 127�140. Springer, 1983.

[4] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. J. ACM, 32(2):374�
382, 1985.

[5] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2006: A Toolbox for the Construction and Analysis of Dis-
tributed Processes. In Werner Damm and Holger Hermanns, editors,
Computer Aided Veri�cation (CAV'2007) Lecture Notes in Computer

Science, volume 4590 of Lecture Notes in Computer Science, pages 158�
163, Berlin Germany, 2007.

[6] Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg, and
Yaroslav S. Usenko. From µCRL to mCRL2: motivation and outline.
Electr. Notes Theor. Comput. Sci., 162:191�196, 2006.

24

[7] Dexter Kozen. Results on the propositional mu-calculus. Theor. Com-

put. Sci., 27:333�354, 1983.

[8] Ajay D. Kshemkalyani and Mukesh Singhal. Distributed Computing.
Cambridge University Press, The Edinburgh Building, Cambridge CB2
8RU, UK, 2008.

[9] Gil Neiger and Sam Toueg. Automatically increasing the fault-tolerance
of distributed algorithms. J. Algorithms, 11(3):374�419, 1990.

[10] Muck van Weerdenburg. An account of implementing applicative term
rewriting. Electron. Notes Theor. Comput. Sci., 174(10):139�155, 2007.

25

A mCRL2 speci�cation for consensus problem with

strong completeness and weak accuracy

This is the mCRL2 speci�cations of the consensus problem discussed in Sec-
tion 2.2.

1 map

2

3 N : N;
4 minus : List(N)× List(N) → List(N);
5 eliminate : List(N)× N → List(N);
6 update_V : List(N)× List(List(N)) → List(N);
7 removeBottom : List(N)× List(N) → List(N);
8 update_V 2phase : List(List(N))× List(N)× N → List(N);
9 updateDelta : List(N)× List(N)× List(N) → List(N);
10 findDecided : List(N) → N;
11 π : List(N);
12 updateMsgs : N× List(List(N))× List(N) → List(List(N));
13 updateCrashed : List(N)× N → List(N);
14 addcrashed : List(N)× List(N) → List(N);
15 makeIdentical : List(N)× List(N) → List(N);
16 updateLastmsgs : List(List(N))× List(N) → List(N);
17 Correct : N;
18

19 var

20

21 ln, lg, ld : List(N);
22 msgs : List(List(N));
23 lb : List(B);
24 x, m, n, k : N;
25 s, b, p : B;
26

27 eqn

28

29 updateLastmsgs(lg B msgs, ln) =
30 if(#msgs > 0, updateLastmsgs(msgs, makeIdentical(lg, ln)), makeIdentical(lg, ln));
31 updateLastmsgs([], ln) = ln;
32 makeIdentical(ln, []) = [];
33 makeIdentical(x B lg, n B ln) = %0 i s used f o r ⊥
34 if(x ≈ 0, 0 B makeIdentical(lg, ln), n B makeIdentical(lg, ln));
35 N = 3; % Total Number o f p r o c e s s e s
36 π = [0, 1, 2]; %IDs o f the p r o c e s s e s
37 Correct = 2; %ID of the c o r r e c t p roce s s
38 minus([], lg) = [];
39 minus(ln, []) = ln;
40 minus(n B ln, m B lg) = if(m ∈ n B ln, minus(eliminate(n B ln, m), lg), minus(n B ln, lg));
41 eliminate(n B ln, m) = if(n ≈ m, ln, n B eliminate(ln, m));
42 updateDelta([], lg, ln) = [];
43 updateDelta(n B lg, m B ln, x B ld) =
44 if(m 6≈ n, m B updateDelta(lg, ln, ld), x B updateDelta(lg, ln, ld));
45 update_V (ln, lg B msgs) =
46 if(#msgs > 0, update_V (removeBottom(ln, lg), msgs), removeBottom(ln, lg));
47 removeBottom(n B ln, k B lg) =
48 if(n ≈ 0 ∧ k 6≈ 0, k B removeBottom(ln, lg), n B removeBottom(ln, lg));
49 removeBottom([], []) = [];
50 removeBottom([], lg) = [];
51 removeBottom(ln, []) = [];
52 update_V 2phase(msgs, [], k) = [];
53 update_V 2phase(ln B msgs, n B lg, k) =
54 if(ln.k ≈ 0, 0 B update_V 2phase(msgs, lg, k + 1),
55 n B update_V 2phase(msgs, lg, k + 1));

