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Abstract—Operational Technology systems are implementing
more networking capabilities as increased data visibility, remote
management, and automation have become priorities for many
system stakeholders. As these previously air-gapped systems
become more connected, increased cybersecurity risks are as-
sociated with the utilized communication protocols. The energy
sector, in particular, relies heavily on a Defense-in-Depth ap-
proach to mitigate protocol vulnerabilities that may be exploited
by a malicious actor. However, a protocol’s specification and any
deviations from it for on-device implementations may greatly
impact the efficacy of an attack on a device’s operation, reliability,
or performance. A device with a robust protocol implementation
may have lower latency and a higher successful response rate
than other devices when under attack. In this paper, we propose
the identification of critical transitions in a device’s protocol
implementation of the Modbus protocol through model-based
formal verification utilizing the Construction and Analysis of
Distributed Processes toolbox. Following the protocol specifica-
tion, the models written in the Language Of Temporal Ordering
Specification (LOTOS) New Technology (LNT) language were
first validated for a single type of packet transaction and subse-
quently expanded to the full Modbus protocol implementation.
The identified critical transitions, in this case, outline any point
at which the protocol defines handling unexpected data outside
of normal packet processing. We use packet traces captured from
real-world infrastructure to validate the correctness of our model
in representing an on-device Modbus implementation. Utilizing
the identified critical transitions can improve a device’s protocol
implementation and lessen the impact of a cyberattack on the
device or the network.

Index Terms—Modbus, Formal Verification, Construction and
Analysis of Distributed Processes, CADP, Smart Grid, Cyber-
Physical Systems, Operational Technology

I. INTRODUCTION

The integration and convergence of Information Technology

(IT) and Operational Technology (OT) systems has created

challenges for securing communications on OT systems [1].

These challenges are specifically of interest to the energy

sector, where the proliferation of Distributed Energy Resources

(DERs) necessitates an associated increase in communications

capabilities. However, currently implemented protocols were

not designed with security in mind, and the requirement

for constant availability often discourages adding additional

security measures to the protocols. As such, a Defense-in-

Depth approach is employed to avoid system-wide outages

caused by cyberattacks [2]. The approach often entails adding

network monitoring tools such as firewalls, intrusion detection

systems, and anomaly detection schemes. While these methods

improve overall cybersecurity posture, the protocols are still

vulnerable to various attacks [3]

The Modbus [4] protocol has been widely adopted for use

within Industrial Control Systems (ICS). While the proto-

col specification outlines the packet formation and excep-

tion handling requirements, the device-specific implementation

requirements are not. This allows for significantly different

performance and behavior of devices with seemingly identical

protocol capabilities. The current method of identifying these

device differences and interoperability is completed through

the creation of testbeds, software in the loop (SIL), hardware

in the loop (HIL) simulators, or digital twins [5]. There is

currently no standard to identify the causes of diverging perfor-

mance due to differences between protocol implementations.

Thus, we describe our method to identify critical transitions

within protocols and their implementations to enable improved

robustness and compliance through formal modeling.

The remainder of the paper is structured as follows. Section

II introduces related works for evaluating protocol implemen-

tations and previous formal modeling works. Section III pro-

vides an overview of our methodology for translating protocols

into a formal model and the implementation, including the

chosen formal modeling software. Section IV provides an

overview of the achieved model, including the number of

states in the state machine, reduction techniques, and identified

critical transitions of the model. Section V concludes the paper

and outlines our future work related to this work.

II. RELATED WORKS

Formal verification methods have been employed on ICS

protocols in prior efforts. In [6], the authors utilized formal

verification to evaluate the security vulnerabilities of the

Modbus Protocol by adding a malicious actor to intercept

traffic through a TCP/IP switch. Formal verification was also



employed to examine the security of DNP3’s secure authen-

tication method in [7], which follows a specific handshake

procedure similar to TLS. A formal TLS handshake model

was also shown in [8], which could find multiple incorrect

handshake scenarios. Formal methods are employed in other

fields and have been shown to work in modeling concurrent

asynchronous systems such as for the smart grid [9], based

on the Construction of Distributed Processes (CADP) toolbox

[10]. Other tools, such as TLA+ [11], can be used to design

models for safety-critical aerospace systems [12], and Register

Transfer Logic models [13] based on commercial tools. There

appear to be only a limited number of formal methods em-

ployed with regard to OT systems. One cause for this limit

is the ability to test individual system configurations with

Digital Twins [5]. However, this method is ineffective when

identifying issues with increasingly complex systems. Previous

research has also outlined the difficulty of implementing

formal methods compared to other methods and the required

domain knowledge and formal method experts [14].

