
Timed Verification with µCRL

Stefan Blom1, Natalia Ioustinova1, and Natalia Sidorova2

1 Department of Software Engineering, CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands

{Stefan.Blom, Natalia.Ioustinova}@cwi.nl
2 Department of Mathematics and Computer Science

Eindhoven University of Technology
Den Dolech 2, P.O. Box 513, 5612 MB Eindhoven, The Netherlands

n.sidorova@tue.nl

Abstract. µCRL is a process algebraic language for specification and
verification of distributed systems. µCRL allows to describe temporal
properties of distributed systems but it has no explicit reference to time.
In this work we propose a manner of introducing discrete time without
extending the language. The semantics of discrete time we use makes it
possible to reduce the time progress problem to the diagnostics of “no
action is enabled” situations. The synchronous nature of the language
facilitates the task. We show some experimental verification results
obtained on a timed communication protocol.

Keywords: modelling, verification, discrete time, µCRL, model check-
ing.

1 Introduction

The specification language µCRL [8] (micro Common Representation Language)
is a process algebraic language that was especially developed to take account of
data in the study of communicating processes. The µCRL toolset [5] provides
support for enumerative model checking. One of the most important application
areas for µCRL is specification and verification of communication protocols.
Communication protocols are mostly timed systems. A common way to use time
is the timeout. In some cases it is possible to abstract from duration and simulate
timeouts with non deterministic choice. However, in other cases the lengths of
the timeouts are essential to the correctness of the protocol. To deal with these
cases one needs an explicit notion of time.

In [10], a timed version of the µCRL language is proposed where time is
incorporated in µCRL as an abstract data type satisfying a few conditions plus
a construct to make an action happen at a specific time. The timed version of
the language turned out to be useful as a formalism for the specification and
analysis of hybrid systems [9]. However, it is not clear yet whether timed µCRL
can be used to analyse larger systems than the examples considered in the paper.
Moreover, some of the existing tools cannot be used for timed µCRL without

modification. Most importantly, timed µCRL is incompatible with linearisation
(translating a specification into the intermediate format) and with partial order
reduction.

The goal of the work we present in this paper is to establish a framework
in which timed verification may proceed using the existing untimed tools. The
reason why we want to do this is that real life systems tend to consist of both
timed and untimed components. Timed tools are very good at detailed analysis
of the timed components of these systems, but cannot be used for analysing the
whole system.

To achieve the goal of timed verification with untimed tools, we must restrict
ourselves to discrete relative time: the state spaces of systems with dense or ab-
solute time are almost always infinite. Techniques, such as regions and zones,
which allow finite representations of such infinite state spaces, are not imple-
mented in the untimed tools. Timestamping actions with “absolute” time, as is
done in timed µCRL, leads to infinite state spaces in case of unbounded delays:
Consider the process X =

∑∞
t=0 a@t which uses time tags (the @ symbol must be

read as “at time”) and thus can do action a at any time. The transition system
of X consists of 2 states and infinitely many transitions. For this reason, we have
chosen a “relative” time solution. Namely, we introduce time through an action
tick, which by convention expresses one unit of time elapsing. In this case we
can specify the process that can do a at any time as Y = tick.Y +a . The tran-
sition system of process Y has two states and two transitions. The advantage
of representing time progression as an action is that we stay within the syntax
of µCRL. Moreover, the special use of tick is compatible with the semantics of
µCRL and hence the existing toolset can be used for analysis and verification.

The proposed discrete time semantics is suitable to express time aspects and
analyse time properties of a large class of systems. We argue the usefulness of
our approach with the verification experiments on a µCRL specification of the
positive acknowledgment retransmission protocol (PAR) [15], whose behaviour
depends on the timers’ settings.

To express timed properties of systems, we introduce an LTL-like timed tem-
poral logic on actions and show how to encode its timed constraints with the
use of tick, which results in untimed temporal formulas. These formulas can be
then translated to µ-calculus and checked with the µCRL toolset.