26

56 findDecided([]) = 0;
57 findDecided(n B ln) = if(n 6≈ 0, n, findDecided(ln));
58 updateMsgs(0, lg B msgs, ln) = ln B msgs;
59 updateMsgs(0, [], ln) = [ln];
60 (n > 0) → updateMsgs(n, lg B msgs, ln) = lg B updateMsgs(Int2Nat(n− 1), msgs, ln);
61 updateCrashed([], n) = [];
62 updateCrashed(ln, n) = if(n ∈ ln, ln, n B ln);
63 addcrashed([], []) = [];
64 addcrashed(ln, []) = ln;
65 addcrashed(ln, n B lg) = if(n ∈ ln, addcrashed(ln, lg), n B addcrashed(ln, lg));
66

67 act

68

69 send2all, rcv, broadcast : N× List(N)× N;
70 sendTo, receive, received : N× List(N)× N× N;
71 decide : N× N;
72 rcv_crashing, rcv_query : N ;
73 send_list, queryFD, getCrashedList : List(N)× N;
74 suspected : N× N× B;
75 crashed,
76 send_stopWaiting, rcv_stopWaiting, stopWaiting, strongComplete : N;
77 suspect : N× N;
78

79 proc

80

81 %%
82 % Process f o r f a i l u r e de t e c t o r
83 %%
84 FD(crashed : List(N)) =

P
id:N rcv_addRequest(id).FD(update_crashed(crashed, id))

85 +
86 (send_list(crashed, 0)
87 +send_list(crashed, 1)
88 +send_list(crashed, 2)).FD(crashed);
89 %%
90 % Process f o r Channel
91 %%
92 Channel(myId, round : N) =
93

P
∆:List(N) .rcv(round, ∆, myId).

94 randomBroadcast(round, ∆, myId, 0, π);
95

96 randomBroadcast(round : N, ∆ : List(N), myId, i : N, to : List(N)) =
97 (i < N) → (
98 (0 ∈ to) → sendTo(round, ∆, myId, 0).
99 randomBroadcast(round, ∆, myId, i + 1, minus(to, [0]))
100 +
101 (1 ∈ to) → sendTo(round, ∆, myId, 1).
102 randomBroadcast(round, ∆, myId, i + 1, minus(to, [1]))
103 +
104 (2 ∈ to) → sendTo(round, ∆, myId, 2).
105 randomBroadcast(round, ∆, myId, i + 1, minus(to, [2]))
106)
107 �
108 Channel(myId, round);
109

110 %%
111 % Process f o r Phase 1
112 %%
113 % each proce s s sends i t message to a l l and r e c e i v e from a l l
114 % then i t p r o c e s s e s the messages o f only not−suspected p r o c e s s e s .
115

116 Phase1(myId, round : N, V, ∆ : List(N), msgs : List(List(N)), msg_sent : B) =
117 (myId 6≈ Correct) → crashed(myId).CrashedProc(myId, false, false, false)

27

118 +
119 (round ≤ N − 1) → ((¬msg_sent) → send2all(round, ∆, myId).
120 Phase1(myId, round, V, ∆, msgs, true)
121 �
122

P
lst:List(N) .queryFD(lst, myId).

123 WaitandReceive(myId, round, V, ∆, msgs, minus(π, lst))
124)
125 �
126 Phase2(myId, V, [minus([0], [0]), minus([0], [0]), minus([0], [0])], false);
127

128 %%
129 % Process f o r Wait and r e c e i v e
130 %%
131

132 WaitandReceive(myId, round : N, V, ∆ : List(N), msgs : List(List(N)), from : List(N)) =
133 (#from > 0) → (
134 (0 ∈ from) →

P
∆q :List(N) .receive(round, ∆q , 0, myId).

