
c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 1

Dpto. Ingenierı́a de Sistemas Telemáticos
Universidad Politécnica de Madrid

An Introduction to LOTOS

Arturo Azcorra Saloña
Juan Quemada Vives

Santiago Pavón Gómez

Contents

INTRODUCTION � 2
System Specification vs. Implementation � � � � � � � � � � � � � � � � � 3
Abstract Modeling and Behavior � 4
CHAPTER 1: SEQUENTIAL BEHAVIOUR � � � � � � � � � � � � � 5
Input/Output � 6
Input � 7
Output � 8
Action prefix: “;” � 9
Example of action prefix � 10
Choice: “[]” � 11
Example of Choice � 12
Guard: “[<exp1> = <exp2>] ->” � � � � � � � � � � � � � � � � 13
Example of Guard � 14
Processes � 15
Process Definition and Instantiation (I) � � � � � � � � � � � � � � � � � � 16
Process Definition and Instantiation (II) � � � � � � � � � � � � � � � � � 17
Example of Recursivity (I) � 18
Example of Recursivity (II) � 19
Process: Example of Gate Relabeling � � � � � � � � � � � � � � � � � � � 20
Summary of Basic Operators � 21
Overview of Data Types � 22
Data Type Library (I) � 23
Data Type Library (II) � 24
Examples of Data Type Expressions � 25
Structure of a Specification � 26
CHAPTER 2: EXTENDED FINITE STATE MACHINES � 27
Extended Finite State Machines (EFSM) � � � � � � � � � � � � � � � � 28
The State Diagram � 29
Extended Finite State Machine in LOTOS � � � � � � � � � � � � � � � 30
Template of EFSM in LOTOS � 31
Example of EFSM in LOTOS � 32
Extended Finite State Machine in SDL � � � � � � � � � � � � � � � � � � 33
Example of EFSM in SDL � 34
CHAPTER 3: CONCURRENCY � 35
Interleaving: “|||” � 36
Example of Interleaving (I) � 37
Example of Interleaving (II) � 38

Synchronization: Value Passing � 39
Partial Synchronization: “|[<gates>]|” � � � � � � � � � � � 40
Example of Partial Synchronization (I) � � � � � � � � � � � � � � � � � � 41
Example of Partial Synchronization (II) � � � � � � � � � � � � � � � � � 42
Example of Partial Synchronization (III) � � � � � � � � � � � � � � � � 43
Full Synchronization: “||” � 44
Example of Full Synchronization � 45
Summary of Parallel Operators � 46
Deadlock � 47
Inaction: “stop” � 48
Example of Inaction (I) � 49
Example of Inaction (II) � 50
Resource Oriented Specification (I) � 51
Example of Resource Oriented Specification � � � � � � � � � � � � � 52
CHAPTER 4: COMMUNICATING EFSMs � � � � � � � � � � � � � 53
Synchronous vs. Asynchronous Communication � � � � � � � � � 54
Synchronous vs. Asynchronous Communication � � � � � � � � � 55
Synchronous Communication in LOTOS � � � � � � � � � � � � � � � � 56
Asynchronous Communication in LOTOS � � � � � � � � � � � � � � 57
Asynchronous Communication in SDL � � � � � � � � � � � � � � � � � 58
Characteristics of Asynchronous Communication � � � � � � � � 59
CHAPTER 5: HIDING, INTERNAL EVENT, NON DETER-
MINISM AND ABSTRACTION � 60
Hiding � 61
Example of Hiding � 62
Internal Event: “i” � 63
Example of Non-Determinism � 64
Example of Partial Specification (I) � 65
Example of Partial Specification (II) � 66
CHAPTER 6: ENABLING AND DISABLING � � � � � � � � � � 67
Successful Termination: “exit(<values>)” � � � � � � � � � 68
Enabling: “>> accept <variables> in” � � � � � � � � � 69
Example of Enabling � 70
Disabling � 71
Example of Disabling � 72
Summary of Enabling and Disabling � � � � � � � � � � � � � � � � � � � 73
CHAPTER 7: DEFINING DATA TYPES � � � � � � � � � � � � � � � 74
Writting Data Types � 75
Defining Operations � 76

Using Variables in the Equations � 77
Writting Equations � 78
Example on Writting Equations � 79
Conditional Equations as Rewrite Rules � � � � � � � � � � � � � � � � � 80
Example of Conditional Equations � 81
Correct Rewrite Systems � 82
Hints for Writing Equations � 83
Renaming of Types � 84
Example of Renaming � 85
CHAPTER 8: MORE ON SYNCHRONIZATION � � � � � � � 86
Event Structure � 87
Selection Predicate: “<event> [<exp1> = <exp2>] ;”
88
Symmetric Rendez-vous � 89
Value Matching � 90
Value Negociation � 91
Example of Value Negociation � 92
Summary of Interacion Types � 93
Synchronization Conditions � 94
Multi-way Rendez-vous � 95
Constraint Oriented Specification � 96
CHAPTER 9: MORE ON DATA TYPES � � � � � � � � � � � � � � � 97
Defining Parameterized Data Types � 98
Example of a Parameterized Type (I) � � � � � � � � � � � � � � � � � � � 99
Example of a Parameterized Type (II) � � � � � � � � � � � � � � � � � 100
Actualization of Parameterized Data Types � � � � � � � � � � � � � 101
Example of Actualization � 102
CHAPTER 10: SCOPE OF IDENTIFIERS � � � � � � � � � � � � 103
Overloading of Identifiers � 104
Scope of Variables � 105
Scope of Process Definitions � 106
CHAPTER 11: OTHER CONCEPTS � � � � � � � � � � � � � � � � � 107
Termination and Parallelism (I) � 108
Termination and Parallelism (II) � 109
Let <var> = <expression> in � � � � � � � � � � � � � � � 110
Value and Gate Choice � 111
par <gateDeclarations> <parallelOp> � � � � � 112

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 2

INTRODUCTION

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 3

System Specification vs. Implementation

� A specification is a MODEL of a system at a given level of abstraction

� An implementation is the system itself

� Specifying means modeling, i.e., abstracting away from some aspects

� The specification may be tested, validated, used for performance analysis, ...

� The implementation may be obtained by adding to the specification the aspects that
were abstracted away

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 4

Abstract Modeling and Behavior

� Dynamic description of systems by “event ordering”.

� An event is an instance of communication.

� Events are atomic, instantaneous and sequential (never simultaneous).

� A system is specified by defining all the possible event orderings that an external
observer may detect.

� Event ordering is structured as a recursive tree.

� Graphical Representation:

a b c

�
�

a

�
�

�
�

�� �

b

�
�

�
�

� � �

c

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 4

Abstract Modeling and Behavior

The LOTOS model of a system is a black box with a number of gates that can be seen from its environment.

The first step when specifying a system is the selection of the relevant aspects of the system and decide how can these aspects
be mapped to gates. The events that are abstracted to describe a system define the granularity of the behavior of the system.

For example, to model a traffic light we could select three gates (R, G, Y), one for each of the colored lights. These abstraction
has been done under the point of view of a typical driver. Notice that we have abstracted away from many aspects, such as the
timing mechanism, the power source, etc.

The system behaves by activating its gates. An observable event or action corresponds to the activation of a gate.

The behavior of the system is specified by describing all the possible sequences of events that the system may offer to the
environment. Using again the semaphore example, its behavior could be specified as the following sequence of events:

G Y R G Y R G Y R G Y R G Y R ...