III. METHODOLOGY

From the variety of applications that formal methods have

been applied to, we propose implementing ICS protocol

models for formal verification and analysis using the CADP

toolbox. CADP has been widely used for process algebra and

formal modeling of concurrent systems [15]. This paper aims

to create a formal model of the Modbus protocol and identify

any critical transitions that may be affected by on-device

implementation deviations. We identify critical transitions as

any point where a protocol exhibits nondeterministic behavior,

i.e., a timeout to return to an idle state. Although each device

must handle this state, their implementation may be different

and cause, for example, increased latency for even low-volume

attack traffic or device failure.

Our previous work demonstrated this effect by using

our IEC-61850 Generic Object Oriented Substation Event

(GOOSE) protocol testbed [16]. A device under test showed

a latency increase from 10 ms to 480 ms as soon as attack

traffic was applied to the device, compared to a second device

that kept latency close to the baseline 10 ms, shown in Figure

1.

The process we follow to create the formal model for the

Modbus protocol includes translating the protocol specifica-

tion to a hierarchical diagram and generating Lotos New

Technology (LNT) specification language [17]. Translating

the protocol specification to a hierarchical diagram includes

identifying communication channels, individual protocol node

states, and packet types supported by the protocol. In the case

of the Modbus protocol, there are two nodes we must consider:

a client and a server. These nodes perform a request/response

transaction for each packet. LNT utilizes rendezvous syn-

chronization communication processes, making it well-suited

for modeling communication protocols. ICS devices can have

multiple different processes operating concurrently but are still

required to communicate when a packet or synchronization

event occurs.

Fig. 1. Device Response Under Attack [16]

A. Protocol Translation

As a communication method, the Modbus protocol outlines

two separate nodes for communication, the client and the

server. The communication method between these two nodes

is request/response, so the client will not transition from an

idle state until it is ready to send a packet and a packet is

received on the server side. Figure 2 shows the state machine

for each node. Modbus is effectively a stateless protocol.

Each transaction is embodied by a request that is concluded

when the corresponding response is received or the exchange

times out. Effectively, the validation of all aspects related to

a single request-response message exchange also constitutes

the validation of the entire protocol activity, as shown in [18].

Specifically applied to our work, it also implies that modeling

a single transaction will identify all possible critical states

within the protocol specification.

Fig. 2. Modbus Device States

The packets within each defined function code have separate

packet structures, server processing steps, and response packet

structures. To translate the protocol into a formal model

understanding, the packet structure for each function code was

organized and represented as a hierarchical structure. In total,

the Modbus protocol has 19 defined function codes, and this

process was completed for each request and response function

code. An example illustrating the Read Coils request packet

hierarchy is shown in Figure 3.

The packets outlined here quickly lead to the issue of

an exploding state space, as each packet field has a large



Fig. 3. Read Coils Hierarchical Representation

number of values. For example, a simple starting address field

accepting values in the range of 0x0000-0xFFFF results in

65,536 states for this field alone. If we were to generate a

model within LNT with the current packet fields, the model

would find exponentially more states than those required to

maintain the protocol implementation. To combat this, we

collapse the value ranges into binary decisions, as outlined

in the next section of this paper. Additional simplifications

can be applied, such as for the additional address field,

identified as MBAP for TCP/IP and as Server Address for

serial communications, which can be treated as the same field

due to the fact that the protocol does not specifically outline

processing of this field for the different physical media.

B. Formal Model

Once the protocol is translated into an understandable

diagram, the model must be translated into LNT for validation.

In this case, we utilize the nondeterministic finite automata

(NFA) outlined in [19], to represent the protocol as the tuple

(Q,
�

, δ, qi, F ). Their relation can be seen in Table I. Since

the Modbus protocol does not have a set packet format for

all available function codes, each packet request and response

have to be evaluated individually. In section IV, the process

will be outlined for an individual packet, then translated to the

entire protocol.