135 (suspected(myId, 0, false).
136 WaitandReceive(myId, round, V, [⊥,⊥,⊥], updateMsgs
137 (0, msgs, ∆q), minus(from, [0]))
138 +
139 suspected(myId, 0, true).
140 WaitandReceive(myId, round, V, [0, 0, 0], msgs, minus(from, [0]))
141)
142 +
143 (1 ∈ from) →

P
∆q :List(N) .receive(round, ∆q , 1, myId).

144 (suspected(myId, 1, false).
145 WaitandReceive(myId, round, V, [⊥,⊥,⊥], updateMsgs
146 (1, msgs, ∆q), minus(from, [1]))
147 +
148 suspected(myId, 1, true).
149 WaitandReceive(myId, round, V, [⊥,⊥,⊥], msgs, minus(from, [1]))
150)
151 +
152 (2 ∈ from) →

P
∆q :List(N) .receive(round, ∆q , 2, myId).suspected(myId, 2, false).

153 WaitandReceive(myId, round, V, [⊥,⊥,⊥],
154 updateMsgs(2, msgs, ∆q), minus(from, [2]))
155 +
156 (0 ∈ from) → rcv_stopWaiting(0).WaitandReceive(myId, round, V,
157 [⊥,⊥,⊥], msgs, minus(from, [0]))
158 +
159 (1 ∈ from) → rcv_stopWaiting(1).WaitandReceive(myId, round, V,
160 [⊥,⊥,⊥], msgs, minus(from, [1]))
161)
162 �
163 Phase1(myId, round + 1, update_V (V, msgs),
164 updateDelta(V, update_V (V, msgs), [⊥,⊥,⊥]), msgs, false);
165

166 % a f t e r c ra sh ing
167 CrashedProc(myId : N, mt2, mt3, stronglyComplete : B) =
168 (¬stronglyComplete) → send_addRequest(myId).CrashedProc(myId, mt2, mt3, true)
169 +
170

P
q,round:N .

P
∆q :List(N) .

171 receive(round, ∆q , q, myId).CrashedProc(myId, mt2, mt3, stronglyComplete)
172 +
173 % A proce s s p i s crashed be f o r e sending a message to q , and
174 % q i s wai t ing because q quer i ed FD when p was a l i v e , so q w i l l
175 % cont inue to wait u n t i l p i s added to the l i s t crashed in FD.
176 % The paramters mt2 and mt3 are to ensure the occur rence o f the
177 % send_stopWaiting ac t i on only once .
178

28

179 (¬mt2 ∧ stronglyComplete) → send_stopWaiting(myId).
180 CrashedProc(myId, true, mt3, stronglyComplete);
181 +
182 (¬mt3 ∧ stronglyComplete) → send_stopWaiting(myId).
183 CrashedProc(myId, mt2, true, stronglyComplete)
184

185 %%
186 % Process f o r Phase 2
187 %%
188 % message sent in round 0 means phase−2 as the re i s no
189 % round in phase 2 but in phase 1 rounds are 1 to n−1
190

191 Phase2(myId : N, V : List(N), lastmsgs : List(List(N)), V _sent : B) =
192 (myId 6≈ Correct) → crashed(myId).CrashedProc(myId, false, false, false)
193 +
194 (¬V _sent) → send2all(0, V, myId).Phase2(myId, V, lastmsgs, true)
195 �
196

P
lst:List(N) .queryFD(lst, myId).

197 WaitandReceive2(myId, V, lastmsgs, minus(π, lst));
198

199 WaitandReceive2(myId : N, V : List(N), lastmsgs : List(List(N)), from : List(N)) =
200 (#from > 0) →

P
q:N
P

V _q:List(N) .receive(0, V _q, q, myId).