Events always occur sequentially. This is, events never occur simultaneously. This restriction is not so important as it may
appear in a first moment. In informatics simultaneity is not so frequent (two characters cannot appear simultaneously on the
screen, two keys may not be simultaneously pressed, nor can two telephone calls arrive simultaneously to our telephone).

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 5

CHAPTER 1: SEQUENTIAL BEHAVIOUR

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 6

Input/Output

� An instance of input/output is modeled with an event or action

� Input/output of data takes place through gates

� The system has an interface with a fixed number of gates

� Example of gate identifiers: Chan_in, BusVME

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 7

Input

� Input is modeled as accepting a value from the environment at a gate.

� The received value is stored in a variable

� The variables is locally declared in the value acceptance

� The declaration has a variable identifier and a variable sort

� Generic input (value acceptance):

<gate_name> ? <variable_name> : <sort_name>

� Example of input:

keyboard_in ? square_side : nat

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 8

Output

� Output is modeled as offering a value to the environment at a gate.

� The offered value is an expression

� An expression is formed by operators and variables

� Generic output (value offering):

<gate_name> ! <expression>

� Example of output:

keyboard_out ! (square_side * square_side)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 9

Action prefix: “;”

� Action prefix denotes sequentiality

� Action prefix composes an event and a behaviour description

� Example:
action ; B means that the system executes action and then behaves as B

Graphical Representation:

�
�

action
�

�
�

�
�

� �

�
�

�
�

�
��

�

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 9

Action prefix: “;”

The sequentiality between events is denoted by operator “;”, called action prefix. This operator composes an action “a” with a
behavior expression “B”. The composition is another behavior expression from which it is possible to initially observe event
“a”, and afterwards those events belonging to behavior “B”.

The intuitive meaning is that the system will initially accept event “a” behaving afterwards as “B”.

It it important to remember that operator action prefix does not take two behaviors as arguments, as most other operators do. Its
arguments are an event denotation and a behavior expression.

Events are usually represented as a line labeled with the event name. Behavior expression are usually represented as a triangle
(sequential representation) or as a box (parallel composition).

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 10

Example of action prefix

� An IP router receives datagrams and forwards them

� The IP router may be forced to segment a datagram

� Its behaviour could be abstracted as:

Net1_in ? in_datagram : ip_dtgrm
; Net2_out ! First_Segment(in_datagram)
; Net2_out ! Second_Segment(in_datagram)
; Net2_out ! Third_Segment(in_datagram)
;

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 11

Choice: “[]”

� The system offers to the environment two (or more) alternatives. This is, the system
may behave in severl ways.

� Choice composes two alternative behaviour descriptions. The environment will select
among both behaviour descriptions.

� Example:
<Beh_1> [] <Beh_2> means that the system behaves as either of both behaviours

� Graphical Representation of choice:
��� �

� � � � � �
� �

� � � � � �

�

2

��
������

��
������

�

1

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 11

Choice: “[]”

Operator choice composes two behavior expressions to form another one that will behave as either of them. The selection
between

�

1 and

�

2 depends on the first event that occurs. Once that an event belonging to
�

1 or

�

2 occurs, the behavior of the
expression will be that of the behavior to which the event belonged. The other behavior is discarded.

Intuitively it may be seen as two two state machines in which their initial states are joined. Thus, once that a transition of the
state machines is fired the system will behave as that particular state machine.

The usual way to represent choice graphically is by joining the root of the behavior trees of both behaviors or the top vertex of
the triangles representing them.

Notice that using action prefix and choice it is possible to describe the behavior of a system as a tree of events. Operator “;”
makes the tree deeper (more levels) and operator

��

allows the addition of branches to the nodes of the trees.

Operators “;” and “

��

” are the basic operators of LOTOS. The semantics of all the other operators may be represented in terms
of an equivalent tree using only “;” and “

��

”.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 12

Example of Choice

� An IP router may receive datagrams on net 1 or net 2

(Net1_in ? in_datagram : ip_dtgrm
; Net2_out ! First_Segment(in_datagram)
;)

[]
(Net2_in ? in_datagram : ip_dtgrm

; Net1_out ! First_Segment(in_datagram)
;)

� Initially, events Net1_in... and Net2_in... are offered to the environment.

� Once that the environment selects one, it is only offered the next sequential event.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 13

Guard: “[<exp1> = <exp2>] ->”

� A guard is a predicate over values that prefixes a behaviour

� The typical use is to select internally between actions in a choice

� Example of a Teller Machine:

([cash_in_account = true] ->
; Money_dispenser ! requested_money
;)

[]
([cash_in_account = false] ->

; Teller_Machine_screen ! no_money_text_message
;)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 14

Example of Guard

� An IP router connected to three subnetworks

Net1_in ? datagram : ip_dtgrm
; (([route(datagram) = 2] ->

; Net2_out ! datagram
;)

[]
([route(datagram) = 3] ->
; Net3_out ! datagram
;)

)

� Depending on the value of route(datagram) the datagram will be routed to
network 2 or network 3.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 15

Processes

� A process instantiation is an executing instance of a process definition

� A process definition is a description of the behaviour of a subsystem

� The process construction in LOTOS serves three main purposes.

– Representation of recursivity (loops and infinite behaviors).

– Create behavior abstractions and hierarchies (top-down).

– Gate relabeling.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 16

Process Definition and Instantiation (I)

ba c

a c

c ab

NAME

PROCESS DEFINITION PROCESS INSTANTIATION

yx z

x z

z xy

NAMEparameters values

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 17

Process Definition and Instantiation (II)

Process Definition:

PROCESS
<proc_name> [<formal_gates>] (<params>) : <funct> :=

<behaviour>
WHERE

<local definitions>
ENDPROC

Process Instantiation:

<proc_name> [<actual_gates>] (<parameter_values>)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 17

Processes

Behavior abstraction is very similar to procedures (more precisely to coroutines) in conventional programming languages. It is
possible to define a behavior, assign a name to it and later on perform multiple instantiations of it.

A process instantiation is an executing instance of a process definition. A process definition is a description of the behaviour of
a subsystem. The process construction in LOTOS serves three main purposes.

� Representation of recursivity (loops and infinite behaviors).

� Gate relabeling.

� Create behavior abstractions and hierarchies (top-down).

Process definition is the only way in LOTOS to specify recursive or iterative behaviors (there are no such statements as while,
for or goto). Inasmuch as processes may be instantiated recursively, it is also possible to represent infinite behaviors.

In the process definition it is necessary to declare the (formal) gates through which it will interact with the environment. When
the process is instantiated, it is possible to substitute the formal gate list by an actual gate list. This mechanism is called “gate
relabeling” and it is very similar to formal parameters and actual parameters in conventional procedures.

The syntax of the process definition consists in a header, a body and a set of local definitions.

PROCESS <process_name> [<formal_gates>] (<parameters>) : <functionality> :=
<behaviour>

WHERE
<local definitions>

ENDPROC

Header It begins with keyword “process” followed by the process identifier, the formal gate list (enclosed in square brackets),
the formal parameters (enclosed in parenthesis) and a functionality indication followed by the reserved symbol “:=”. The
functionality will be seen later and is approximately similar to the returned value of a function.

Body The body of the process definition is the behavior of the process. It may only contain those gates that have been declared
in the process definition header. It may contain other process instantiations, provided that the scope rules are preserved.
The body of the process ends at keyword “where” if there are local definitions, else ending at keyword “endproc”.