The rest of the paper is organized as follows. In the following Section 2, we
sketch the syntax and semantics of µCRL. In Section 3 we present the discrete
time semantics that we work with and afterwards in Section 4 we explain how
timed specifications can be developed within the untimed framework with follow-
ing the proposed approach. In Section 5 we discuss some experimental results.
In section 6 we introduce a timed temporal logic. We conclude in Section 7 with
discussing the related works and the directions for the future work.

sort Bool

func T,F: ->Bool

map eq,and:Bool#Bool->Bool

var b:Bool

rew eq(b,b)=T

eq(T,F)=F

eq(F,T)=F

and(T,b)=b

and(F,b)=F

Fig. 1. A µCRL specification of the sort Bool

act a

b,c:Bool

proc X=a.X

Y=sum(b’:Bool,b(b’).c(b’).Y)

Y’(b1:Bool,state:Bool)=

sum(b’:Bool,b(b’).Y’(b’,F)<|eq(state,T)|>delta+

c(b1).Y’(b’,T)<|eq(state,F)|>delta

Fig. 2. Components in µCRL

2 µCRL: Basic Notions

The specification language µCRL (micro Common Representation Language) is
essentially an extension of the process algebra ACP with abstract data types
and recursive definitions. The µCRL toolset provides tool support for a subset
of the µCRL language. In the remainder of this section, we will give an overview
of both the language and its tool support. Details about the language can be
found in [10]. Details about the tool support can be found in [5].

Data in µCRL is specified using equational abstract data types. Every µCRL
specification must include a specification of the sort Bool, which represents the
booleans. An example can be found in Fig. 1. Although the language specifica-
tion does not require them, the tool support requires the function eq : D#D->

Bool for every sort D and the boolean function and. The equations following
the keyword rew are oriented from left to right and used as rewrite rules by the
tools, but may be used in both directions for reasoning.

The usual way of modeling a system in µCRL is to decompose the system into
components and then specify the components and their interactions separately.

Components are usually recursively defined using atomic actions, alternative
composition and conditionals. For example, in Fig. 2 we have specified processes
X and Y. Process X simply repeats action a infinitely often. Process Y infinitely
often chooses between T and F nondeterministically and performs b and c with
the same choice as argument.

Component processes can be glued into a system using parallel composi-
tion, encapsulation, hiding and renaming operators. The parallel composition
operator of µCRL combines two processes into a single process by allowing non-
deterministic choice between interleaving the actions of the two processes and
synchronous interaction (communication) of an action from each of the pro-
cesses. Other types of parallel composition operators can be defined in terms of
the basic operators. For example, the operator |{tick}| which lets the processes
X and Y run interleaved except for the action tick, which must be performed
synchronously by both X and Y may be encoded as follows:

act tick tick’

comm tick|tick=tick’

X |{tick}| Y = rename({tick’->tick},encap({tick},X||Y))

In this encoding we have a process X||Y where tick actions from X and Y may
be performed interleaved or at the same time resulting in a tick’. In the pro-
cess encap({tick},X||Y) the interleaved execution is disallowed by means of
encapsulation. Finally the tick’ is renamed to tick to get the desired result.
Note that interaction is not limited to two parties. The result of an interaction
may itself interact. For example, the interaction of actions a, b and c, resulting
in action d can be expressed as

comm a|b=ab b|c=bc a|c=ac a|bc=d b|ac=d c|ab=d

Tool support for µCRL is centered around the linear process format. A linear
specification consists of a single recursive process, which can choose between
possibilities of the form action followed by a recursive call:

proc X(d1 : D1 · · · , dn : Dn) =
∑

e11:E11
· · ·

∑

e1n1
:E1n1

a1(s1).X(t1) � c1 � δ+

...
∑

ek1:Ek1
· · ·

∑

eknk
:Eknk

ak(sk).X(tk) � ck � δ+

init X(t0)

The toolset allows the transformation of specifications into linear form (on Fig. 2,
process Y’ is a linear equivalent of process Y), the optimisation of specification
in linear form, the simulation of a linear specification, and the generation of a
Labelled Transition System (LTS) from a linear specification. The toolset allows
the user to apply a partial order method based on τ -confluence. Partial order
reduction guarantees that the reduced state space is branching bisimilar to the
original state space. Branching bisimulation preserves CTL*-X properties [13],
so all CTL*-X properties are preserved by partial order reduction.

