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Abstract
In this paper we target the verification of fault tolerant aspects of
distributed applications written in Erlang. Erlang is unusual in sev-
eral respects. First, it is one of a few functional languages that
is used in industry. Secondly the programming language contains
support for concurrency and distribution as well as including con-
structs for handling fault-tolerance.

Erlang programmers, of course, mostly work with ready-made
language components. Our approach to verification of fault toler-
ance is to verify systems built using two central components of
most Erlang software, a generic server component with fault tol-
erance handling, and a supervisor component that restarts failed
processes.

To verify Erlang programs built using these components we
automatically translate them into processes of the + CRL process
algebra, generate their state spaces, and use a model checker to
determine whether they satisfy correctness properties specified in
the + -calculus.

The key observation of this paper is that, due to the usage of
these higher-level design patterns (supervisors and generic servers)
that structure process communication and fault recovery, the state
space generated from a Erlang program, even with failures occur-
ring, is relatively small, and can be generated automatically. More-
over the method is independent from the actual Erlang program
studied, and is thus reusable.

We demonstrate the approach in a case study where a server,
built using the generic server component, implements a locking
service for a number of client processes, and show that the server
tolerates client failures.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms Verification

Keywords Code Verification, Fault-Tolerance, Concurrency
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1. Introduction
Through software industry reliability is more and more becoming
a key objective. An integral part of many attempts to ensure reli-
ability in computer science has been the application of techniques
from mathematics and logic to the design and validation of pro-
grams and systems; these are often collectively known as ‘Formal
Methods’ (FMs). As an example from industry, Microsoft are de-
ploying FMs in the analysis of their Office (TM) suite of programs
with the aim of eliminating whole categories of code errors [7].

The last decade has seen several high profile successes of for-
mal methods based systems development, in many cases resulting
from the application of model checking. In model checking key cor-
rectness properties of the system under analysis can be checked
automatically. In the case of Erlang, the features that make the lan-
guage attractive to programmers – simplicity, OTP library support –
also make it particularly suitable for formal analysis through model
checking.

Model checking is an automatic formal verification technique
where a property is checked over a finite state system; it has been
used successfully in the verification of numerous complex pieces of
hardware and on specifications (e.g., automata, process algebras).
The major advantages of model checking are that it is an automatic
technique, and that when the model of the system fails to satisfy
a desired property, the model checker always produces a counter
example. These faulty traces provide a priceless insight to under-
standing the real reason for the failure as well as important clues
for fixing the problem.

Using model checking for the formal verification of software
is by now a well known field of research, it is in the details that
we offer some novelty. There are essentially two approaches to
the overall problem, either (i) one uses a specification language in
combination with a model checker to obtain a correct specification
that is used to write an implementation in a programming language,
or (ii) one takes the program code as a starting point and abstracts
that into a model, which can be checked by a model checker.
Either way, the implementation itself is not proved correct by these
approaches, but a model of it. Thus when an error is encountered
in the model, this may indicate also an error in the implementation.
As such, the use of model checking can be seen as a very accurate
testing method.

The work we describe here follows the second approach, i.e.,
we build a model from actual program code. Related work pursuing
the same approach include PathFinder [13] and Bandera [5] which
consider the problem of verifying code written in Java. Our work
has similar concerns and follows a similar approach except that
we use the knowledge of the occurring design patterns used in the
Erlang code to obtain smaller state spaces (cf. [3]). We follow a
similar approach to the translation of Java into Promela, checked
by SPIN [13]; however, we translate Erlang into the process algebra
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with data + CRL [12] and model check by using the CADP toolset
[10].

The fact that we translate the Erlang code into a process alge-
braic specification and use tools developed for analysing process
algebras rather than implementing tools that work directly on Er-
lang code has a number of benefits, primarily that we can reuse
existing toolsets for efficient state space generation from process
algebraic specifications.

Several tools have been developed to support verification of
+ CRL specifications [6, 23]. Our approach to verification uses
a model checker from the CADP toolset. In order to input the
+ CRL specifications into the model checker, we need to convert
the specification to an appropriate input format, in particular, we
use the state space generation tool of the + CRL toolset. The logic
used to express the properties we are interested in is the alternation-
free + -calculus [8]. Because we use standard tools, our contribution
lies in the abstraction and its automation.

We have built a tool, ���������
	�� , which automatically trans-
lates client-server systems, where the server uses the Erlang/OTP
generic server behaviour, into a + CRL specification. We devel-
oped the ��������
	�� tool at the same time as we verified a small, but
critical, part of a locker algorithm used in the software controlling
Ericsson’s AXD ATM switches. This case-study is described in [2].
The tool has also been used in the verification of another industrial
case-study, the scheduler of a video-on-demand server [20, 4]. In
this paper we extend the verification framework to fault-tolerant
client-server systems, and by doing so we aim to come one step
closer to the goal of being able to analyse industrial code.

2. Erlang
A key aspect of the Erlang approach to development is the use of
design patterns (provided by Erlang/OTP) which are encapsulated
in terms of generic components. This approach simplifies the de-
velopment cycle, as well as our verification of fault-tolerance. In
the following, we give a brief review of the Erlang design patterns
that are central to our model checking effort.

2.1 Generic server component

A server is a process that waits for a message from another process,
computes a response message and sends that back to the original
process. Normally the server will have an internal state, which
is initialised when starting the server and updated whenever a
message has been received.

Erlang/OTP provides a convenient component, the generic
server, for programming server processes. The behaviour module
( � ��� ����	�����	 ) implements the common parts of a generic server
process, providing a standard set of interface functions, for ex-
ample, the function � �
� ����	�����	���������� for synchronous commu-
nication with the server and the function � �
� ����	�����	��������
� for
asynchronous communication. The specific parts of the concrete
client-server system are given in a call-back module.

We illustrate the functionality provided by the generic server
component using a server in Figure 1 which is also used as the
leading example of this paper. Informally the server implements a
locking facility for a set of client processes. A client can acquire
the lock by sending a 	����������
� message, and release it using a	������������ message.