Local Definitions Local definitions of data types (explained in following sections) and other process are optional. They begin
with keyword “where” and end at keyword “endproc”. The rules for local process definitions are exactly the same as
for the definitions of processes at the specification level.

The syntax of a process instantiation consists in the process identifier followed by the actual gate list (enclosed in square brackets)
and the actual values for the parameters (enclosed in parenthesis).

<process_name> [<actual_gates>] (<parameter_values>)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 18

Example of Recursivity (I)

PROCESS
IP_ROUTER[Net1_in,Net1_out,Net2_in,Net2_out]:NOEXIT:=

(Net1_in ? datagram : ip_dtgrm
; Net2_out ! datagram
; IP_ROUTER [Net1_in,Net1_out,Net2_in,Net2_out]

)
[]

(Net2_in ? datagram : ip_dtgrm
; Net1_out ! datagram
; IP_ROUTER [Net1_in,Net1_out,Net2_in,Net2_out]

)
ENDPROC

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 19

Example of Recursivity (II)

PROCESS
TM [Keypad,Money] (assets,secretNum:nat) : NOEXIT :=

Keypad ? Number : nat
; [Number = secret_num] ->

keypad ? withdraw : nat
; ([assets ge withdraw = true] ->

Money ! withdraw
; TM [Keypad,Money] (assets-withdraw,secretNum)

[]
[assets ge withdraw = false] ->
Money ! assets

; TM [Keypad,Money] (0,secret_num)
)

ENDPROC

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 19

Recursivity

The example shows a recursive process which instantiates itself in its process definition.

It is possible to define very complex recursive behaviors by cross-instantiating ancestors, brothers, etc.

It is important to remark that LOTOS does not impose a limitation on the number of successive instantiations that can be
performed, as is the case with conventional programming languages that may run into stack overflow.

As a general rule, any time that a loop or recursive behavior is needed, it is necessary to define a process.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 20

Process: Example of Gate Relabeling

process
IP_ROUTER[Net1_in,Net1_out,Net2_in,Net2_out]:noexit :=

Net1_in ? datagram : ip_dtgrm
; Net2_out ! datagram
; IP_ROUTER [Net2_in,Net2_out,Net1_in,Net1_out]

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 20

Gate Relabeling

Gate relabeling is equivalent to parameter passing in PASCAL. When the process is defined, a list of formal gates is declared,
exactly as the declaration of formal parameters performed in PASCAL. When the process is instantiated, a set of actual gates is
provided, exactly as the provision of values for the parameters when calling a PASCAL procedure.

There are no restrictions to the actual gate list provided (e.g. the gate list could be formed by repeating a single actual gate), but
of course that they should have been declared within the scope of the process instantiation.

It is very frequent to instantiate a process with different gate lists, specially when they are composed with a parallel operator.

In the example, it may be seen a specification of the IP router in which the actual gate list is formed by swapping the gates
corresponding to network 1 and network 2. The effect is that the router will forward from net 1 to net 2 and afterwards from net
2 to net 1 (and so on).

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 21

Summary of Basic Operators

� Events and behavior expressions are composed using operators (statements).

� Basic operators:

– Action prefix –“;”– models sequentiality.

– Choice –“[]”– models alternative.

– Guard –“[<e1> = <e2>] ->”– models conditions.

– Process – models recursivity (and also other concepts).

a;B A [] B

a

B

BA

ba c

a c

c ab

NAME

PROCESS DEFINITION PROCESS INSTANTIATION

yx z

x z

z xy

NAMEparameters values

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 22

Overview of Data Types

Abstract data types with equational semantics.

� types: constructs for the encapsulation of declarations and definitions.

� sorts: disjoint sets of values.

� operations: declarations of functions (constants are a particular case).

� equations: semantics of operations (purely functional, i.e. no memory).

Bool

Nat

Queues

true

false

zero
plus_one

is_empty

plus

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 23

Data Type Library (I)

� It contains the most usual data types and contructions.

� Example of a type:

TYPE Boolean IS
SORTS

bool
OPNS

true, false : -> bool
not : bool -> bool
and, _or_, _xor_, _iff_ : bool, bool -> bool
equal, _ne_ : bool, bool -> bool

EQNS
.

ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 24

Data Type Library (II)

TYPE NaturalNumber IS Boolean
SORTS

nat
OPNS

0, 1, 2, 3, 4, 5, 6, 7, 8, 9 : -> nat

., _+_, _-_, _*_, _**_, _/_, _%_ : nat, nat -> nat

gt, _lt_, _ge_, _le_, _eq_, _ne_ : nat, nat -> bool
EQNS

.
ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 25

Examples of Data Type Expressions

true (* = true *)
1.0.2 (* = 1.0.2 *)
not(false) (* = true *)
false and true (* = false *)
((1.0) gt (2.0)) or not(false) (* = true *)
(1.1) * (1.7) (* = 1.8.7 *)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 26

Structure of a Specification

SPECIFICATION
<name> [<gates>] (<params>) : <functionality>

<data types>
BEHAVIOUR

<Behaviour>
WHERE

<local definitions>
ENDSPEC

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 27

CHAPTER 2: EXTENDED FINITE STATE MACHINES

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 28

Extended Finite State Machines (EFSM)

� Finite state machine with auxiliar variables for data.

� It is very frequently used to specify and implement protocols.

� A state machine is defined as:

– A set of states.

– A set of state variables.

– A set of inputs to the automata.

– A set of outputs from the automata.

– A set of extended transitions.

� An extended transition is defined by the initial state, the input that fires the transition,
an enabling predicate, the output, a set of actions and the new state.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 29

The State Diagram

� EFSM are usually represented using state diagrams:

Idle WaitAck

NS:Bool
dt:Nat

NS:Bool

DtReq(dt)/Send(Dt_Fr(NS,dt))

Rec(not(NS))

Rec(NS)

i/Send(Dt_Fr(NS,dt))

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 30

Extended Finite State Machine in LOTOS

� One process definition is performed for each state.

� The variables of each state are mapped to parameters in each process.

� Transitions from a state are mapped to a choice of events followed by process instan-
tiations:

– Each input firing a transition is mapped to an event.

– Predicates over variables that must hold to fire the transition are mapped to a guard
preceding the event.

– The output associated to a transition is mapped to a sequential event after the firing
event.

– The new state is mapped to the instantiation of the corresponding process.

– Actualization of variables is mapped to paramaters of the process being instantiated.

� Other constructions may be used if neccessary.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 31

Template of EFSM in LOTOS

process InitialState [<gates>] (* Initial State *)
(Var1:T1,..,Varn:Tn) (* context variables *)

:=
(* First transition *)

([<Predicate>]-> (* Enabling predicate *)
<events> ; (* Interaction *)
FinalState1 [<gates>] (* Final state 1 *)

(Expr1,..,Exprn) (* Actualized variables *)

[] (* Next transition *)
.....