3 Semantics of Time

In this section we discuss what time semantics is appropriate for our purpose.

The first choice to be made is a choice between dense and discrete time. It
is normally assumed that real-time systems operate in “real”, continuous time
(though some physicists contest against the statement that the changes of a sys-
tem state may occur at any real-numbered time point). Due to the development
of regions and zones techniques [1] the verification of real-time systems became
possible. However, a less expensive, discrete time solution is for many systems as
good as dense time in the modelling sense, and better than the dense one when
the verification is concerned: [11] showed that discrete time suffices for a large
and important class of systems and properties including all systems that can
be modelled as timed transition systems and such properties as time-bounded
invariance and time-bounded response. Another work that compares the use of
dense and discrete time is [7]; the authors state that discrete time automata
can be analysed using any representation scheme used for dense time, and in

addition can benefit from enumerative and symbolic techniques (such as BDDs)
which are not naturally applicable to dense time. Having in mind that we should
not step out the current non-timed framework of µCRL the choice for discrete
time is obvious.

The nature of systems under consideration suggests the choice for timers,
not clocks: expiration of a timer is a natural way to model an interruption for
hardware or a trigger for a software event. Both interrupt and software event
must be handled, and they must be handled exactly once, i.e. with taking an
event guarded by a timer condition, we assume that the timer which triggered
this event became deactivated (otherwise, the system could handle one event
several times). Time progresses by decreasing the values of all active timers by
one time unit. We will refer to the time progress action as tick and to the period
of time between two tick’s as a time slice.

We consider a class of systems where delays are significantly larger than
the duration of normal events within the system. Therefore, we assume system
transitions to be instantaneous. This assumption leads us to the conclusion that
time progress can never take place if there is still an untimed action enabled, or
in other words, the time-progress transition has the least priority in the system
and may take place only when the system is blocked : there is no any transition
enabled except for time progress and communication with the environment.

4 Specifying Timed Systems in µCRL

In the µCRL framework, we can implement timers as data parameterising pro-
cesses. Figure 3 shows the specification of the sort Timer. Terms on(n) stand
for active timers (n is of sort natural numbers) while deactivated timers are rep-
resented by off terms. (Note that µCRL specifications containing sort Timer

should also include sort Nat providing operation pred that decreases a non-zero
natural number by one and operation eq checking for the equality of two num-
bers.) The operations we allow on timers are (1) setting a timer to a value given
by a natural number that shows the time delay left until the timer expiration;
(2) resetting a timer (setting it to off). Timer expiration condition given by

sort Timer

func off:-> Timer

on:Nat->Timer

map pred:Timer->Timer

expired:Timer->Bool

set: Timer # Nat -> Timer

reset: Timer -> Timer

var t:Timer

n:Nat

rew expired(off)=F

expired(on(n))=eq(0,n)

pred(on(n))=on(pred(n))

pred(off)=off

set(t, n)=on(n)

reset(t)=off

Fig. 3. A µCRL specification of the sort Timer

predicate expired is the check whether the delay until the timer expiration is
zero. We assume that the action guarded by the timer expiration is normally
resetting the timer or setting it to a positive value, though we leave the designer
the freedom to continue considering the timer as set to on(0).

Following the time semantics described in Section 3, we want to model the
time progress by the tick action, which is a global action decreasing all active
timers of the system by one and enabled only when the system is blocked. To
achieve this, we enable the tick action in a component if that component is
blocked and if every timer in that component is off or non-zero. By combining
components with the |{tick}| operator as defined in Section 2 rather than the
standard || operator we get precisely the desired behaviour.

A system is considered blocked if there are no urgent actions possible. As
µCRL has no priority mechanism, there is a potential for technical problems,
which we solve by following a specification discipline.