201 WaitandReceive2(myId, V, updateMsgs(q, lastmsgs, V _q),
202 minus(from, [q]))
203 �
204 Phase3(myId, updateLastmsgs(lastmsgs, V));
205

206 %%
207 % Process f o r Phase 3
208 %%
209 Phase3(myId : N, V : List(N)) = decide(myId, findDecided(V));
210

211 %%
212 % Process f o r Consensus
213 %%
214

215 Consensus = τ{stopWaiting},

216 (∇{decide,received,broadcast,getCrashedList

217 ,crashed,stopWaiting,suspected,strongComplete},

218 Γ({sendTo|receive→received,

219 send_list|queryFD→getCrashedList,

220 send2all|rcv→broadcast,

221 send_addRequest|rcv_addRequest→strongComplete,

222 send_stopWaiting|rcv_stopWaiting→stopWaiting},

223 Phase1(0, 1, [7, 0, 0], [7, 0, 0], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], false) ‖
224 Phase1(1, 1, [0, 5, 0], [0, 5, 0], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], false) ‖
225 Phase1(2, 1, [0, 0, 9], [0, 0, 9], [[0, 0, 0], [0, 0, 0], [0, 0, 0]], false) ‖
226 Channel(0, 0) ‖ Channel(0, 1) ‖
227 Channel(1, 0) ‖ Channel(1, 1) ‖
228 Channel(2, 0) ‖ Channel(2, 1) ‖
229 FD([])
230));
231 in i t

232 Consensus;

29

B mCRL2 speci�cation for consensus problem with

strong completeness and eventual weak accuracy

This is the mCRL2 speci�cations of the consensus problem discussed in Sec-
tion 2.3.

1 sort

2

3 Ack_Type = struct ack | nack;
4

5 map

6

7 N : Pos;
8 Correct : N;
9 π : List(N);
10 minus : List(N)× List(N) → List(N);
11 eliminate : List(N)× N → List(N);
12 isGreater : N× N → N;
13 updateEstimate : N× N× N× N → N;
14 addcrashed : List(N)× List(N) → List(N);
15 Addcrashed : List(N)× List(N) → List(N);
16 updateCrashed : List(N)× N → List(N);
17

18 var

19

20 ln, lg, ld : List(N);
21 msgs : List(List(N));
22 lb : List(B);
23 x, m, n, k : N;
24 s, b : B;
25

26 eqn

27

28 N = 3;
29 Correct = 2;
30 π = [0, 1, 2];
31 minus([], lg) = [];
32 minus(ln, []) = ln;
33 minus(n B ln, m B lg) = if(m ∈ n B ln, minus(eliminate(n B ln, m), lg), minus(n B ln, lg));
34 eliminate(n B ln, m) = if(n ≈ m, ln, n B eliminate(ln, m));
35 isGreater(n, m) = if(m > n, m, n);
36 updateEstimate(x, k, n, m) = if(m > n, k, x);
37 Addcrashed(n B ln, lg) =
38 if(n ≈ Correct, addcrashed(ln, lg), addcrashed(n B ln, lg));
39 Addcrashed([], lg) = lg;
40 addcrashed([], []) = [];
41 addcrashed(ln, []) = ln;
42 addcrashed(ln, n B lg) = if(n ∈ ln, addcrashed(ln, lg), n B addcrashed(ln, lg));
43 updateCrashed([], n) = [];
44 updateCrashed(ln, n) = if(n ∈ ln, ln, n B ln);
45

46 act

47

48 send, rcv, broadcast : N× N× N× N× N;
49 sendTo, rcvfrom, received : N× N× N× N× N× N;
50 weakAccuracy, replyQuery, rcv_list, queryFD : List(N)× N× N;
51 sendDecision, rcvDecision, DecisionBC : N× N× B× List(N);
52 rcvDecisioFrom, sendDecisionTo, DecisionRcvd : N× B× N;
53 decide : N× N;
54 send3, rcv3, SendAckNack : N× N×Ack_Type× N;
55 sendAckNack, rcvAckNack, AckNack_rcvd : N× N×Ack_Type× N;

30

56 rcv_crashed, send_crashed, crashed, waiting4decision : N;
57 send_CFailure, rcv_CFailure, CFailure : N× N;
58 send_addRequest, rcv_addRequest, strongComplte : N;
59

60 proc

61

62 FD(crashed : List(N), totalCrashed : N, weaklyAccurate : B) =
63 % only one proce s s out o f three i s a l lowed to crash
64 (totalCrashed ≈ 0) →

P
id:N .rcv_crashed(id).