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 32

Example of EFSM in LOTOS

SPECIFICATION Bit_alt_sender [usr,snd,rcv] : NOEXIT
LIBRARY Boolean, NaturalNumber ENDLIB

BEHAVIOUR Idle [usr,snd,rcv](true) WHERE
process Idle [usr,snd,rcv](NS:bool):noexit:=

usr ? data:nat ; snd ! Dt_Fr(data,NS)
; WaitAck [usr,snd,rcv](data,NS)

endproc
process WaitAck[usr,snd,rcv](dt:nat,NS:bool):noexit:=

rcv ? NR:bool
; ([NR ne NS] -> Idle[usr,snd,rcv](not(NS))

[] [NR eq NS] -> Wait_Ack[usr,snd,rcv](dt,NS))
[] i ; snd ! Dt_Fr(dt,NS)

; WaitAck [usr,snd,rcv](dt,NS)
endproc ENDSPEC

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 33

Extended Finite State Machine in SDL

� SDL: Specification and Description Language (Rec. Z.100)

� Graphical Syntax oriented to description of EFSM.

Start State Input Output NextState

S1 Rec Snd S3

DCL
X Integer,
Y Boolean;

X := X+1 X

(>0) (=0) (<0)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 34

Example of EFSM in SDL

DCL
Dat Integer,
NS Boolean,
NR Boolean,
TIMER T;

NS := true

Idle

WaitAck

PROCESS BitAltSender

Usr(Dat)

Snd(DtFr(Dat,NS))

WaitAck

Rcv(NR)

NR

(=NS) ELSE

SET(NOW+13,T)

T

WaitAck NS := not(NS)

Idle

Snd(DtFr(Dat,NS))

SET(NOW+13,T)

WaitAck

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 35

CHAPTER 3: CONCURRENCY

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 36

Interleaving: “|||”

� Interleaving is a parallel operator.

� Parallel operators model concurrency.

� Interleaving represents concurrent composition without interaction.

� In LOTOS there is no true concurrency, but interleaved one.

� The two concurrent subsystems interleave their events.

Graphical Representation:

|||

ba a c

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 36

Interleaving: “|||”

When two behaviors are composed in interleaving, both of them evolve in an independent manner. Informally, this means that
if one of the behaviors accepts an event and changes it state, the composition will behave in the same way.

If

�

1 accepts event � and changes its state to

� �

1. Then, if

�

1 is interleaved with another system

�

2 the resulting behavior will
also accept event � and will change its state to another one equivalent to

� �

1 interleaved with

�

2.

The graphical representation is that of two isolated systems with nothing in common: two boxes with their gates. Notice that in
this case behaviors are being depicted as boxes instead of triangles (used for trees) because it is usually more clear for illustrating
concurrency.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 37

Example of Interleaving (I)

An IP router as multiple forwarding subsystems:

process
IP_ROUTER[Net1_in,Net1_out,Net2_in,Net2_out]:noexit :=

FORWARD[Net1_in,Net2_out]
|||

FORWARD[Net2_in,Net1_out]
where
process FORWARD[Net_in,Net_out]: noexit :=

Net_in ? datagram : ip_dtgrm
; Net_out ! datagram
; FORWARD[Net_in,Net_out]

endproc
endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 38

Example of Interleaving (II)

Equivalent behaviour of the IP router example

N1_in

N2_out

N2_in

N1_out

|||

N2_in

N2_in

N1_out

N2_out N1_in

N1_in

N2_out N2_outN1_out

N1_out

N1_in N2_out N2_in N1_out

Results in

N1_in N2_out N2_in N1_out

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 39

Synchronization: Value Passing

� Two processes may communicate by synchronizing at given gates.

� Synchronize is equivalent to share a common gate between two processes.

� Two events may synchronize only if they occur at a gate in which two behaviours are
synchronizing.

� A value offering synchronizes with a value acceptance if they are of the same sort.

� Value passing: the value is communicated from the offering process to the accepting
process.

� The environment perceives the occurrence of only one event.

� It is equivalent to simultaneously firing both transitions.

� One such event comes from the simultaneous ocurrence of one event at each behaviour.

� For an event to occur at a synchronizing gate, it must occur in both processes.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 40

Partial Synchronization: “|[<gates>]|”

� Partial Synchronization is another parallel operator

� Partial Synchronization represents concurrent composition with interaction.

� The concurrent behaviours synchronize in the gates listed in the operator:

– Events ocurring at gates in the list will synchronize.

– Events ocurring at gates not in the list will interleave.

Interleaving is Partial Synchronization in no gates.

Example:

(keyboard ? num : nat ; line ! num ; ...)
|[line]|

(line ? var : nat ; screen ! var ; ...)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 40

Partial Synchronization: “|[<gates>]|”

Partial synchronization is the general case of the parallel operator. When using partial synchronization it is possible to select the
gates at which the two behaviors must synchronize, leaving the remaining gates evolve in interleaving.

Example: Suppose that we have defined processes ProcA[a,b] and ProcB[a,c]. Then, we instantiate the processes
composing them with partial synchronization:

ProcA[a,b]
|[a]|

ProcB[a,c]

Those events that take place at gate a must occur simultaneously in both processes because gate a belongs to the gate set of the
partial synchronization operator. Those events that take place at gates b or c may occur independently in ProcA or ProcB
(respectively).

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 41

Example of Partial Synchronization (I)

A Teller Machine connected through a network to request authorisation from a Host.

Keypad?wd:nat

Money!wdMoney!0

TM
Keypad?wd:nat

Results in

NET

|[line]|

Line

Host_Q Keypad Money

[au=true]−>[au=false]−>

Line!wd

Line?au:bool

Line?wd:nat

Host_Q!wd

Host_R?rs:bool

Line!rs

Host_R

Line!wd

Host_Q!wd

Host_R?rs:bool

Line!rs

Money!wdMoney!0
[rs=true]−>[rs=false]−>

LineHost_Q Keypad MoneyHost_R

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 42

Example of Partial Synchronization (II)

The LOTOS text of the example.

process AT_NET[Keypad,Money,Line,Host_Q,Host_R]:noexit:=
NET[Host_Q,Host_R,Line]

|[Line]|
TM[Keypad,Money,Line]

where
process NET[Host_Q,Host_R,Line]:noexit:=

Line ? wd:nat
; Host_Q ! wd
; Host_R ? rs:bool
; Line ! rs
; NET[Host_Q,Host_R,Line]

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 43

Example of Partial Synchronization (III)

process TM[Keypad,Money,Line]:noexit:=
Keypad ? wd:nat

; Line ! wd
; Line ? au:bool
; ([au = false] ->

Money ! 0
; TM[Keypad,Money,Line]

[]
[au = true] ->
Money ! wd

; TM[Keypad,Money,Line])
endproc

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 44

Full Synchronization: “||”

� Full Synchronization is another parallel operator.

� Full Synchronization represents sharing all gates (common or not).

� Full Synchronization means synchronize in all vissible events.

� Full Synchronization is Partial Synchronization at all gates.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 44

Full Synchronization: “||”

Full synchronization represents total agreement between both behavior in order to accept an event from the environment. If the
events offered at visible gates by the behaviors are different they will not occur.

If both behaviors offer the same event, it may occur and both behaviors would then change their state. This is, if

�

1 offers event

� and changes its state to

� �

1, and if

�

2 offers also event � and changes its state to
� �

2, then, the composition would offer event

� and then would behave as

� �

1 in full synchronization with

� �

2.

Full synchronization is equivalent to partial synchronization where the gate set is the union of gate sets of the parallel behaviors.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 45

Example of Full Synchronization

A Teller Machine that cannot run out of money and a user asking for 8 units.