First, we classify a number of actions as urgent. Enabled internal operators
are urgent — they take zero time and, hence, they may not be postponed until
the next time slice, and tick may not be proposed as an alternative to an internal
action. The situation with the communication is more complicated: When the
two communicating parties are both ready to communicate, the communication
should take place in the current time slice. Thus, no tick action can be given as
an alternative to a communication action. However, when only one of the parties

proc A(t1 : T imer · · · , tm : T imer, d1 : D1 · · · , dn : Dn) =
a1.X1(t1, y1) � expired(t1) � δ+

...
am.Xm(tm, ym) � expired(tm) � δ+
tick.A(pred(t), d) � not(

∨n

j=1
expired(tj)) � δ+

∑
d11:D11

· · ·
∑

d1n1
:d1n1

in1(s1).X
′

1(t
′

1, x1) � c1 � δ+

...∑
dk1:Dk1

· · ·
∑

dknk
:Dknk

ink(sk).X ′

k(t′

k, xk) � ck � δ

Fig. 4. Pattern of an input state

proc B(t1 : T imer · · · , tm : T imer, d1 : D1 · · · , dn : Dn) =∑
d11:D11

· · ·
∑

d1n1
:D1n1

a1(s1).X1(t, x1) � c1 � δ+

...∑
dk1:Dk1

· · ·
∑

dknk
:Dknk

ak(sk).Xn(t, xn) � ck � δ

Fig. 5. Pattern of a non-input state

is willing to communicate, time progress should not be disabled, meaning that
the process willing to communicate but not having this chance yet, should be able
to take the tick action. We resolve the problem by introducing the asymmetry
into communication: Though µCRL has no notions of “sender” and “receiver”, it
is rather usual for a large class of systems to distinguish between the sending and
the receiving party in the communication action. Moreover, it is logical to expect
for a correct specification that sendings take place in the time slice when they
become enabled; otherwise the communication cannot be seen as synchronous
and should go via a channel. Input, or reception, can be postponed until the
next time slice. Consequently, we allow tick as an alternative to an input action
and not to an output action.

The classification of actions results in the classification of process states: We
require every state to be either an input state, i.e. a state where only input actions
can be enabled, or a non-input state, i.e. a state where outputs and internal
actions can be taken. The check that the specification meets this requirement
can be easily automated by introducing conventional names for input and output
actions. To simplify matters further, we have used patterns for specifying states
of components as µCRL processes.

The patterns of input and non-input states are given in Fig. 4 and 5, re-
spectively. In these patterns, all µCRL processes which correspond to states in
a component have the same list of parameters. For a component with m timers
and n other variables, the first m parameters are timers and the next n are the
other variables. Input and non-input states have different transitions: In an in-
put state, we have timer expiration events for expired timers, tick if no timer is
expired and receive actions. In non-input states, we have send actions and inter-
nal actions. After a tick action, all active timers are decreased and everything
else remains the same. After a read or send action, timers may be set or reset,
data parameters can be modified and the state may change.

When we build a system from components, we must not only make sure that
time progression is handled correctly but also that all messages sent on the set of
internal channels I are kept within the system. The first means using |{tick}|,
the latter means encapsulation of the send and receive actions for the channels
in I. That is, a system with N components and internal channels I is described
by the following µCRL init statement:

init encap({si, ri}i∈I , C1 | {tick} | · · · | {tick} | CN)

In Fig. 6 we give a pictorial representation and µCRL code of a simple watch-
dog. On channel 1, the watchdog receives a delay. While within that delay a new
delay is sent the watchdog keeps waiting. If the watchdog times out then a
message will be sent on channel 2.

x:=x+1
send2(x)

expired(t)
reset(t)recv1(m)

set(t,m)

x:Nat = 0
t:Timer = off

A B

proc A(t:Timer,x:Nat)=

expire.B(reset(t),x)<|expired(t)|>delta+

tick.A(pred(t),x)<|not(expired(t))|>delta+

sum(m:Nat,recv1(m).A(set(t,m),x)<|T|>delta)

proc B(t:Timer,x:Nat)=

send2(x).A(t,S(x))<|T|>delta

init A(off,0)

Fig. 6. A simple component

5 Experiments

We have tested our approach on a number of examples one of which was a
positive acknowledgment retransmission protocol (PAR) [15]. This is a classical
example of a communication protocol in which time issues are essential for cor-
rect functionality. The usual scenario includes a sender, a receiver, a message
channel and an acknowledgment channel. The sender receives a frame from the
upper layer, sends it to the receiver via the message channel and waits for a pos-
itive acknowledgment from the receiver via acknowledgment channel. When the
receiver delivered the message to the upper layer it sends the acknowledgement
to the sender. After the positive acknowledgment is received, the sender becomes
ready to send next message. The receiver needs some time to deliver the received
frame to the upper layer. The channels delay the delivery of messages as well.
Moreover, they can lose or corrupt messages. Therefore, the sender handles lost
frames by timing out. If the sender times out, it re-sends the message.