65 FD(crashed, totalCrashed + 1, weaklyAccurate)
66 +
67
P

id:B .rcv_addRequest(id).FD(updateCrashed(crashed, id), totalCrashed, weaklyAccurate)
68 +
69 (¬weaklyAccurate) → weakAccuracy.FD(crashed, totalCrashed, true)
70 +
71 ((weaklyAccurate) → (

P
round:N .replyQuery(Addcrashed(((round mod N) + 1) B [], crashed), 0, round)

72 +
73

P
round:N .replyQuery(crashed, 0, round)

74 +
75

P
round:N .replyQuery(Addcrashed(((round mod N) + 1) B [], crashed), 1, round)

76 +
77

P
round:N .replyQuery(crashed, 1, round)

78 +
79

P
round:N .replyQuery(Addcrashed(((round mod N) + 1) B [], crashed), 2, round)

80 +
81

P
round:N .replyQuery(crashed, 2, round)

82)
83 �
84 (
85

P
round:N .replyQuery(Addcrashed([Correct], crashed), 0, round)

86 +
87

P
round:N .replyQuery(crashed, 0, round)

88 +
89

P
round:N .replyQuery(Addcrashed([Correct], crashed), 1, round)

90 +
91

P
round:N .replyQuery(crashed, 1, round)

92 +
93

P
round:N .replyQuery(Addcrashed([Correct], crashed), 2, round)

94 +
95

P
round:N .replyQuery(crashed, 2, round)

96)
97).FD(crashed, totalCrashed, weaklyAccurate);
98

99 %%
100 % Process f o r Channels
101 %%%
102

103 Channel(myId, round : N) =
104

P
estimate,ts,phase:N .rcv(phase, myId, round, estimate, ts).

105 randomBroadcast(phase, myId, round, estimate, ts, π);
106 randomBroadcast(phase, myId, round, estimate, ts : N, T o : List(N)) =
107 (phase ≈ 2) →
108 ((#To > 0) → (
109 (0 ∈ To) → sendTo(phase, myId, round, estimate, ts, 0).
110 randomBroadcast(phase, myId, round, estimate, ts, minus(To, [0]))
111 +
112 (1 ∈ To) → sendTo(phase, myId, round, estimate, ts, 1).
113 randomBroadcast(phase, myId, round, estimate, ts, minus(To, [1]))
114 +
115 (2 ∈ To) → sendTo(phase, myId, round, estimate, ts, 2).
116 randomBroadcast(phase, myId, round, estimate, ts, minus(To, [2]))
117) � Channel(myId, round)

31

118)�
119 (sendTo(phase, myId, round, estimate, ts, (round mod N) + 1)
120).Channel(myId, round);
121

122 Channel4AckNack(myId, round : N) =
123

P
to:N,msg_type:Ack_Type .rcv3(myId, round, msg_type, to).

124 (sendAckNack(myId, round, msg_type, to).Channel4AckNack(myId, round);
125

126 Channel4Decision(myId : N) =
127
P

estimate:N .
P

�ag:B .
P

To:List(N) .rcvDecision(myId, estimate,�ag, T o).

128 randomBroadcastDecision(myId, estimate, flag, To);
129

130 randomBroadcastDecision(myId, estimate : N, f lag : B, T o : List(N)) =
131 (#To > 0) →
132 ((0 ∈ To) → sendDecisionTo(estimate, flag, 0).
133 randomBroadcastDecision(myId, estimate, flag, minus(To, [0]))
134 +
135 (1 ∈ To) → sendDecisionTo(estimate, flag, 1).
136 randomBroadcastDecision(myId, estimate, flag, minus(To, [1]))
137 +
138 (2 ∈ To) → sendDecisionTo(estimate, flag, 2).
139 randomBroadcastDecision(myId, estimate, flag, minus(To, [2]))
140)
141 �
142 Channel4Decision(myId);
143