TABLE I
NFA TO PROTOCOL TRANSLATION

Element NFA Element Protocol Element

Q Set of States Modbus Device States�
Alphabet Modbus Packet

δ ⊆ Q x
�

x Q Transition Relation Packet Sent Over Wire

qI ∈ Q Initial State Start of Transaction

F ⊆ Q Final State End of Transaction

When translating to LNT, processes, packets and packet

fields were individually defined. The initial processes are

broken down into both Client and Server. These processes

then call child processes for each notable device state, which

include sending request, request received, or sending response

shown in Figure 2. In this example model, the process assumes

ideal physical channel conditions, so no loss of packets from

the transmitter to the receiver is considered. The communica-

tion channel accepts both requests and responses, and timeouts

are used for recovering from invalid packets, as outlined in the

protocol specification.

process Main

[physical:Physical, timeout:Timeout]

is

par

Client[physical, timeout]

||

Server[physical, timeout]

end par

end process

Each packet field was reorganized to contain a binary

decision based on the required packet processing outlined

within the protocol specification. For example, the server

address, starting address, the quantity of coils, and the error-

checking fields can have two possible values. In this way,

a Read Coils request with a server address, function code,

starting address, quantity of coils, and error checking field

can be reduced from 1.09e+15 possible values to 24 values:

type ServerAddress is

CORRECT,

INCORRECT

with ==

end type

type InternalAddress is

VALID,

INVALID

with ==

end type

type InternalQuantity is

VALID,

INVALID

with ==

end type

type CRC is

CORRECT,

INCORRECT

with ==

end type

IV. MODEL CREATION RESULTS

The model creation within CADP was executed in two

stages; the first was creating a Read Coils model, utilizing only

one function code for transaction validation. Strong equiva-

lence reduction was then used to find a minimal form of the

Read Coils transaction. Next, we identified Critical transitions,

shown as hidden label ”i” in the model, and examined them

for critical implementation states of the protocol. There are



also more severe issues that can be identified using CADP,

including deadlocks and livelocks. These states occur when

different processes attempt to continue operating in divergent

states. Deadlocks identify that multiple members are stuck at

a particular state, each waiting for the other to generate an

event needed to transition to another state. Livelocks identify

a loop of states that cannot be exited.

Compilation of each model was completed utilizing Script

Verification Language (SVL) [20] to generate Binary Coded

Graphs for state space exploration. Using the binary type

definitions shown in Section III, the Read Coils transaction

was compiled to have 18 states, with 92 transitions and 12

transitions with the hidden label ”i”. A visual representation

of this model can be seen in Figure 4. Upon investigation of

the model, no deadlocks or livelocks were found within this

implementation.

0

1 2345678910111213141516

17

Fig. 4. Modbus Read Coils Single Transaction

This model may be reasonable to examine visually for crit-

ical transitions. However, the entire protocol has 19 function

codes, with request, response, and exception packets available

for each transaction. For this reason, branching reduction

was completed utilizing the SVL language to assist with

the visual identification of individual states. The reduced

model size reduces the transaction to 4 unique states, with 56

transitions, shown in Figure 5. The reduced model shows that

any transition from state 4 to state 0 will constitute a critical

transition. A drawback of using this reduction is the removal

of hidden labels for timeouts that identify critical transitions.

Since this is the primary interest of the model, we can utilize

OPEN/CAESAR [21] tool included within the CADP toolbox

to visually find the critical transitions, as shown in Figure 6.

These identified states can be summarized as any state

where the server address or error check field is incorrect. There

are 16 total packet combinations for the Read Coil exchange,

but there will only be 4 possible combinations where the

0

1 2 3

Valid Response
Or Device Failure

Illegal Function
Exception

Illegal Address 
Exception

Improper Format
(Timeout)

Fig. 5. Modbus Read Coils Reduced

only changing fields are starting address or value. Upon first

examination, it may seem odd that the response packet has

no effect on the critical transitions of the protocol. However,

the client and server are both reliant on processing the request

packet, and the client may request the same data later with

no adverse effect on the overall system performance. The

server examines the other fields in each packet, and individual

exception packets are sent for each incorrect value. In the case

of Read Coils, there are exceptions for unsupported function

code, invalid addresses, and device failures.