Keypad!8

Money?re:nat

||

Keypad?wd:nat

Money!wd

USER TM

Keypad!8

Results in

Keypad

Money

Keypad Money

Money!8

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 46

Summary of Parallel Operators

Syntax:

B_1 ||| B_2 (* interleaving *)

B_1 |[<gates>]| B_2 (* partial synchronization *)

B_1 || B_2 (* full synchronization *)

� Interleaving gate: events from B_1 and B_2 occur independently.

� Synchronizing gate: events from B_1 and B_2 occur simultaneously.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 46

Summary of Parallel Operators

The parallel composition operator is used to represent concurrent behaviors. In the current model of LOTOS there is no real
parallelism in the sense that two event cannot occur at the same instant. If there are two behavior expressions in parallel, their
events will occur in an interleaved manner, just as processes execute in a single processor machine. Inasmuch as events are
assumed to be instantaneous in LOTOS, this restriction in the model does not reduce the expressive power of the language.

The interleaved semantics of the parallel composition allows to obtain the equivalent sequential behavior tree of a concurrent
specification.

There are three different syntax for the parallel operator. The partial synchronization operator covers the general case, so the
other ones are somehow redundant with it. The syntax of a partial synchronization expression is:

A |[G]| B

where A and B are behavior expressions and G is a gate set. The gates contained in set G are the ones that have to synchronize.
The remaining gates of A and B are interleaved.

If two behavior expressions A and B synchronize in a gate g1, it is required that every event that occurs at gate g1 occurs
simultaneously in both A and B. This means that behavior A and B cannot evolve independently anymore. Informally, this
is equivalent to simultaneous transitions in classical state machines,i.e., two transitions that are simultaneously fired by two
concurrent state machines.

The interleaving operator A ||| B is equivalent to the partial synchronization operator with an empty gate set G. The full
synchronization operator A || B is equivalent to the partial synchronization operator with a gate set G that contains both the
gates of A and B, i.e., a parallel composition where all the events that occur must be synchronized.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 47

Deadlock

� A behaviour is said to deadlock when no action can be observed from it.

� Deadlock occurs when the two following conditions hold:

– No interleaving events are offered, and

– The synchronizing events offered are incompatible.

� Most real systems should be designed deadlock-free.

� Example of deadlock:

[0=1]−>
Send!ack T!T_Out

|[Send,Rec]|

Rec!frm

T

Rec

Send

Serv

Results in

Rec ServSend T

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 48

Inaction: “stop”

� “stop” is the representation of a behavior such that no event will ever be observed.

� It can be used to express that a process finishes its execution.

� It can be used to express explicit deadlock situations.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 48

Inaction: “stop”

Systems are represented in LOTOS as “behavior expressions” (usually called “behavior” for short). LOTOS provides operators
that allow the combination of behaviors in order to build more complex behaviors.

“Stop” is a predefined basic behavior. It describes the system that cannot show any action. Nothing can be observed from “stop”.

It is used to represent deadlock situation or the termination of the activity of the system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 49

Example of Inaction (I)

An IP router as a process spawning system:

process
IP_ROUTER[Net_in,Net_out]:noexit:=

Net_in ?dtgrm:ip_dtgrm
;(RESEND[Net_out](dtgrm)

|||
IP_ROUTER[Net_in,Net_out])

endproc
process
RESEND[Net_out](dtgrm:ip_dtgrm):noexit:=

Net_out ! dtgrm
; stop

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 50

Example of Inaction (II)

Dynamic creation and destruction of process instantiations:

IP_ROUTER
Net_in

Net_out

Net_out RESEND

IP_ROUTER
Net_in

Net_out

|||

Net_in?dtgrm:ip_dtgrm

Net_out!dtgrm

dtgrm

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 51

Resource Oriented Specification (I)

� The system is designed as a collection of interacting process instantiations

� A process instantiation is an executing instance of a process definition

� It is possible to instantiate several times a single process definition

� A process definition is a description of the behaviour of a subsystem.

� Process instantiations interact by exchanging data through gates.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 52

Example of Resource Oriented Specification

U OU O

U O

U O

U O

NODE

NODENODE

NODE

NODE

(NewYork)

(Moskow)

(Tokyo)

(Brussels) (. . . .)

LINK
(Mosk,
NewY)

LINK
(NewY,
 Bruss)

LINK
(Mosk,
 Bruss)

LINK
(Mosk,
 Tokyo)

LINK
(Bruss,
 . . .)

LINK
(Tokyo,
 . . .)

U O

U O

Line

Line

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 53

CHAPTER 4: COMMUNICATING EFSMs

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 54

Synchronous vs. Asynchronous Communication

� Synchronous communication:

– Simultaneous transmission and reception.

– Requires coordination between parties.

– Example: system call.

� Asynchronous communication:

– Requires buffering (queues) between parties.

– Communication identified by location or by process.

– Example: UNIX pipes.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 55

Synchronous vs. Asynchronous Communication

The fire brigade simile:

Synchronous Asynchronous

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 56

Synchronous Communication in LOTOS

� It is the basic communication mechanism of the language.

� LOTOS supports n-ary symmetric rendez-vous with choice.

� For communicating EFSMs only binary asymmetric rendez-vous required.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 57

Asynchronous Communication in LOTOS

� Asynchronous communication is modeled placing queues between EFSMs.

� The queues are specified as processes.

PROCESS Queue [in_q,out_q](queue:string):noexit:=
in_q ? next:element

; Queue [in_q,out_q](lpush(next,queue))
[] [queue ne <>] ->

out_q ! right(queue)
; Queue [in_q,out_q](rpop(queue))

ENDPROC

EFSM_1 EFSM_2Queue

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 58

Asynchronous Communication in SDL

� It is the basic communication mechanism of the language.

� SDL supports asynchronous communication identified by agent.

� Every EFSM has an implicit input queue to buffer incomming events.

� Output events are place in the input queue of the destination EFSM.

� SDL 92 has introduced remote procedure call: a step to synchronous communication.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 59

Characteristics of Asynchronous Communication

� Finite length queues may lead to deadlock situations.

� Event collision in distributed systems may lead to unconsistent states.

� Unexpected incomming messages must be removed to guarantee.

� It can not be used to model synchronous communication.

� Very frequently used as IPC mechanism in operating systems.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 60

CHAPTER 5: HIDING, INTERNAL EVENT, NON DETERMINISM
AND ABSTRACTION

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 61

Hiding

� It allows to control the environment’s view of the system.

� It is used to perform stepwise refinement design.

� Its effect is to transform visible events into internal events.

� The hidden gates dissapear from the system’s interface.

a

a b

c

c

(x) (y)

PART_1 PART_2

PART_3

i

i(x)

(y)a

c

y

x

hide x,y in

a cx y a cbb

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 61

Hiding

Hiding is used to hide communication between subsystems (internal communication) to the environment. It allows to offer a
simple interface to the user by hiding internal details.

The effect of hiding is equivalent to substitute the hidden events by internal events, at the global behavior level. It is important to
remark that the hiding event is not distributive, i.e., it is not equivalent to hide the events before or after applying other operators.

Hiding is an extremely useful abstraction mechanism. It has the drawback (which is an advantage in some cases) that can
introduce non-determinism in the behavior of the system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 62

Example of Hiding

Keypad?wd:nat

Line!wd

Host_Q!wd

Host_R?rs:bool

Line!rs

Money!wdMoney!0
[rs=true]−>[rs=false]−>

LineHost_Q Keypad MoneyHost_R

Keypad?wd:nat

Results in

Host_Q!wd

Host_R?rs:bool

Money!wdMoney!0
[rs=true]−>[rs=false]−>

Host_Q Keypad MoneyHost_R

Hide line in

i

i

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 63

Internal Event: “i”

� The internal event “i” is predefined in LOTOS.