In the example the server may be called with a 	����������
� or a	������������ message. If the message is a request, and if � �
������� � is
the empty list, it replies to the caller with the atom ��� , and the new
state of the server is  "! �����
����# . If � ��������� � is not empty, then the
reply is postponed (until more messages arrive) and the new state
of the server is obtained by adding ! ��������� to the end of � �
������� � .
In case of a 	������������ , the server may issue a reply to the waiting
caller, using the � ����$�����	�����	��%	���&���' function. In the example, the

(*)�+�,*-�.0/�12.3+04*56/*78�9(*:�/<;�=*>?�+<-07�12@0/<A�B0C3/*73>6/*7D8�9(0/�E*F�+*70G�16HIC<G�=*73G6J�K�LM?"A?<G�J6N<O�8�9
C*G6=*73G�1%8P(3QR@0/*A�B0C�/*70>6/*7�SIC*G6=*73G6B0.0?"A05�1MT3.3+04�=0.�LU.3+04<56/�76V�L2.3+64<56/*7N<>6/*7�L6HWO�L6HXO�8�9
?<A?<G�1IY8P(3QZT3+�5�L6HXO0V�9
;=<A6,0.3/0B04�=3.3.�1W76/�[*-/0C<G�L]\0.0?3/<A0G�LU^�/<A6,6?"A�@�8P(3Q4�=0C3/R^6/<A�,6?"A6@_+�`HXO_(0Q_T*76/*F�.�a�Lb+�5�LcHX\0.6?�/<A0G0O6V�dBe(0Q_T<A�+�76/<F�.�a�LU^6/<A6,�?"A6@Zf3fgHX\0.0?�/*A0G0O0V/<A6,�d;=<A6,0.3/0B04�=3.3.�1W76/3.3/0=0C�/�L]\0.0?3/<A0G�LcHIB�h ^6/<A�,6?"A6@3O8i(3Q4�=0C3/R^6/<A�,6?"A6@_+�`HXO_(0Q_T*76/*F�.�a�Lj,6+<A�/�LcHWO0V�dBe(0QZ@0/<AB0C�/*73>�/*7�Sk76/*F�.�a�1X;�,�1W^6/<A�,6?"A6@�8
L�+*5D8�LT*76/*F�.�a�Lj,6+<A�/�LU^�/<A6,6?"A�@0V/<A6,�9

Figure 1. The source code of an Erlang generic server

generic server can be shut down by issuing a non-blocking call (a
cast) to it; the server corresponds by shutting down (indicated by
returning �����
& ).

The processing of calls by a generic server is sequential, i.e.,
there are never concurrent invocations of the callback functions;
a generic server thus offers a convenient way of controlling the
amount of concurrency in an application and of protecting the state
of the server.

Client processes use a uniform way of communicating
with the server; when a reply is expected they issue a call
� ����$��
��	�����	l���������nm"o����D����	lprq�������� � �ts where o����D����	 is the
process identifier of a generic server. The client process suspends
until a value is returned by the server unless no reply is expected, in
which case the function � ����$�����	�����	��������
� is called instead which
doesn’t cause the client to suspend. The generic server component,
and its access functions, permits calls from remote (distributed)
processes, with no change in syntax or semantics (except that fur-
ther faults may occur).

Note that the semantics of communication using the generic
server component is, in a sense, simpler that the communication
paradigm of the underlying Erlang language. Generic servers al-
ways receive messages sequentially, i.e., in FIFO (first-in first-out)
order. Erlang processes in contrast can potentially receive messages
sent to them in an arbitrary order. Thus by focusing on the higher-
level components, rather than the underlying language primitives,
our verification task becomes easier (concretely, state spaces are
reduced). We will see the same thing happening when considering
fault tolerance later on in this paper.

2.2 Supervisor component

A frequent assumption made when writing Erlang software is that
any Erlang process may unexpectedly die, either because of a hard-
ware failure, or a software error in the code evaluated in the pro-
cess. The runtime system provides a mechanism to notify selected
processes of the fact that a certain other process has terminated;
this is realized by a special message that arrives in the mailbox of
processes that are specified to monitor the vanished process.

On top of the Erlang primitives to ensure that processes are
aware of the existence of other processes, a supervisor process
component is available. This component evaluates a function that
creates processes (known as childred) which it will monitor. The
children may themselves be supervisor processes, supervising its
children in turn. The result is a hierarchical, tree-like, process
supervision structure. After creating these processes, it enters a
receive loop and waits for a process to die. If that happens, it
might either restart the child or use another predefined strategy to
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recover from the problem. A typical supervisor structure is shown
in Figure 2.

Figure 2. Supervisor tree for locker and clients

3. Fault-tolerance in Erlang
In Erlang, bidirectional links are created between processes by in-
voking the

�������
function with the process identifier of the process

to link to as argument. There is also a function ���
	�� � ������
which

atomically both spawns a new process, and creates a bidirectional
link to it. Links can be removed using � �
����������������� which re-
moves a link between the calling process and its argument.

Terminating processes will emit exit signals to all linked pro-
cesses. Erlang distinguishes between normal process termination
(the toplevel function of the process returned a value) from abnor-
mal process termination (e.g. a runtime error such as attempting to
divide by zero). If a process terminates abnormally, linked process
will by default terminate abnormally as well. However, a linked
process can trap signals and thus escape termination when an exit
signal arrives, by calling ���������������� � 	�� �! ��	��
��" �� $#! ����� � .

In this case, when an exit signal reaches the process it is
transformed into an exit message and delivered to the process
mailbox like any other message. Exit messages are of the form%'&)(�*
+�,$& #������$#)- ��	��� ��. , with

�
���
the process identifier of the

process that terminated, and
- ��	��� � the reason for termination. If

a process terminates normally
- ��	��� � is equal to

� ����/0	 � .
This basic mechanism of Erlang for error handling is exploited

by both the Erlang generic server behaviour and the Erlang supervi-
sor behaviour in order to build fault-tolerant client-server systems.

The Erlang programmer that implements a server process using
the generic server component has to take several possible types of
faults into account. Note that the library code in the ��� � �����1���
module is fault-tolerant and is in this paper assumed to be correct,
therefore, if there is an error, the error is assumed to be either in the
call-back module of the generic server or in the code of the client.

First, the server itself may be faulty and crash. Recovery should
be implemented by designating a supervisor process, using the
supervisor component, that restarts the server process (or takes
some other corrective action). In this paper we will not further
discuss how to recover from server crashes by restarting.