144 %%
145 % Process f o r Phase 1
146 %%
147

148 Phase1(myId, round, estimate, ts : N) =
149 (round ≤ N) → send(1, myId, round, estimate, ts).Phase2(myId, round, estimate, ts, π, 0)
150 �
151 send(1, myId, 0, estimate, ts).Phase2(myId, 0, estimate, ts, π, 0)
152 +
153 (myId 6≈ Correct) → send_crashed(myId).Crashed(myId, round, minus(π, [myId]), false);
154

155 Phase2(myId, round, estimate, ts : N, from : List(N), i : N) =
156 (myId 6≈ Correct) → send_crashed(myId).Crashed(myId, round, minus(π, [myId]), false)
157 +
158 ((round mod N) + 1 ≈ myId ∧#from > 0) →
159 ((i < (N + 1) div 2) →
160

P
q,estimateq,tsq :N .

161 rcvfrom(1, q, round, estimate_q, ts_q, myId).
162 Phase2(myId, round, updateEstimate(estimate,
163 estimateq , ts, tsq), isGreater(ts, tsq),
164 minus(from, [q]), i + 1
165)
166 �
167 send(2, myId, round, estimate, ts).
168 Phase3(myId, round, estimate, ts)
169)
170 �
171 Phase3(myId, round, estimate, ts);
172

173 % locked value i s r e c e i v ed from coo rd i a t o r and
174 % ack or nack i s sent back .
175 Phase3(myId, round, estimate, ts : N) =
176 (myId 6≈ Correct) → send_crashed(myId).Crashed(myId, round, minus(π, [myId]))
177 +
178 rcv_CFailure(myId, round).Phase1(myId, round + 1, estimate, ts)

32

179 +
180

P
estq,tsq :N .rcvfrom(2, (round mod N) + 1, round, estq , tsq , myId).

181
P

lst:List(N) .rcv_list(lst, myId, round).

182 ((round mod N) + 1 ∈ lst) → send3(myId, round, nack, (round mod N) + 1).
183 Phase4(myId, round, estimate, ts, 0, π)
184 �
185 send3(myId, round, ack, (round mod N) + 1).
186 Phase4(myId, round, estq , tsq , 0, π);
187

188 Phase4(myId, round, estimate, ts, i : N, from : List(N)) =
189 (myId 6≈ Correct) →
190 send_crashed(myId).Crashed(myId, round, minus(π, [myId]), false)
191 +
192 ((round mod N) + 1 ≈ myId) →
193 ((i < (N + 1) div 2) →
194 (

P
q:N .
P

msg_type:Ack_Type .rcvAckNack(q, round, msg_type, myId).

195 (msg_type ≈ ack) →
196 Phase4(myId, round, estimate,
197 ts, i + 1, minus(from, [q]))
198 �
199 StartNextRound(myId, round, estimate,
200 ts, minus(from, [q]))
201)
202 �
203 sendDecision(myId, estimate, true, minus(π, [myId])).
204 decide(myId, estimate).δ
205)
206 �
207 Wait4decision(myId, round, estimate, ts, false, false);
208

209 StartNextRound(myId, round, estimate, ts : N, from : List(N)) =
210 (#from > 0) →

P
msg_type:Ack_Type .

211 ((0 ∈ from) → (rcvAckNack(0, round, msg_type, myId)
212 +
213 rcv_discardWaiting(0, myId)
214).
215 StartNextRound(myId, round, estimate, ts, minus(from, [0]))
216 +
217 (1 ∈ from) → (rcvAckNack(1, round, msg_type, myId)
218 +rcv_discardWaiting(1, myId)
219).StartNextRound(myId, round, estimate
220 , ts, minus(from, [1]))
221 +(2 ∈ from) → (rcvAckNack(2, round, msg_type, myId)
222 +rcv_discardWaiting(2, myId)
223).StartNextRound(myId, round, estimate
224 , ts, minus(from, [2]))
225)
226 �
227 sendDecision(myId, estimate, false, minus(π, [myId])).
228 Phase1(myId, round + 1, estimate, ts);
229