� It is an internal transition.
Consequently, the environment cannot synchronize in it.

� It changes the state of the system.
Consequently, the environment could notice its effects.

� It appears from hiding a vissible event.

� It is used to express non-determinism.

� It is used to produce a partial specification of a system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 63

Internal Event: “i”

Event “i” is an special event that does not take place at a gate. The reason is that events occurring at gates are visible from the
environment, while event “i” cannot be seen from the environment. It is an internal event, much like expontaneous transitions
in state machines.

The syntax for the internal event is a reserved word in LOTOS (i.e. there can be no identifier called “i”).

Although the event itself cannot be seen, an external observer is able to notice its effects. Inasmuch as the system experiments
a change in its state, the behavior of the system may not be the same before and after the occurrence of the internal event.

For example, let us compose any behavior and an internal event followed by stop with operator choice:

B
[]

i ; stop

An external observer would notice that in some executions the system deadlocks, while in other executions the system works
properly. It is clear that despite not being visible, the internal event introduces modifications in the behavior of systems that can
be noticed by the environment.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 64

Example of Non-Determinism

An unreliable line may non-deterministically change bits

process UNRELIABLE_LINE [Data_in, Data_out] : noexit :=
Data_in ? bit : bool

; (i
; Data_out ! bit
; UNRELIABLE_LINE [Data_in, Data_out]

[]
i

; Data_out ! not(bit)
; UNRELIABLE_LINE [Data_in, Data_out]

)
endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 65

Example of Partial Specification (I)

An IP router deterministically discards datagrams in some cases.

process IP_ROUTER [Net_in, Net_out] : noexit :=
Net_in ? datagram : ip_dtgrm

; (i
; Net_out ! datagram
; IP_ROUTER [Net_in, Net_out]

[]
i

; IP_ROUTER [Net_in, Net_out]
)

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 66

Example of Partial Specification (II)

A Teller Machine that can run out of money and a user asking for 8 units.

Keypad!8

Money?wd:nat

||

i i

Keypad?wd:nat

Money!wdMoney!0

USER TM

i i

Money!8Money!0

Keypad!8

Results in

Keypad

Money

Keypad Money

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 67

CHAPTER 6: ENABLING AND DISABLING

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 68

Successful Termination: “exit(<values>)”

� exit represents the successful termination of a behavior.

� Termination, together with sequential composition, allows the decomposition of a
behavior in phases.

� Termination is equivalent to a process instantiation, where the process to be instantiated
is determined later on.

� The values placed in the exit statement are passed to the instantiated process.

� Functionality: is the list of sorts of values passed in exit

Example:

keyboard ? val:nat ; exit(val)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 68

Successful Termination: “exit(<values>)”

Another basic behavior expression (in addition to stop) is successful termination: exit.

The informal semantics of successful termination is that the current behavior expression terminates, and the system behaves as
the behavior expression in the next phase. Phases are delimited using the sequential composition operator.

The behaviour expression exit produces only the event “

�

”, that means successful termination.

The semantics of “

�

” is somehow similar to the internal event, in the sense that it cannot be seen from the environment, but it
produces a change of state in the system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 69

Enabling: “>> accept <variables> in”

� Enabling allows the decomposition of a behavior in sequential phases (Sequential
Composition).

� Beh_1 >> Beh_2means that behaviourBeh_2 begins right afterBeh_1 terminates
successfully.

� When the first behaviour executes exit, the compositiont will behave as the second
behaviour.

� The functionality of the first behaviour must match the varible list of the enabling.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 69

Enabling: “>> accept <variables> in”

Operator enabling is used to describe a system as a series of sequential phases. The operator composes two behavior expressions
to produce another behavior expression. The second behavior expression begins when the first one terminates successfully.
Remember that a behavior terminates successfully whenever it executes behavior expression exit, i.e., whenever it produces
event

�

.

The sequential composition A >> B is equivalent to replace the occurrences of behavior exit in A by behavior B.

Notice that enabling is quite different from action prefix: “;”. While action prefix composes an event with a behavior, operator
enabling composes two behavior expression. The action prefix expression a ; B behaves as B after the occurrence of a. The
sequential composition A >> B behaves as B after the occurrence of exit within A. In the meantime, the composition behaves
as A.

The funtionality of the first behaviour must be the same as the varible list of the enabling. This is so beacuse the values provided
in the exit of the first behaviour will be used as the values for the variables provided in the enabling operator.

The funtionality is declared in process definition and the correct composition of behaviours is checked when performing static
semantics analysis.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 70

Example of Enabling

Connect_phase [sap]
>> accept source:address , dest:address in

Data_Transfer_phase [sap] (source,dest)
where
process Connect_phase [sap] : exit(address,address) :=

sap ? CReq : connreq
; sap ! ConnIndication
; sap ? CResp:connresp
; ([Reject(Cresp) = true] ->

Connect_phase [sap]
[] [Accept(Cresp) = true] ->

exit(source(Creq),destination(CReq)))
endproc
.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 71

Disabling

� Allows the representation of interruptions.

� Behavior_2 destroys (inhibits) Behavior_1 when it begins.

� Behavior_2 begins either because the environment accepts one of its initial events
or because it contains an initial internal event.

Example:

Data_Transfer_phase [sap] (source,dest)
[>

Abort [sap]

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 71

Disabling

This operator is somehow similar to an interruption. The disabling composition A [> B behaves as A until one of the initial
events of B occurs. After that, the composition will behave as B. Informally, we could say that B is interrupting A.

The initial events of B can only when the environment accepts them (unless they are internal events).

In case that A executes an exit the composition A [> B terminates successfully. This means that after exit has occurred,
behavior B can not interrupt A because the disabling composition has terminated successfully.

It is quite frequent to use the following structure in a specification:

(A [> B) >> (C [> D) >> ...

The above behavior expression is equivalent to:

X >> Y >> ...

This means that the composition will behave as X until it terminates successfully. Behavior X is (A [> B). Consequently, it
may terminate because A terminates successfully or because B terminates successfully after having interrupted A.

Disabling is equivalent to put the interrupting behavior in alternative at every node of the behavior tree of the interrupted
behavior. That is why the initial events of the interrupting behavior may occur at any moment.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 72

Example of Disabling

process INIT [start,kill,kbd](pr_id:nat):noexit:=
start ? proc:proc_class

; ([proc=mail_proc]->
(MAIL [kill,kbd] (pr_id)
||| INIT [start,kill,kbd](pr_id + 1))

[] [proc=other_proc]->
(OTHER [kill,kbd] (pr_id)
||| INIT [start,kill,kbd](pr_id + 1)))

where
process MAIL [kill,kbd] (pr_id:nat):noexit:=

MAILING [kbd]
[> Kill ! pr_id ; stop

endproc
.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 73

Summary of Enabling and Disabling

B

BBB B

B

B

B

A B>>

i

a c

b
c a exit

exit exit

a c

b
c a

i

i

A

A B

a c

bc a

a c

bc a

B

A

[>

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 74

CHAPTER 7: DEFINING DATA TYPES

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 75

Writting Data Types

� A Data Type can be defined from scratch:

TYPE Convolutional_Code IS
SORTS FEC_data, FEC_redundancy
OPNS Encode : FEC_data -> FEC_redundancy ...
EQNS

ENDTYPE

� A Data Type can be defined using sorts and operations from other types:

TYPE Convolutional_Code IS BitString, Boolean
OPNS Encode : BitString -> BitString

Check : BitString, BitString -> bool ...
EQNS

ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 76

Defining Operations

� Operations are defined by writting equations.