Another error condition occurs when the server may commu-
nicate with remote processes (possibly servers), or hardware de-
vices, that can malfunction without crashing, and moreover with-
out generating exit signals to linked processes. Such error condi-
tions should be handled in a traditional manner using timeouts. The
generic server component has support for setting timeouts, but we
will not explore the proper handling of such “semantic” faults fur-
ther in this paper. Note that the Erlang runtime system implements a
heartbeat algorithm for detecting crashed or non-connected nodes,
so that having a link to a remote process on an inaccessible node
will eventually result in the reception of an exit signal.

In this paper we focus instead on the error condition when an ex-
plicit exit signal reaches the generic server process. For the Erlang
programmer such signals are handled by providing a new callback
function, 2
	 ����� ��� ��� ��� �43�� � � 	 �5#43� 	  � � that gets passed the exit
signal as argument, together with the current state of the server.
The 2
	 ����� ��� ��� ��� function should, similarly to the other callback

functions, either return the new state of the server or stop. Note that
this function will be called only if no call to the server is being pro-
cessed, i.e., the restriction to sequential processing in the server is
still kept.

In the client-server applications that we want to verify using the
fault-tolerant extension, the state of the server contains information
about the state in which its clients are in, for example, in the locker
in Figure 1, the state of the locker reflects whether a client is
accessing a resource or whether is waiting to get access to it. If a
client terminates abnormally, the system should be able to recover
gracefully without a complete restart, i.e., the state of the server
process should be cleaned up accordingly.

4. Fault-tolerance in servers
Our goal is to check the correctness of generic servers in the pres-
ence of crashing clients. The class of servers that we can analyse
for fault tolerance have the following characteristics:

6 the server expects to receive an exit message whenever a linked
client crashes.6 the server establishes a process link to every client that issues a
generic server call to it. No links should be established due to a
client issuing a generic server cast.6 the server never removes a link between itself and a client
process, i.e., it never calls the function � �
������ .

Although the above conditions may appear arbitrary, they are
in fact indicative of a class of servers that safely implement a
stateful protocol between itself and its clients, through call and
reply exchanges. Thus, in a sense, these conditions give rise to a
new Erlang high-level component which refines the basic Erlang
generic server component.

As an example of a fault-tolerant server let us reconsider the
simple server in Figure 1. The main loop of a client that accesses the
locker is given in Figure 3. Every client process sends a ����7�����  
message followed by a ��� � ��	���� message.

8:9;9!<�=?>@9:A!B@CED�FHG;I
J C!KML:N4CED;OPCED�Q?A4R:8;8�=?>:9@A!B@CED�STD@C;UEVPC:N!W�F�S
J C!KML:N4CED;OPCED�Q?A4R:8;8�=?>:9@A!B@CED�STD@C:8;C;R:N4CPF�S8;9;9E<�=?>:9:AEB@CEDMF�X

Figure 3. A client accessing the server

We implement a locker which recovers from the abnormal ter-
mination of a client process by first adding the functions ������������ � � 	��
and

������
to the call-back module of the locker given in Figure 1 as

shown below.
Y K Y W�=?ZMF[G;IH<:DP9:A4C:N;N;LE\@8;R J =]W;D@R!<ML;C4^ Y W�S]W;D4VPCPF�S`_;9EB�S@a]b:c�X
dMR!K@e:8;C:L:A4R;8;8=]D@C4UEVMC:N!W�S`_4f:8 Y C!K:W;g Y eS]h@R J c�S�g@C!KPe Y K J FiG;I8 Y K@B�=?f:8 Y C!K:W;g Y ePF�S

A4R:N;Cig@C!KPe Y K J 94\ajbkG:Ik_ED@CE<P84lSm94B�Snajf:8 Y C!K:W:b@c�o
LpG:Ik_!KP94D@C!<P84l�S`g@C!K@e Y K Jrq;q ajf:8 Y CEK:W:b:c

C!K@e�o

The locker process now gets linked to the clients when they
request a resource. If a client crashes, the locker will receive an exit
message. As previously mentioned, exit messages are handled by
the generic server function 2
	 ����� � ��� ��� provided by the Erlang
generic server behaviour. A trivial implementation of this function
just returns the state of the server.
dMR!K@e:8;C:L Y K:\@9=s_�t]u:vMw�h�t;S?f@8 Y C!K:W:g Y eS]xPC;R:N49!KMc�S]g@C!KPe Y K J FyG;I_!KP9EDPC!<P84lS�gPC!K@e Y K J c�X
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Now, if a client process crashes immediately after sending the	����������
� message to the locker, then the locker will process the	����������
� message before the exit signal. If there the resource is
available, then the locker will send an ��� message to the client
that crashed and will put the client in the pending list. Since this
client has crashed, it cannot release the resource, therefore, all
other clients requesting the resource are put in the pending list and
will eventually starve. If the resource is not available, the client
will be put in the pending list, and when the resource is available,
we have the same starving situation described before. Starvation
also occurs if the client crashes while accessing the resource and
before releasing it. However, if the client crashes after releasing,
then the program behaves correctly. Of course, more than one
client process may crash, therefore, we need to consider all the
combinations of clients crashing at different points in the program
execution. Already we can see that testing fault-tolerant code for
a simple protocol like the one presented here is quite complex.
Our goal is to use a high-level language, a process algebra, and use
tools to automatically generate all these combinations and to check
that key properties, deadlock-freedom, mutual exclusion, and non-
starvation, are fulfilled.