Fig. 6. Examination of critical transitions

Once the individual packet model was completed, the proto-



col specification was written with LNT. Examination of each

individual packet was completed. Across all 19 function codes

we identified 12 unique packet structures for requests, 14

for responses, and 1 for exception codes. Packet similarities

were identified by packet field, as Read Coils and Read

Register may have differing cut-off values for a valid address

or quantity, the packet field can be translated to either a valid or

invalid address. To encompass the whole protocol, the physical

channel for communication was defined to accept 27 different

packet types, each of which is composed to match the protocol

specification. The model was allowed to decide at runtime

on any specific packet for transmission. Definitions for each

applicable packet field were defined with LNT keyword any,

to encompass all possibilities of a single protocol transaction

between client and server.

Once the communication channel, packet types, and pro-

cessing stages were completed for the protocol, the generation

of the model was completed in the same manner as the single-

packet model. Compilation of this model created a 787-state

model with 11,385 transitions and 5,799 critical transitions

with the hidden label ”i”. Reduction of this model creates a

62-state model, which can be seen in Figure 7. From the state

machine’s visualization, all transitions with start and endpoint

0 constitute a critical transition. The model contained no

deadlocks or livelocks across all packet transactions, implying

the protocol specification has considered appropriate timeout

rules for each device. Examination of the critical transitions

for the protocol identified the same required fields as the

server address and error-checking field. These fields are not

accounted for in packet processing. However, they may be

received by a Modbus server regardless of serial or TCP/IP

implementation.

35 36373839 40414243 44454647 485049 515253 545556 5758 605961 101112 1314 1516

0

171 182 19 203 214 22 523 6 247258 26 927 28293031 323334

Fig. 7. Modbus Full Protocol Implementation

The final results of the model generation and comparison

can be seen in Table II. Even though Modbus is a widely

adopted protocol due to its open standard and simplicity, many

critical transitions can still negatively impact device implemen-

tations, especially during cyberattacks. These transitions can

be especially difficult to identify in distributed systems, as

each device’s requirements and target applications can differ

significantly. Additionally, given the fact that protocol imple-

mentations can also vary extensively for different vendors,

or even between different products of the same vendor, the

identification of critical transitions, deadlocks, or livelocks

is vital to creating a more robust and compliant protocol

ecosystem.

TABLE II
MODBUS CRITICAL TRANSITION AND REDUCTION RESULTS

Model States Transitions Critical Reduced States
Transitions

Read Coils 18 92 16 4

Full 787 11,385 5,799 62

V. CONCLUSION AND FUTURE WORK

Traditionally designed for air-gapped serial wire imple-

mentations, OT protocols are rapidly transitioning towards

greater interconnectivity and automation capabilities, often at

the expense of the cybersecurity provided to a device. This

convergence of OT and IT systems has created a greater attack

surface for malicious actors. These systems often require

reliance on Defense-in-Depth strategies to improve the security

of a network, but more comprehensive actions are required.

One such endeavor is ensuring the robust and compliant

implementation of protocols, which can significantly help

mitigate the effects of cyberattacks on a device.

In this paper, we introduced a method for identifying

vulnerabilities of OT protocols within device implementations

utilizing formal modeling and the CADP toolbox. We outlined

the translation of the Modbus protocol to LNT utilizing binary

decisions for packet fields and the model size reduction

through various methods. By utilizing formal modeling to

identify critical transitions within a protocol, we can cre-

ate guidelines for more robust protocol implementations to

alleviate the current burden placed on Defense-in-Depth in

ICS networks. Our future work will expand this method to

additional OT protocols, including the DNP3 and IEC-61850

GOOSE protocols. These protocols and their analysis will

demonstrate the great flexibility inherent to our approach,

as they implement a single packet structure, but have more

complex processing and assembly compared to the Modbus

protocol demonstrated here. Thus, rather than having a variety

of packet types with two packet fields that determine critical

transitions, there will be a single packet type with multiple

fields determining critical transitions. We use packet traces

captured from real-world infrastructure to validate the cor-

rectness of our model in representing an on-device Modbus

implementation. This work and its findings were validated

against real-world Modbus packet traces captured on actual

Modbus infrastructure.
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