� An equation is composed by two expressions and an equal sign:

Inc_Mod_2(0) = 1 ;
Inc_Mod_2(1) = 0 ;

� It is required to declare the sort of the equations:

EQNS
OFSORT SeqNum

Inc_Mod_2(0) = 1 ;
Inc_Mod_2(1) = 0 ;

OFSORT Bool
Is_Zero(0) = true ;
Is_Zero(1) = false ;

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 77

Using Variables in the Equations

� The equations may involve free variables.

� The free variables must have been previously declared.

EQNS
FORALL x:Nat, y,z:Bool

OFSORT nat
x + 0 = x ; . . .

OFSORT bool
y and false = false ; . . .

.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 78

Writting Equations

� Equations define the semantics of operations.

� An expression is evaluated by repeatedly applying the appropriate equations.

� The tools apply the equations by pattern matching.

� The tools try to match the expression under evaluation to the left side of the equation,
if it matches, the expression is replaced by the right side of the equation.

� For tools, the right side can only contain variables that appear in the left side.

� The equations must be written so the right side is simpler than the left side.

� The equations must be written so the result is independent of the order in which they
are applied.

� The equations must be written so any expression can be evaluated.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 79

Example on Writting Equations

TYPE Frames IS NaturalNumber, BitString
SORTS Frame
OPNS

Mk_Frame : Nat, Nat, BitString -> Frame
SeqNum,FrType : Frame -> Nat
Data : Frame -> BitString

EQNS
FORALL typ,NS:Nat, data:BitString

OFSORT Nat
FrType(Mk_Frame(typ,NS,data)) = typ ;
SeqNum(Mk_Frame(typ,NS,data)) = NS ;

OFSORT BitString
Data(Mk_Frame(typ,NS,data)) = data ;

ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 80

Conditional Equations as Rewrite Rules

� A conditional equation may have several premises followed by an imply symbol:

x ge y = true => (x - y) ge 0 = true ;

� The tools try to match the expression under evaluation to the left side of the equation,
if it matches, the premise is tested before performing the substitution.

� To generate a correct rewrite rule it is required that:
The conditional premises only contain variables that appear in the left side of the
equation.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 81

Example of Conditional Equations

Combinations of “x” elements taken “y” by “y”.

x ge y = true, y gt 0 = true =>
Combinat(x,y) = (x/y) * Combinat(x-1,y-1) ;
Combinat(x,1) = x ;
Combinat(x,0) = 1 ;

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 82

Correct Rewrite Systems

� Confluency:

– The result must be independent of the order of application of the rules.

– Example on non-confluency: 0 - x = minus(x) ;

� Termination:

– The rewrite rules should not form loops.

– Example on non-termination: x + y = y + x ;

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 83

Hints for Writing Equations

� Chose the operations (constructors) that will represent basic values.

� Write the equations for each non-constructor operation.

� Rewrite expressions involving the non-constructor to expressions involving construc-
tors.

� Non-constructor operations already defined can also be used in the right side.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 84

Renaming of Types

� A Data Type can be obtained as a copy of an existing one.

� The new type is obtained by renaming the sorts and operations of the source type:

TYPE BitAltSeqNum IS Boolean renamedby
SORTNAMES

SeqNum for Bool
OPNNAMES

IncMod2 for Not
.

ENDTYPE

� Renaming is used to make the specification more readable

� Renaming is used to define a new type by modifying the renamed type, without affecting
the original type.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 85

Example of Renaming

� Enumerated types are obtained by renaming library enumerated types:

TYPE FrameTypes IS Enumerated4 renamedby
SORTNAMES

Fr_Type for Enum4
OPNNAMES

SABM for Val1
INFO for Val2
RR for Val3
RNR for Val4

ENDTYPE

� This allows to write the guard:

[Frame_typ = SABM] ->

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 86

CHAPTER 8: MORE ON SYNCHRONIZATION

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 87

Event Structure

� An event may have more than one value interaction

� Event structure: ordered list of sorts of value interactions in an event.

� Most times there is a fixed event structure at gates.

� This is, all events at a gate have the same event structure (typed gate).

Examples of valid events and event structures:

Event Event Structure
------------------------------ -------------------------
Net ! NetNum ! mssg Nat, datagram
Bus ! 0 ! 1 ! 1 ! 0 ! 1 Bit, Bit, Bit, Bit, Bit
Port ! NetNum ? msg:datagram Nat, datagram
Keyb ? Id:Nat ? Ammount:Nat Nat, Nat

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 88

Selection Predicate: “<event> [<exp1> = <exp2>] ;”

� A selection predicate is associated to an event.

� A selection predicate imposses conditions on value acceptances.

� The expressions may include variables defined in the event.

� Example:

process
ETHERNET_MAC[Net,DL](myaddress:ph_addr):noexit :=

Net ? add:ph_addr ? hd:fr_head ? dt:data
[(add eq myaddress) and (length(dt) lt 4.0.0.0)]

; DL ! dt
; ETHERNET_MAC[Net,DL](myaddress)

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 89

Symmetric Rendez-vous

� LOTOS supports, in addition to asymmetric rendez-vous, symmetric rendez-vous.

� A value offering is more general than an output.

� A value acceptance is more general than an input.

� A value offering may synchronize with another value offering.

� A value acceptance may synchronize with another value acceptance.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 90

Value Matching

� It is the synchronization of two value offerings.

� Both expressions must be of the same sort.

� The value resulting from each expression must be the same.

Example: Using a value to “split” a gate in an IP router.

process
IP_ROUTER[Net](routes:rout_table):noexit :=

Net ? Net_id:Nat ? datagram : ip_dtgrm
; Net ! Next_hop(datagram,routes) ! datagram
; IP_ROUTER[Net](routes)

endproc

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 91

Value Negociation

� It is the synchronization of two value acceptances.

� Both variables must be of the same sort.

� The resulting value of both variables is the same.

� The resulting value is randomly selected from the sort.

� The random selection may be constrained using a selection predicate.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 92

Example of Value Negociation

process INIT [start,kill,kbd,born]:noexit:=
start ? proc:proc_class

; born ? new_id : Nat
; ([proc=mail_proc]->

(MAIL [kill,kbd] (new_id)
||| INIT [start,kill,kbd,born])

.
process ID_MANAGER [born,kill](free_ids:nat_set):noexit:=

born ? new_proc : nat
[(new_proc IsIn free_ids) = true]

; ID_MANAGER [born,die](free_ids Removing new_proc)
[]

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 93

Summary of Interacion Types

process_A [g] |[g]| process_B [g]

LOTOS synchronization cases
process process synch. interaction effect

A B condition type
g !E g ?x: Sx � �� � � � � � �
	 value synchro

passing 	 � �

g !E1 g !E2

�

1 � �
2 value synchro

matching
g ?x: Sx g ?y: Sy

� 	 � �
� value synchro
negotiation 	 � �

(generation)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 94

Synchronization Conditions

Two events synchronize if:

1. Their event structure is the same.

2. Their matching value offerings have the same value.

3. Their selection predicates hold for the value offerings.

Examples:

a ?x:bool !3 <-> a ?x:bool !(2+1) !true (* NO *)
a ?x:bool !3 <-> a ?x:bool !(2+2) (* NO *)
a ?x:nat !3 /-\ a !(3+1) ?y:nat (* NO *)
[x le 3 = true] \-/ [y gt 3 = true]
a ?x:bool !3 <-> a ?x:bool !(2+1) (* YES *)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 95

Multi-way Rendez-vous

� LOTOS supports, in addition to binary rendez-vous, full n-ary rendez-vous.