230 Wait4decision(myId, round, estimate, ts : N, decided, finish : B) =
231 waiting4decision(myId).(
232 rcv_CFailure(myId, round).Phase1(myId, round + 1, estimate, ts)
233 +
234

P
v:N .
P

done:B .rcvDecisionFrom(v, done, myId)
235 .(done) → decide(myId, v).δ
236 �
237 Phase1(myId, round + 1, estimate, ts));
238

239

33

240 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
241 % Crashed Process
242 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
243

244 Crashed(myId, round : N, ls1 : List(N), stronglyComplete : B) =
245 (¬stronglyComplete) → send_addRequest(myId).Crashed(myId, round, ls2, true)
246 ((round mod N) + 1 ≈ myId ∧#ls1 > 0) → (
247 (stronglyComplete) → (send_CFailure(0, round).Crashed(myId, round,
248 minus(ls1, [0]), stronglyComplete)
249 +send_CFailure(1, round).Crashed(myId, round, minus(ls1, [1]), stronglyComplete)
250 +send_CFailure(2, round).Crashed(myId, round, minus(ls1, [2]), stronglyComplete)
251 +

P
q:N .summsg_type : Ack_Type.

252 rcvAckNack(q, round, msg_type, myId).Crashed(myId, round, ls1, stronglyComplete)
253)) � (
254 (stronglyComplete) → send_discardWaiting(myId, 0)
255 +send_discardWaiting(myId, 1)
256 +send_discardWaiting(myId, 2)
257 +

P
q,estimateq,tsq :N .rcvfrom(1, q, round, estimateq , tsq , myId)

258 +
P

q,estimateq,tsq :N .rcvfrom(2, q, round, estimateq , tsq , myId)

259 +
P

v:N .
P

done:B .rcvDecisioFrom(v, done, myId).
260 (done) → decide(myId, v)
261 �Crashed(myId, round, ls1, stronglyComplete)
262 +

P
q:N .summsg_type : Ack_Type.

263 rcvAckNack(q, round, msg_type, myId).Crashed(myId, round, ls1, stronglyComplete)
264).Crashed(myId, round, ls1, stronglyComplete);
265

266 Consensus = ΥdiscardWaiting ,
267 (∇{broadcast,received,queryFD,decide,DecisionBC,

268 DecisionRcvd,SendAckNack,AckNack_rcvd,strongComplte,weakAccuracy

269 ,crashed,discardWaiting,waiting4decision,CFailure},

270 Γ({send|rcv→broadcast,

271 sendTo|rcvfrom→received,

272 replyQuery|rcv_list→queryFD,

273 send3|rcv3→SendAckNack,

274 sendAckNack|rcvAckNack→AckNack_rcvd,

275 sendDecision|rcvDecision→DecisionBC,

276 rcvDecisioFrom|sendDecisionTo→DecisionRcvd,

277 send_CFailure|rcv_CFailure→CFailure,

278 rcv_crashed|send_crashed→crashed,

279 rcv_discardWaiting|send_discardWaiting→discardWaiting,

280 send_addRequest|rcv_addRequest→strongComplte},

281 Phase1(0, 0, 5, 1) ‖ Phase1(1, 0, 7, 1) ‖ Phase1(2, 0, 2, 1) ‖
282 Channel(0, 0) ‖ Channel(0, 1) ‖ Channel(0, 2) ‖
283 Channel(1, 0) ‖ Channel(1, 1) ‖ Channel(1, 2) ‖
284 Channel(2, 0) ‖ Channel(2, 1) ‖ Channel(2, 2) ‖
285 FD([], 0) ‖
286 Channel4AckNack(0, 0) ‖ Channel4AckNack(0, 1) ‖ Channel4AckNack(0, 2) ‖
287 Channel4AckNack(1, 0) ‖ Channel4AckNack(1, 1) ‖ Channel4AckNack(1, 2) ‖
288 Channel4AckNack(2, 0) ‖ Channel4AckNack(2, 1) ‖ Channel4AckNack(2, 2) ‖
289 Channel4Decision(0) ‖ Channel4Decision(1) ‖ Channel4Decision(2)
290));
291 in i t

292 Consensus;

34