The possible erroneous scenario is following. The sender times out while
the acknowledgement is still on the way. The sender sends a duplicate, then
receives the acknowledgment and believes that this is the acknowledgment for
the duplicate. The sender sends the next frame, which gets lost. The sender
receives however the acknowledgment for the duplicate, which it believes to be
the acknowledgement for the last frame. Thus the sender does not retransmit
the lost message and the protocol fails. To avoid the erroneous behaviour, the
timeout interval must be long enough to prevent a premature timeout, which
means that the timeout interval should be larger than the sum of delays on the
message channel, acknowledgment channel and receiver.

We have specified PAR in µCRL using timers to represent delays on the
channels and the receiver and timeout for the sender. Since the system is open,
i.e. both the sender and the receiver communicate with upper layers, we have

closed the system by the environment process that provides frames for the sender
and receives frames delivered by the receiver. If the sender is ready to send next
frame before the environment gets the previous frame delivered by the receiver,
the environment process issues an error action err. The err action also occurs if
the environment gets a wrong (not sent to the sender) frame from the receiver.

Using the µCRL toolset we have generated the state space for the µCRL
specification of the protocol. With the CADP toolset, we have verified then
a number of properties expressed by formulas of regular alternation-free µ-
calculus [12]. One of the properties was absence of traces containing error action
err: P1: [T*."err"]F, which held when the sender’s timeout was large enough
to avoid premature timeouts.

Another property, we have checked, was inevitable reachability of __out ac-
tion after __in action meaning that the frame sent by the sender to receiver will
always be delivered by the receiver to the environment:
P_2:[T*."__in"] "mu" X.(<T>T and [not("__out")]X).
This property held neither for the system with correct timeout intervals nor for
the system with premature timeouts. This can be explained by the fact that we
do not use fairness, and hence the message channel may continue lose or corrupt
frames forever, so the frame will never be delivered to the environment.

Using the notion of weak fairness, we have specified the property stating fair
reachability of __out action after __in:
P_3:[T*."__in".(not("__out"))*]<(not("__out"))*."__out">T.
The property P3 held for the system with correct timeout intervals and not for
the system with wrong ones.

6 Timed Verification

In the previous sections we showed how to specify a timed system in µCRL and
how to verify properties dependent on the settings of timers. In this section, we
discuss how to verify timed properties. For this purpose, we introduce an LTL-
like language that allows the direct use of timed constraints and then show how
to encode those timed constraints with the use of tick.

6.1 Path Restricted LTL

First, we will give an untimed version. This untimed version is in fact a restriction
of the µ-calculus, which is the input language used by the CADP toolset. Hence,
the untimed formulas can be verified with the CADP toolset.

Let S be a set of states, and Act be a set of labels (actions). A path π of
length N is a pair of functions

(sπ : {0, . . . , N} → S, aπ : {1, . . . , N} → Act)

Thus, sπ(i) stands for the i-state of the path and aπ(i) for the i-action of the
path. Note that N may be infinite. We write π(i, k) to denote a subpath of π
starting at state sπ(i) and ending at state sπ(k) for i = 0 . . . N .

Let Φ be a set of state formulas defined as Φ = {true, false}, where true holds
in all the states and false holds in none of them.

Let R be a set of action formulas, where an action formula r is defined as
follows:

r ::= action | any | none | r1 and r2 | r1 or r2 | ¬r

Here action ∈ Act is a formula satisfied by the corresponding label only. Any
label from Act satisfies any and none of them satisfies none. A label satisfies ¬r
iff it does not satisfy r, a label satisfies r1 and r2 iff it satisfies both r1 and r2,
and a label satisfies r1 or r2 iff it satisfies r1 or r2.