The implementation of the
� �
������� ������� function for the locker

is given below.
;�=<A�,0.3/3B0?<A0`6+�12T������
	���3LI\0.0?3/<A0G3^�?�,�L��6/3=6C�+<A�V�LI^6/<A6,6?<A6@�8b(3Q� /��3^6/*A6,6?"A6@��Z76/<)+*>6/�1I\6.0?�/<A0G0^�?*,�LW^�/<A6,6?"A�@�8�L4�=0C�/c=*>6=0?�.0=<:�.3/�12\0.0?�/<A6G3^�?*,�LI^6/<A6,6?<A6@�8 +*`G37�-�/Z(0Q@0/<AB0C�/*73>�/*7�Sk76/*F�.�a�1X;�,�1 � /��0^6/<A6,6?<A6@�8�L�+*58�LT<A�+�76/<F�.�a�L � /��3^6/*A6,6?"A6@6V�dB (0QT<A�+�76/<F�.�a�L � /��3^6/*A6,6?"A6@6V/<A6,�9
76/<)+*>6/�1I\6.0?�/<A0G0^�?*,�L6HWO�8 (3Q HXO�d76/<)+*>6/�1I\6.0?�/<A0G0^�?*,�L6HIT�\0.0?�/*A0G3^6/<A�,6?"A6@�L��6=�@�^6/*A6,6?"A6@6V�h �6/0C*G3^6/<A0,6?<A6@6C*O�8j(0Q4�=0C3/Z\0.0?3/<A0G3^�?�,����_\0.6?�/<A0G3^�/<A6,6?"A�@Z+*`G07�-�/e(0Q��6/0C*G3^6/<A6,�?"A6@6C
d`�=3.0C�/Z(0Q HWT�\6.0?�/<A0G0^6/<A6,6?<A6@�L��6=3@�^6/<A6,�?"A6@0V�h76/*)�+*>6/�12\0.0?�/<A6G3^�?*,�L��6/0C<G3^�/<A6,6?"A�@6C08<O/<A6,�9
=*>6=6?�.3=<:�.0/�1I\0.0?3/<A0G3^�?�,�L6HXO�8 (3QZ`6=3.0C3/�d=*>6=6?�.3=<:�.0/�1I\0.0?3/<A0G3^�?�,�L6HWT�\6.0?�/<A0G0^6/<A6,6?<A6@�L��6=3@�^6/<A6,�?"A6@0V�O8b(3QP`6=0.0C�/�d=*>6=6?�.3=<:�.0/�1I\0.0?3/<A0G3^�?�,�L6HWT�\6.0?�/<A0G0^6/<A6,6?<A6@�L��6=3@�^6/<A6,�?"A6@0V�h��6/0C<G�^6/*A6,6?"A6@�C<O�8b(3Q\0.0?3/<A0G3^�?�,����_\6.0?�/<A0G0^6/<A6,6?<A6@�9

When the locker receives an exit message, i.e., a client process
has terminated abnormally, then if the client is in the pending list,
then it is removed from it. Moreover, if the client was accessing
the resource (i.e., it was in the head of the pending list), then, the
resource is available and therefore the locker gives access to the
resource to a client which was waiting for it. This is similar to when
a client sends a 	������������ message.

5. Translating fault-tolerant systems to � CRL
In this section we describe the translation to + CRL of Erlang
fault-tolerant client-server systems. First we briefly explain the
translation of Erlang systems without taking fault tolerance into
account, further details are provided in [1].

For the purpose of verification Erlang programs are translated
into the + CRL process algebra [11] by an automatic translator tool
[1]. The + CRL toolset can then generate labelled transition systems
corresponding to the + CRL specifications, which are used in model
checking.

5.1 Introduction to + CRL

In + CRL behaviour is described on two levels, as traditional pro-
cess behaviour using the process algebra operators of + CRL (se-
quencing, parallel composition, recursion, communication using

synchronisation, etc), and data kept by processes and exchanged
in communications. Data is separated into distinct types, which are
characterised by their sets of data constructors. Moreover functions
can be defined over data using rewrite rules. We illustrate the intu-
itive semantics of the language using a simple producer/consumer
example in Figure 4.

The example illustrates both the data and process part of + CRL.
A sort � �
����	���� is defined having constructors � and � , and a
function ����� defines the “less-than-or-equal” operation using a
rewrite system (rules found under the section 	���� ).

The initial process configuration of a + CRL specification is
given in the �D�t�
� section. In the example the two processes&�	�����������	 and �����t���
� ��	 are specified to run in parallel (using
the parallel operator “ ��� ”).

The &�	�����������	 process offers to synchronise on a ����� action,
using a natural number as parameter, and then recurses, until the
counter � reaches the ot�6���
� argument. In + CRL the syntax for
an “if-then-else” choice is �! #"
$
%'&)(*,+#- �.����/�&�	 �102"43�5#"6%'&(* .
The ���
�t���
�t��	 process repeatedly offers to synchronise with an-
other process (communication in + CRL is always synchronous) on
a 	��
� action, regardless of the natural number parameter (the �����
operator can be understood as universal quantification).

Finally the ������ section describes which actions synchronise,
e.g., in the example �D��� and 	��
� are specified to synchronise
(communication in + CRL is normally binary).

7�7�7�8 =*G6=iF=*73GC�+*73G � =*G�-07�=3.`�-3A4 K�S (3Q � =*G�-676=3.C�S � =�G�-076=3._(3Q � =*G3-076=3.)�=<F .3/�[�S � =*G�-076=0.�9 � =�G�-076=3._(3Q�:6+0+3.>6=*7 � L � N�S � =*G�-07�=3.76/�� .3/�[�1IK�L � 8;���.3/�[�1MC�1 � 8�LIK8<��=.3/�[�1MC�1 � 8�LMC�1 � N3838<� .3/�[�1 � L � N38
7�7�7 ^376+04�/6C3C F�=*70G=04<G C"A6,�LU74<>�S � =*G�-076=0.
4�+<)3) C"A6,rh�7�4<>>� 4�+<)3)
F076+04PF076+�,�-4�/*7�1 � S � =*G3-076=3.�L@?6?")?<G�S � =*G�-676=3.68A�C"A�,�1 � 8�9kF076+�,*-D4�/*7�1MC�1 � 8�L�?�?")?<G8B hU.3/�[�1 � L�?6?")D?<G8 hkQ,0/0.*G6=
F076+04c4�+<AC<-3)�/*7��C"-0)�1�C6/0C0C�=�@0/�S � =*G�-07�=3.�L]7�4<>�1�C6/0C3C3=�@0/6838�9I4�+<AC<-3)�/*7
?"A?<G_F076+�,�-4�/*7�12K�LMC
1MC�1MC
1MC
12K�838383808 h0h]4�+<AC<-3)�/*7

Figure 4. + CRL example

5.2 Translation

The translation of Erlang mimics the separation between pro-
cess behaviour and functional behaviour present in + CRL. A pre-
analysis step partitions Erlang functions into two categories: the
ones with pure functional computation, and the ones with side
effects (e.g., communication to/from a generic server). The side-
effect free Erlang functions are translated into + CRL functions,
which are defined using a set of rewrite rules. Thus such Erlang
functions do not generate any state. In contrast the side-effect
Erlang functions are translated into + CRL processes, using the
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process operators. Henceforth we will focus on the translation of
Erlang side-effect functions.