� Two synchronizing processes may be synchronized with a third one, and so on:
((A[a] || B[a]) || C[a]) || D[a]

� This means that n processes may synchronize in a given gate.

� For an event to occur at that gate, all the synchronizing processes must agree on that
event.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 96

Constraint Oriented Specification

� The system is designed as a collection of concurrent process instantiations.

� There are no internal gates, i.e. there is no structure in terms of subsystems.

� The process intantiations are composed with partial synchronization.

� Process instantiations interact by constraining the events observable from the environ-
ment.

� Process instantiations only interact at the interface of the system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 97

CHAPTER 9: MORE ON DATA TYPES

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 98

Defining Parameterized Data Types

� Parameterized types are similar to ADA’s generics, to OO polymorphism or to the
usage of pointers to functions and values in C.

� A parameterized type defines sorts constructed with elements of formal sorts.

� It is possible to define operations over the new sorts.

� It can be required that some operations (formal operations) exist in the formal sort.

� The semantics of the parameterized type is independent of the one of the formal sort.

� A parameterized type may only be used to produce an actual type by actualizing it.

� Actualization is performed by providing actual sorts, with actual operations, to fill the
place of the formal ones.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 99

Example of a Parameterized Type (I)

TYPE Parameterized_Stack IS
FORMALSORTS fbool, element
FORMALOPNS

FFalse : -> fbool
Feq : element, element -> fbool
Fand : fbool, fbool -> fbool

SORTS stack
OPNS

Empty : -> Stack
Push : Element, Stack -> Stack
Top : Stack -> Element
Pop : Stack -> Stack
eq : Stack, Stack -> fbool

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 100

Example of a Parameterized Type (II)

EQNS
FORALL st1,st2:stack, el1,el2:element
OFSORT Stack

Pop(Push(el1,st1)) = st1 ;
OFSORT Element

Top(Push(el1,st1)) = el1 ;
OFSORT Fbool

Push(el1,st1) eq Empty = FFalse ;
Empty eq Push(el1,st1) = FFalse ;
Push(el1,st1) eq Push(el2,st2) =

(el1 Feq el2) Fand (st1 eq st2) ;
ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 101

Actualization of Parameterized Data Types

� The actualization of a parameterized type produces an actual type that can be used in
the specification.

� A parameterized type is actualized using one (or more actual types).

� The actual sorts and operatiosn of the actual type are used to replace the formal sorts
and operations of the parameterized type.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 102

Example of Actualization

TYPE Stack_of_nats_par IS Parameterized_Stack
RENAMEDBY

SORTNAMES Nat_stack for Stack
ENDTYPE
TYPE Stack_of_nats IS Stack_of_nats_par
ACTUALIZEDBY NaturalNumber, Boolean USING

SORTNAMES
Bool for Fbool
Nat for Element

OPNNAMES
False for Ffalse
and for Fand
eq for Feq

ENDTYPE

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 103

CHAPTER 10: SCOPE OF IDENTIFIERS

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 104

Overloading of Identifiers

� Two objects of different semantic classes may share the same identifier.

� This is, the same identifier can be used for a process, a type, a sort and an operation.

� Operations can have the same identifier if the sorts of their arguments/result are differ-
ent.

� Variables can have the same identifier in the same scope if they have different sorts.

� To resolve expressions of ambiguous sort use the qualifier: “of <sort>”.
Example:

get ! 0 of nat ; send ! (0+1) of bit ; . . .

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 105

Scope of Variables

� Specification parameters can be used anywhere whithin the main behaviour definition.

� Process parameters can be used anywhere within the process behaviour.

� The variable from a value acceptance can be used:

– In the selection predicate of that event.

– Anywhere in the behaviour expression following, after action prefix, the event.

� The variable from an enabling can be used anywhere in the behaviour expression
following the enabling.

� It is impossible to communicate through shared variables.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 106

Scope of Process Definitions

In a proccess definition it is possible to instantiate:

� Any son (not grandson or deeper) process.

� Any ancestor (father, grandfather, and so on) process.

� Any brother process.

� Any brother process of any ancestor process.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 106

Scope of Process Definitions

It is possible to define processes within processes. The scope rules for the process definitions in relation to process instantiation
are quite similar to that of PASCAL: a process may be instantiated by its “brothers” any direct descendant (son, grandson,...)
and also by its “cousins” (i.e. processes directly defined within the brothers of its parent process). The main difference is that
PASCAL imposes the additional restriction that a procedure must be defined before it is used, while LOTOS does not impose it.

The hierarchy of process definition is a valuable tool to provide a suitable architectural decomposition of the system.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 107

CHAPTER 11: OTHER CONCEPTS

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 108

Termination and Parallelism (I)

� Two behaviors composed in parallel must terminate successfully in a synchronous
manner.

� Example: (a ; exit) ||| (b ; exit)

�
�

a

�
�

|||

a

�

�
�

b

�
�

�

b

��
�

�
�

� � �

a

�

b

�
�

�
�

�
�

�� �

b

�

a

�
�

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 108

Termination and Parallelism (I)

Notice that the termination event

�

must always occur synchronously (even if the two behaviors are composed with the
interleaving operator). This means that if two behaviors are composed in parallel, neither of them can terminate successfully
until the other one also terminates successfully.

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 109

Termination and Parallelism (II)

� All processes in parallel must have the same functionality:

– Termination is synchronized.

– The sorts of the termination must match the ones of the enabling.

� All the values offered in the termination must match.

� It is possible to offer a neutral value using “any <sort>”:
(a ; exit(3)) ||| (b ; exit(any nat))

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 110

Let <var> = <expression> in

� Allows to define new symbolic values.

� Used to avoid repeating long expressions.

� Conceptually equivalent to value asignement.

Example:

gate ? x : nat ;
(let ext_val = 3*((x+3)*x-2)**(x+5),

int_val = (x*x) + 2 in
gate ! ext_val ! int_val ; stop

[] gate ? y:nat ! int_val ; stop
[] gate ! ext_val ? y:nat

)

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 111

Value and Gate Choice

� Value Choice: choice <var1:sort1,var2:sort2,..> []
Composes with [] multiple behaviours altering the value of one, or several, variables.

� Gate Choice: choice <gate_declarations> []
Composes with [] multiple behaviours altering the value of one, or several, gates.

Examples:

gate ? x : nat ;
(choice x:nat,y:bool [] [x le 9]->

SOME_PROC [gate] (x,y))

gate ? x : nat ;
(choice gx in [chan1,chan2], gy in [k1,k2] []

SOME_PROC [gx,gy] (9))

c

�

Copyright May 93, DIT-UPM
LOTOS Tutorial

pg. 112

par <gateDeclarations> <parallelOp>

� Used to compose in parallel multiple behaviours altering the value of one, or several,
gates.

Example:

gate ? x : nat ;
(par gx in [chan1,chan2], gy in [k1,k2] |[gx]|

SOME_PROC [gx,gy] (9))