Using action formulas one can build path formula p as follows:

p ::= nil | r | p1.p2 | p1 + p2 | p∗ | p+

Here nil is an empty operator, p1.p2 is the concatenation, p1 + p2 is a choice
operator, p∗ is the transitive reflexive closure and p+ is the transitive closure.

Let P be a set of all path formulas. We write π(i, k) |=P p if aπ(i+1) . . . aπ(k)
string matches path expression p.

Further we define a path-restricted LTL, where LTL modalities are parame-
terized by path formulas.

Definition 1 (Syntax of path restricted LTL).

φ ::= ϕ | 〈p〉φ | [p]φ | φU(p)φ | φ ∧ φ | φ ∨ φ | ¬φ

where p stands for a path formula and ϕ for a state formula.

First we give an intuition for formulas of the path-restricted LTL and then
we provide more formal semantics.

〈p〉φ holds on a path π if there exists a prefix π(0, i) of π that matches p and
φ holds on the suffix of π starting at sπ(i).

[p]φ holds on a path π if for every its prefix π(0, i) that matches p, φ holds
on the suffix of π starting at sπ(i).

ψU(p)φ holds on a path π if there exists a state sπ(i) on the path such that
the path up to this state matches p, the path starting at sπ(i) satisfies φ and
the path starting at any state before this state satisfies ψ.

Definition 2 (Semantics of path restricted LTL). Let π, i be the suffix of

π starting at sπ(i), then:

– π, i |= ϕ where ϕ ∈ Φ if sπ(i) |= ϕ;

– π, i |= 〈p〉φ if there exists some k ≥ i such that π(i, k) |=P p and π, k |= φ;

– π, i |= [p]φ if for any k ≥ i such that π(i, k) |=P p we have π, k |= φ;

– π, i |= ψU(p)φ if there exists some k ≥ i such that π(i, k) |=P p and π, k |= φ

and for any j : i ≤ j < k π, j |= ψ holds.

We say that π satisfies φ, denoted as π |= φ, if π, 0 |= φ. Formula φ is satisfied

by an LTS T if all paths of T starting at the initial state satisfy the formula.

6.2 Path Restricted LTL with Time

Now we extend the path restricted LTL with time constraints of the form:

tc ::=≤ c |= c |≥ c

Let d(π(i, k)) denote the number of tick steps in π(i, k). Then:

– π(i, k) |=≤ c if d(π(i, k)) ≤ c;
– π(i, k) |=≥ c if d(π(i, k)) ≥ c;
– π(i, k) |== c if d(π(i, k)) = c.

Then a path restricted LTL formula with time is defined as follows:

φ ::= ϕ | 〈p〉tcφ | [p]tcφ | φU(p)tcφ | φ ∧ φ | φ ∨ φ | ¬φ ,

where none of the path formulas p refer to the action tick.
The intuitive semantics of the formulas is similar to those of path-restricted

LTL. 〈p〉tcφ holds on a path if there exists a state on that path such that the
path up to that state satisfies both p and the time constraint and φ is satisfied
by the path starting at that point.

[p]tcφ holds on a path if for every prefix of the path that matches both p and
the time constraint, φ holds the corresponding suffix of the path.

ψU(p)tcφ holds on a path if there exists a state on the path such that the
path up to that state matches both p and tc, the path starting at that state
satisfies φ and the path starting at any state before satisfies ψ.

The intuition about path formulas is that they hold on traces regardless of
time progression. This means that a timed path satisfies a path formula if the
path with the tick steps removed satisfies the path formula. Formally, we have

π(i, k) |=tick

P p if a′
π(i+ 1) . . . a′

π(k) matches p, where a′ =

{

ε , if a = tick

a , otherwise

Definition 3 (Semantics of path restricted LTL with time). Let π, i is a

suffix of π starting at sπ(i), then:

– π, i |=tick ϕ where ϕ ∈ Φ if sπ(i) |= ϕ;

– π, i |=tick 〈p〉tcφ if there exists some k ≥ i such that π(i, k) |=tick

P p and

π(i, k) |= tc and π, k |=tick φ;

– π, i |=tick [p]tcφ if for any k ≥ i such that π(i, k) |=tick

P p and π(i, k) |= tc we

have π, k |=tick φ;

– π, i |=tick ψU(p)tcφ if there exists some k ≥ i such that π(i, k) |=tick

P p and

π(i, k) |= tc and π, k |=tick φ and for any j : i ≤ j < k π, j |=tick ψ holds;

We say that π satisfies φ denoted π |=tick φ if π, 0 |=tick φ. Formula φ is
satisfied by an LTS T if all paths of T starting at the initial state satisfy the
formula.