The translation of communications with a generic server uses an
intermediate buffer process implemented in + CRL, which stores
sent messages until the translated generic server process is ready
to receive them. Thus the asynchronous nature of communication
in Erlang is kept in the translated code. The translation of non-tail
recursive side-effect functions uses an explicit call-stack to keep
track of recursive calls.

Which processes (e.g., generic servers and clients) to translate is
computed by analysing the supervisor description for setting up the
system, which contains a listing of its processes and which function
(and module) a process should start to execute. The generic server
processes are found by analysing which processes initially execute
a function in a module with the generic server behaviour attribute.

We illustrate the translation using an example, where the �����
&
function in Figure 3 has been translated into + CRL.
F076+64R.3+3+<F�1�C0\ ��? � /3.*`�S �6/*7�)�L@?0+04<56/�7�S �6/*73)D8A�@6/<A�B0C�/�73>6/*76B64�=3.3.�1@?0+04<56/�7�LW76/�[�-�/0C<G�L�C0\ ��? � /3.*`8�9C<-3)�1�C0\���? =376/0/�K�S �6/�7�)�L@0/<AB0C�/*73>�/*76B*76/*F�.0?�/�,�1�C0\ ��? � /3.*`�L�C0\ ��? =076/3/�K�L@?0+04<56/�78�9@0/<AB0C�/*73>�/*76B04�=0.3.�1�?0+64<56/*7�LI76/3.3/3=6C�/�L�C0\���? � /3.�`8�9C"-3)�1�C0\ ��?�=376/3/6N�S �6/*7�)�L@0/<A�B6C�/*73>6/�76B*76/<F.0?�/�,�1�C0\ ��? � /3.*`�L�C6\ ��? =37�/3/6N�L�?6+04<56/*7D8�9.3+3+<F�1�C0\ ��? � /3.*`�L@?0+04<56/�783838

The q !�� o������.� parameter of the �����
& process represents the
process identifier of the process. The communication with the
generic server is split into a call part where the � ����$�����	�����	�$��������
synchronises with the message buffer, and a return part where
the action � ����$�����	�����	�$�	���&�������� synchronises directly with the
generic server. The summation operator ( ���
� ) can be understood
as an infinite summation where the variable q !�� o���	������ is replaced
by any possible Erlang value.

The translation of the
� �
��������$�������� server-side function, for a	����������
� , given in Figure 1 is shown below:

F076+64ZC�/*73>�/*76.3+3+*F�1�C0\ � ? � /3.*`�S �6/*7�)�LW^6/<A6,�?"A6@�S ��/*7�)D8A�C<-3)�1I\0.6?�/<A0G�S �6/*7�)�L;�=<A�,0.3/ 4�=3.3.�1�C0\ ��? � /3.*`�LW7�/�[*-�/0C*G�LI\0.0?3/<A0G8�91I@0/*A C�/�73>6/*7 76/<F�.�a�1I\0.0?�/*A0G�Lb+*5�L C0\ ��? � /3.*`8�9C�/�73>6/*76.0+3+<F�1�C6\ ��? � /0.*`�LM4�+*AC
1I\0.6?�/<A0G�LWA?�.6838B h]/�[�1M/�[*-�=3.�1W^6/<A6,�?"A6@�LXAD?�.68�LWG07�-�/68 hkQC�/�73>6/*76.0+3+<F�1�C6\ ��? � /0.*`�L2.0?0C<G =<F3F�/*A6,�1W^6/*A6,6?"A6@�LM4�+<AC�1I\0.0?�/*A0G�LXA?3.68383838f
	�	�	

Informally, the action
� �
��������$�������� synchronises with the

buffer on a synchronous call, and the server replies to a call using
the action � ����$�����	�����	�$
	���&���' . If the state of the server ( � ��������� � )
is the empty list, an immediate reply is sent, otherwise the new
client is entered at the tail of the request queue ( � ��������� � ) of the
server. Note that the description of which action synchronize is
given in a separate declaration in + CRL, we omit the declaration in
this paper.

The fault-tolerant extension of Erlang only affects the process
part of Erlang, hence, the translation of the functional part of fault-
tolerant Erlang remains the same.

For the process part, the fault-tolerant extension of Erlang as-
sumes that a server expects to receive an exit message in its mail-
box whenever a linked client crashes, and that this exit message is
received and handled by the generic server primitive

� �
������� ������ .
The translation to + CRL therefore needs to take into account this
implicit communication between the client and the server, and the
translation of the

� �
������� ������ function.
The translation of the generic server primitives of Erlang to

+ CRL uses a buffer. The communication mechanism in case a
client process crashes is similar to the one used in the other generic
server communication primitives, with the difference that the exit
message sent by a client that crashed is handled by the generic

server primitive
� �
������� ������ . We choose to represent the sending

of this exit message in + CRL by the action �
	���� � which synchro-
nises with the buffer of the server. The extended + CRL buffer that
communicates with the �
	���� � action is shown in Figure 5.

As stated before, a server expects to receive an exit message in
its mailbox whenever a linked client crashes. Because the server
links to a client process in the

� �
������� ������� function, the exit
messages from a crashing client can only be received after the client
issues a � ��� �
��	�����	l��������� . Thus, in the Erlang code of a client,
the client can crash:
� between issuing a � ��� ����	�����	��*������� and receiving the a reply

from the server.
� after receiving the reply to the � ��� ����	�����	���������� from the

server.
� after issuing a � ��� ����	�����	��������
� if there was at least one
� ��� ����	�����	���������� to the same server before.

Note here especially that the number of crash points are reduced
considerably, because of the use of a higher-level component, than
if the lower language fault tolerance mechanism was used. The ben-
efit is, again, both reduced state space (with regards to verification)
and for the programmer an easier task to write a fault tolerant pro-
gram.

We insert the + CRL code corresponding to a client crashing au-
tomatically. The crashing of a client process is modelled in + CRL
by the action ��	���� � . This action synchronises with the buffer of
the server in the same way as the � ��� ����	�����	 ������� action. The�
	���� � action appears in the + CRL specification of a client as an
alternative to every + CRL communication action that corresponds
to a communication function in Erlang. The possibility to crash
is represented in + CRL as a non-deterministic choice between the�
	���� � action and the + CRL action corresponding to the Erlang
communication function.

Note that in Erlang, if a client crashes between issuing a
� ��� �
��	�����	l��������� and receiving a reply from the server, the
server will finish the evaluation of the

� �
������� ������� before read-
ing the exit message from the mailbox. This is not problem-
atic, since, in Erlang, sending a message never fails, even if the
message is sent to a non-existing process. However, communi-
cation between processes in + CRL is handshaking, therefore,
the action � ��� ����	�����	 	���&��
' used to send the reply from the
server to the client process tries to communicate with the action
� ��� �
��	�����	 	���&�������� in the client, even if the process client has
crashed. To simplify the translation, we let the client process re-
ceive the reply message, even after crashing. This means that after
every ��	���� � action that occurs after a � ��� ����	�����	���������� action,
the � �
� ����	�����	 	��
&�������� action is added. Similarly, a client could
crash after it makes a call to the server, and before the server at-
tempts to link to it using the ������� function. However, the semantics
of the ���D��� function in Erlang guarantees that if a process attempts
to link to a terminated process, an exit signal is sent, thus our
treatement is correct.

As an example, the Erlang code in Figure 3 is translated to a
+ CRL process, with a possibility to crash, below.

F676+04R.3+0+<F�1�C0\���? � /3.�`�S �6/*73)�L�?0+04*56/*7�S ��/*7�)D8 �@0/<A�B6C�/*73>6/�76B04�=3.0.�1�?0+04*56/*7�LW7�/�[*-�/0C*G�L�C0\ � ? � /3.*`D8�91M4<76=6C";�1�?0+64<56/*7�LIG�-3F�.3/�1����
	���LWG�-3F�.0/�1�C0\ � ? � /3.*`�LWG�-3F�.0/<A?�.
1�� �
	��83808�8�9C"-3)�1�C0\ ��? =076/3/�K�S �6/*7�)�L@0/<A�B6C�/*73>6/�76B*76/<F.0?�/�,�1�C0\ ��? � /3.*`�L�C6\ ��? =37�/3/�K�L�?6+04<56/*7D838�9,0/3.*G�=f C"-3)�1�C0\ ��?�=376/3/�K�S �6/*7�)�L@0/<AB0C�/*73>�/*76B*76/*F�.0?�/�,�1�C0\ ��? � /3.*`�L�C0\ ��? =076/3/�K�L@?0+04<56/�78�91M4<7�=0C";�1�?6+04<56/*7�LWG�-3F�.0/�1����
	6��LWG�-3F.3/�1�C0\���? � /3.�`�LWG�-3F.3/<A?�.�1����
	��D8�83838�9,0/0.*G6=f 1I@0/<A�B6C�/*73>6/�76B04�=3.0.�1�?0+04*56/*7�LW7�/3.3/3=0C3/�L�C0\ � ? � /3.*`D8�9
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1M4*76=0C";�1@?0+04<56/�7�LWG�-3F.3/�1���� 	���LWG�-0F�.3/�1�C6\ ��? � /0.*`�LWG�-0F�.3/<A?3.�1����
	6��8383838�9C<-3)�1�C0\���? =376/0/6N�S �6/*73)�L@0/<AB0C�/*73>�/*76B*76/*F�.0?�/�,�1�C0\ ��? � /3.*`�L�C0\ ��? =076/3/6N�L@?0+04<56/�7838�9,0/3.�G6=f C"-0)�1�C0\ � ? =376/3/�N�S �6/*7�)�L@0/<A�B0C3/*73>6/*7�B*76/<F�.6?�/�,�1�C6\ ��? � /0.*`�L�C0\���? =376/0/6N�L�?0+64<56/*78�91M4<7�=0C";�1�?6+04<56/*7�LWG�-3F�.0/�1����
	6��LWG�-3F.3/�1�C0\���? � /3.�`�LWG�-3F.3/<A?�.�1����
	��D83838�8�9,0/0.*G6=f .3+3+*F�1�C0\ � ? � /3.*`�L�?0+04<5�/*7838380838383838
The

� �
������� ������ function has the same syntax as the� �
������� �����
� , and its semantics are basically the same, with the
difference that a

� �
������� �����
� function implements the handling
of a �����
� message while the

� �
������� ������ function implements
the handling of an ��/��
� message.

The + CRL toolset is used to generate a state space from the
+ CRL translation. Obviously, the state space generated for a client-
server system with this client process is larger than the one where
the client cannot crash. For example, the state space generated in a
scenario with two client processes which cannot crash contains 33
states and 48 transitions, while the state space for the same scenario
with crashing clients consists of 326 states and 584 transitions.

6. Model checking properties in fault-tolerant
systems

Once the labelled transition system has been generated by the
+ CRL toolset, from the + CRL specifications which is automati-
cally translated from the source Erlang program, the CADP toolset
[9] is used to verify that safety and liveness properties are fulfilled.
Such correctness properties are formulated in the regular alterna-
tion free + -calculus [17, 16]. Informally, the modalities in the logic
are relaxed to sequences of actions characterised by regular expres-
sions.

Action label are enclosed in quotes (e.g.,
� �
	���� � � ) and can

contain wildcards (e.g.,
� ��� �
	���� � � � � matches any action that has the

text string �
	���� � somewhere in its name), �����
	����������� matches any
action that does not match the action regular expression ���
	�������
��� ,
���
	�������������������
	�������
����� matches any action that matches either
���
	������������� or ���
	�������
����� .

Actions can be composed using the normal regular expression
operators, i.e., � denotes alternative,

,
zero or more occurencies, � is

sequencing, and � matches any action. Comments can be enclosed
in formulas using the m� ������ �
���! �s notation.

In addition simple formula macros with parameters are used,
e.g., "$# %&��'�(*)+��(,(��
-.#/�10 ��24365 � ,87:9 �<; ���,=>� defines a macro express-
ing which expresses that after any sequence of actions, it must be
possible to perform the action parameter � . Thus, we can check that
the action ��� is always enabled using "$# %&��'�(*)+��(�(��
-.#/�10 ��� 2 .
6.1 Deadlock freedom

Since we model crashing of client processes, actually we are in-
troducing deadlock states. To verify that a client-server system is
deadlock-free except for the states where all clients have crashed,
we formulate a fault-tolerant version of the classical deadlock-
freedom property. The property we are interested in states that no
deadlocks occurs as long as not all the processes in the system have
crashed. This property can be expressed by explicitly stating the
crash actions in the formula.