Example 1: each request is followed by answer in at most 5 time units:

[any∗.request] < any∗.given >≤5 true

Example 2: ”request” is never followed by ”fail” within 2 time units.

[any∗.request][any∗.fail]≤2false

6.3 tick-Encoding of Path Restricted LTL with Time

In this section we present a construction for translating a formula from path
restricted LTL with time into path restricted LTL with tick. The key to this
translation is the construction of a path formula over an action domain with tick

from a path formula over a domain without tick but with a time constraint. This
is done by translating both the path formula and the time constraint into a finite
automaton, combining these automata into a single automaton and translating
this automaton back into a path formula.

It is common knowledge that regular expression and finite automata have
the same expressive power and can be translated into each other. Let RE(A) be
the translation from an automata A to an equivalent regular expression and let
A(RE) be the transformation of a regular expression RE into a finite automaton.

Next, we will give the translation of time constraints into finite automata. But
first, we give the formal definition of finite automata and languages recognized
by finite automata.

Definition 4. A finite automaton is a tuple A ≡ (S,Σ, T, I, F), where

– S is a set of states;

– Σ is a set of labels;

– T ⊆ S ×Σ × S is a set of transitions;

– I ⊆ S is a set of initial states;

– F ⊆ S is a set of final states.

The set of strings recognized by A is given by

L(A) = {a1 . . . an | s0 ∈ I, sn ∈ F, ∀j = 1..n : (sj−1, aj , sj) ∈ T}

Definition 5. The automata recognizing time constraints are:

A(≤ c) =
({0, 1, . . . , c+ 1}, {tick}, {(i, tick, i+ 1) | i = 0 . . . c}, {0}, {0, 1, . . . , c})
A(= c) =
({0, 1, . . . , c+ 1}, {tick}, {(i, tick, i+ 1) | i = 0 . . . c}, {0}, {c})
A(≥ c) =
({0, 1, . . . , c}, {tick}, {(i, tick, i+ 1), (c, tick, c) | i = 0 . . . c− 1}, {0}, {c})

We now have a finite automaton corresponding to the path formula and a fi-
nite automaton corresponding to the time constraint. All we need to do is to build
the product automata, which will recognize all interleavings of strings recognized
by these two automata. The following definition gives such a construction:

Definition 6. Given two finite automata A1 ≡ (S1, Σ1, T1, I1, F1) and A2 ≡
(S2, Σ2, T2, I2, F2), we define

A1 × A2 = (S1 × S2, Σ1 ∪Σ2, T1 × S2 ∪ S1 × T2, I1 × I2, F1 × F2), where

T1 × S2 = {((s1, s2), a, (t1, s2)) | (s1, a, t1) ∈ T1 ∧ s2 ∈ S2} ;

S1 × T2 = {((s1, s2), a, (s1, t2)) | s1 ∈ S1 ∧ (s2, a, t2) ∈ T2} .

We can now define the translation of path restricted LTL with time to path
restricted LTL with tick.

Definition 7. The function [[·]] translating path restricted LTL with time to path

restricted LTL with tick is given by:

[[ϕ]] = ϕ

[[〈p〉tcψ]] = 〈p× tc〉[[ψ]]
[[[p]tcψ]] = [p× tc][[ψ]]
[[ψ1 U(p)tc ψ2]] = [[ψ1]]U(p× tc)[[ψ2]]
[[ψ1 ∧ ψ2]] = [[ψ1]] ∧ [[ψ2]]
[[ψ1 ∨ ψ2]] = [[ψ1]] ∨ [[ψ2]]
[[¬ψ]] = ¬[[ψ]]

where

p× tc = RE(A(p) ×A(tc)) .

This translation preserves satisfaction:

Proposition 1. For any LTS L and any path restricted LTL with time formula

ψ, we have

L |=tick ψ ⇐⇒ L |= [[ψ]] .