For instance, supposing there are three processes in the system.
Then we define a action sequence macro denoting the sequences
containing 0, 1, or 2 crashes:?�@�A�BC@D@FE G H�EJI K LDMNH�O�PJ@FODQSRUTQ
QWVFX 	 Y?"A0`�+ 	 Y XSR Y 1�ZRK 4<76=0C";/0C[Z08 \QSVFX 	 Y?"A0`6+ 	 Y X Y X 	 Y?"A6`6+ 	 Y X 	 QSVFX 	 Y�?"A0`6+ 	 Y XSR Y 1
ZcNR4<7�=0C";]Z68 \QSVFX 	 Y?"A0`6+ 	 Y X Y 	 X 	 Y�?"A0`�+ 	 Y X 	 QSVFX 	 Y�?"A0`6+ 	 Y X^R Y�	 X 	 Y?"A6`6+ 	 Y X 	 QSVFX 	 Y�?"A0`6+ 	 Y XSR Y R
R

Using the macro, the deadlock freedom property becomes:
_ ?�@�A�BC@`@FE G H�EJI K LDMNH�O<PJ@FODQ^RWa�b (,ced/feg1h

This formula will spot the deadlocks unrelated to complete
crashes of the system. In general, for N processes in the system,
one must write N-1 lines of the form (

� � , �D���� � , � � 0:� � � , ������ � , � 2 , 2
in the macro above.

This example highlights the need to reconsider the properties
used to verify nonfault-tolerant systems in order to verify fault-
tolerant systems. In the following two subsections we discussed
how mutual exclusion and non-starvation can be verified.

6.2 Mutual exclusion

The formulation of the mutual exclusion property for the non-fault-
tolerant locker is given below. To make verification easier two
actions are introduced in the Erlang code of the client to signal
the entering ( ����� ) and the exiting ( ��	���� ) of the critical section.?N@�A�B[@`@FE[Q^i�j*kDielmkDienoRUT _ (8Y . i�j . QSVFiel:R Y . ien�a pmq,r s htvu�AF@>wxQ^RUTy?�@�A�BC@D@FE[Q^X -DC�/ Q 	 Y R
X
k X `076/3/ Q 	 Y R
X:k X -DC�/ Q 	 Y R
XSR

The formula states that ’on all possible paths, after an �t���
action, any further �t��� action must be preceded by an ��	���� action’.
Intuitively, the formula means that if a client process is accessing
the resource, then no other client process can access it until the
resource has been freed. This formula does not hold in the state
space generated for the a scenario with two crashing clients. The
CADP model checker gives the following counter-example.
z 4�=3.3.�1M.3+04<56/�7�LW76/�[�-�/0C<G�L2\�N38 zz 76/<F�.�a�1I\�N�L2+�5�L2.3+04*56/*78 zz =04<G�?�+*A�B<-C�/�1I\�N38 zz ?"A0`6+�1M.3+04<56/�7�L2T���� 	���LI\�N
L����
	��D838 zz 4�=3.3.�1M.3+04<56/�7�LW76/�[�-�/0C<G�L2\,{68 zz 76/<F�.�a�1I\,{�L2+�5�L2.3+04*56/*78 zz =04<G�?�+*A�B<-C�/�1I\,{68 z

The counter-example shows that the mutual exclusion property
is violated, since the resource is accessed by two process clients,
client | and client } , without being freed. However, the counter-
example is also showing that, client } is accessing the resource
after client | has crashed, therefore, strictly speaking, client | is
not accessing the resource because it is dead.

In order to show that the mutual exclusion property is verified
in the fault-tolerant first version of the locker case-study, we need
to take the client crashes into account, as is done in the property
below.~�Av��?�@�A�BC@`@FE[Q^i j kDi l kDi n kDi*�oRUT_ ( Y . i�j . QSVFiel���ien
R Y . i � a pmq,r s h
~�Av��tvu�AF@>wxQ^RFT~�Av��?�@�A�BC@`@UECQSX -C�/ Q 	 Y R
X
k X `376/0/ Q 	 Y R
X�k X ?"A6`6+ Q 	 Y R
X
k X -DC�/ Q 	 Y R
X^R
To illustrate the power of model checking as a debugging

tool, consider the following erroneous implementation of the� �
������� ������ function of the locker. After a client crashes, ac-
cess to the resource is given to the client that was waiting to get
access in the head of the pending list.

;=<A6,0.3/0B0?"A0`6+�12T������ 	����3LI\6.0?�/<A0G0^�?*,�L���/3=0C�+<AV�LW^6/<A�,6?"A6@�8 (3Q� /��0^6/<A6,6?<A6@��Z7�/<)�+*>6/�1I\0.0?�/*A0G3^�?*,�LW^6/<A6,�?"A6@�8�L4�=0C3/ � /��0^6/<A6,6?<A6@����gHWOc+*``6=3.6C�/Z(3Q@0/*A�B0C�/*70>6/*7�Sk7�/<F�.�a�1W;6,�1 � / �3^6/<A6,�?"A6@�8�L]+*58
LT<A+*76/<F�.3a�L � /��0^6/<A6,6?<A6@0V�dBZ(3QT<A+*76/<F�.3a�L_HXO0V/<A6,�9
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&�	����
����	�����	�$
	��������	lm"q ! � o���������������	��jp q�������� � ��� ����
	���������	 s��m����������	�������� m"q !�� o������.� s��m � � � �����
� m"q ! � o �������lp������
��$
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� ��������� m%q ! � o��������lp qt� � p ��	��� s��
����	�����	�$�	��������	lm"q ! � o�������� p ������������� m"q�� � p ��	���jp"q�������� � ����s�s�s�s��
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�Um"qt� � ������	��jp
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	��������	lm"q ! � o��������lp<	�� � �����lm"q�������� � ����s�s� � ����$�������� m"q�������� � ����s � 0m � � � ������� m"q ! � o�������� p3��������$�����	��Um"q�������� � ����s p3��������$�&t�
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	��������	lm"q ! � o��������lp<	�� � �����lm%q�������� � ����s�s� � ����$�������� m"q�������� � ����s �10����������s�s�s�s

Figure 5. The Generic Server Buffer Process

This code is correct for the case where a client crashes after
obtaining access to the resource, but it is wrong if the client crashes
after releasing the resource. Testing concurrent code is tricky, in
particular, in this example, only the right combination of more than
three clients, a client crashing after releasing the resource and the
other two or more clients waiting in the pending list triggers the
error in the fault-tolerant code.