7 Conclusion

In this paper we proposed an approach to specification and verification of timed
systems within the untimed µCRL framework. The experimental results con-
firmed the usefulness of the approach.

Related Works. Timed process algebras can be classified using three criteria.
First, whether they use dense time or discrete time. Second, whether they use
absolute or relative time. Third, whether they use time progression constructs
or time stamping of actions. For example, timed µCRL [10] uses absolute time,
time stamping of actions and leaves the choice between dense and discrete time
open. Several versions of ACP with time have been studied. (E.g. [3,2].) These
algebras use an operator σ to express time progression rather than an action.
For example, the process σ(P) in ACP with discrete relative time (ACPdrt [2]) is
intuitively the same as the process tick.P in µCRL with the tick-convention.
For theoretical work the σ operator is more convenient. For tool support the
tick action is easier. Hence in ACP one uses σ and in µCRL we use tick.

The use of the tick action results in a time semantics which is similar to
the semantics used in others tools, such as DT Spin [6] and ObjectGeode [14].
However, the input languages of those tools restrict to one particular message
passing model and in µCRL we are free to use whatever model we want. More-
over, Spin restricts to LTL model checking while in µCRL we can use regular
alternation free µ-calculus.

Future Work. It will be interesting to find out if the framework presented in
this paper can be extended to provide tool support for timed µCRL. Namely, we
are going to investigate what class of specifications in timed µCRL can be ade-
quately translated to the class of specifications described in the paper. Another
research topic is the development of time-specific optimisation techniques, such
as a tick-confluence based partial order method.

References

1. R. Alur. Timed Automata. In Proceedings of CAV ’99, volume 1633 of Lecture
Notes in Computer Science, pages 8–22. Springer-Verlag, 1999.

2. J. C. M. Baeten and J. A. Bergstra. Discrete time process algebra. Formal Aspects
of Computing, 8(2):188–208, 1996.

3. J. C. M. Baeten and C. A. Middelburg. Process Algebra with Timing: Real Time
and Discrete Time. In Bergstra et al. [4].

4. J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process Algebra.
Elsevier, 2001.

5. S. C. C. Blom, W. J. Fokkink, J. F. Groote, I. A. van Langevelde, B. Lisser, and
J. C. van de Pol. µCRL: a toolset for analysing algebraic specifications. In G. Berry,
H. Comon, and A. Finkel, editors, Proceedings 13th Conference on Computer Aided
Verification (CAV’01), Paris, France, volume 2102 of Lecture Notes in Computer
Science, pages 250–254. Springer-Verlag, 2001.

6. D. Bošnački and D. Dams. Integrating real time into Spin: A prototype imple-
mentation. In S. Budkowski, A. Cavalli, and E. Najm, editors, Proceedings of For-
mal Description Techniques and Protocol Specification, Testing, and Verification.
Kluwer Academic Publishers, 1998.

7. M. Bozga, O. Maler, and S. Tripakis. Efficient verification of timed automata
using dense and disrete time semantics. In T. Kropf and L. Pierre, editors, Proc.

CHARME’99, volume 1703 of Lecture Notes in Computer Science, pages 125–141.
Springer, September 1999.

8. J. F. Groote and M. Reniers. Algebraic process verification. In Bergstra et al. [4],
pages 1151–1208.

9. J. F. Groote and J. J. van Wamel. Analysis of three hybrid systems in timed
µCRL. Science of Computer Programming, 39:215–247, 2001.

10. J. F. Groote. The syntax and semantics of timed µCRL. SEN R9709, CWI,
Amsterdam, 1997.

11. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
W. Kuich, editor, ICALP, volume 623 of Lecture Notes in Computer Science, pages
545–558. Springer, 1992.

12. R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. In Proceedings of the 5th International Workshop on
Formal Methods for Industrial Critical Systems, FMICS’2000, 2000.

13. R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal
of the ACM(JACM), 42(2):458–487, 1996.

14. ObjectGeode 4. http://www.csverilog.com/products/geode.htm, 2000.
15. A. S. Tanenbaum. Computer Networks. Prentice Hall International, Inc., 1981.