However, the model checker fed with the + CRL specification
automatically obtained from the erroneous Erlang code and the
FT-MUTEX property gives, in few seconds, the following counter-
example:z 4�=0.3.�12.3+64<56/*7�LI76/�[*-�/6C<G�LI\�N08 z 1 N38z 76/*F�.�a�1I\N�L2+*5�LM.3+04<56/�78 z 1W{68z 4�=0.3.�12.3+64<56/*7�LI76/�[*-�/6C<G�LI\���8 z 1��68z ?"A6`6+�12.3+64<56/*7�LMT����
	���LI\���L�� �
	��6V68 z 1���8z =04*G�?�+<A�B*-C�/�1I\N38 z 1��68z =04*G�?�+<A�B�`376/3/�12\�N38 z 1��68z 76/*F�.�a�1I\N�L2+*5�LM.3+04<56/�78 z 1��68z 4�=0.3.�12.3+64<56/*7�LI76/�[*-�/6C<G�LI\,{�8 z 1� 68z 4�=0.3.�12.3+64<56/*7�LI76/3.3/3=6C�/�LI\�N08 z 1�!68

z 76/<F�.�a�1I\,{�L2+�5�L2.3+04*56/*78 z 1 N*K�8z =04<G�?�+*A�B<-C�/�1I\,{68 z 1 N0N38z 76/<F�.�a�1I\�N�LI,6+<A�/�L2.0+04<56/*7D8 1 Nm{68z =04<G�?�+*A�B<-C�/�1I\�N38 z 1 N"�68
Here we have a trace where client | requests and is granted

permission to access to the resource and is put in the pending
list (lines m ��s and m$#�s ), thereafter client % requests access to the
resource and is put in the pending list after client | (line m$&ts ).
Then client % crashes and because the pending list is not empty,
an �D� message saying that the resource is available is sent to the
first element in the pending list, which is client | (line m$'ts ). Client
} requests access to the resource and is put in the pending list
after client | (line m$(�s ). In the meanwhile, client | has used the
resource and sends a message to the locker to release it (line m$)ts )1.
The locker checks if there is any client waiting in the pending
list to get access to the resource and gives access to the resource

1 Note that client * has not yet received the +-, message sent to it after client.
crashed
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to client } (line m � ��s ) which access the critical section. But then
client | receives the message ������� that the server sent after client
| released, and then reads the ��� message with which it was given
permission to access the resource, thus entering the critical section
as well (line m � &ts ). At this point, the mutual exclusion property
fails because both client } and client | are accessing the resource at
the same time.

The counter-example is useful because it gives precise informa-
tion on where the error occur and makes possible to reproduce it.
This trace can also be used to generate tests for the system.

7. Conclusions and related work
One of the aspects that makes the programming language Erlang
popular among developers of business-critical systems is the inclu-
sion of constructs to handle fault-tolerance.

Our approach to verification of such fault-tolerant systems has
several components. First, Erlang systems are translated into + CRL
specifications. Next, the + CRL toolset generates the state space
from the algebraic specification, and finally, the CADP toolset is
used to check whether the system satisfies correctness properties
specified in a the alternation-free + -calculus.

To enable analysis of fault behaviour we introduce in a system-
atic way explicit failure points in the algebraic specification, where
the system processes may fail. The key observation is that, due to
the usage of higher-level design pattern that structure process com-
munication and fault recovery, the number of such failure points
that needs to be inserted can be relatively few, and can be inserted in
an application independent manner. In other words, the state spaces
generated from a failure model can be generated automatically, are
relatively small, and are thus amenable to model checking.

We have demonstrated the approach in a case study where a
server, built using the generic server design pattern, implements
a locking service for the client processes accessing it. The server
necessarily contains code to handle the situation where clients can
fail; if it did not the server would quickly deadlock. In the study we
verify, using the automated translation and model checking tool,
systems composed of a server and a set of clients with regards
to crucial correctness properties such as deadlock freedom, mutual
exclusion and liveness.

The formal verification of fault-tolerant systems has been stud-
ied before, both using theorem provers, for example PVS [19], and
model checkers like SPIN [14] and CADP [9]. These tools have
been applied to several case-studies, some examples can be found
in [18, 21]. In contrast to our approach, they target a single appli-
cation only, are ad-hoc, and often do not provide a reusable verifi-
cation method.

General models for the verification of fault-tolerant algorithms
are also present in the literature, for example [15]. The main differ-
ence with our approach is that our models (similar to the software)
are on a higher-abstraction level than those works; there is more in-
telligence built-in the Erlang component programming model than
in general model, and it is interesting to see, that using such a model
actually makes it easier to verify the correctness of the solution.
However, in the case of [15], they consider time, which might not fit
the Erlang model we propose. Further research is therefore needed.

Related to our work is the formal verification method pro-
posed in [22] for distributed JavaSpaces, a distributed program-
ming model where agents share information via a common space,
and where the space handles the details of concurrent access to the
data. The method is illustrated by verifying a fault-tolerant algo-
rithm where some identical processes (workers) compute a value
independently and one special process (master) publishes the result
of the computation. Fault-tolerance is imposed on to the system as
follows: any worker can suddenly stop, in which case the system re-
covers gracefully and the process is never restarted. The master can

suddenly stop as well but it is restarted only once. The JavaSpaces
architecture and the fault-tolerant algorithm are manually written
in + CRL and verified by the combination of the + CRL toolset and
the CADP toolset, in a similar way as we do. The key difference is
that we obtain the + CRL specifications automatically from the Er-
lang code, while they manually translate the Java code into + CRL.
This is a significant advantage since, as the authors themselves ad-
mit, “We think that the automatic translation of the [Java] code is
very important from a methodological point of view and for the
“industrial” application of the verification technique [...]”.
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