
Introduction to the ISO Specification Language LOTOS

Tommaso Bolognesi
CNUCE-C.N.R.

Via S. Maria 36 - 56100 Pisa, Italy
earn: bolog @ icnucevm

Ed Brinksma
University of Twente

P.O.Box 217 - 9700 AE Enschede, The Netherlands
uucp: mcvax!utinu1!infed
earn: hiddink @ hentht5

Abstract

LOTOS is a specification language that has been specifically developed for the formal description of
the OSI (Open systems Interconnection) architecture, although it is applicable to distributed,
concurrent systems in general. In LOTOS a system is seen as a set of processes which interact and
exchange data with each other and with their environment. LOTOS is expected to become an ISO
international standard by 1988.

Keywords: Concurrent Languages, Formal Description Techniques, Open Systems
Interconnection, Protocol Specification, Specification Languages,

0. Introduction

LOTOS (Language of Temporal Ordering Specification) is one of the two Formal Description
Techniques [26, 27] developed within ISO (International Standards Organization) for the formal
specification of open distributed systems, and in particular for those related to the Open Systems
Interconnection (OSI) computer network architecture [24, 39]. It was developed by FDT experts
from ISO/TC97/SC21/WG1 ad hoc group on FDT/Subgroup C during the years 1981-86. The basic
idea that LOTOS developed from was that systems can be specified by defining the temporal relation
among the interactions that constitute the externally observable behaviour of a system. Contrary to
what the name seems to suggest, this description technique is not related to temporal logic, but is
based on process algebraic methods. Such methods were first introduced by Milner's work on CCS
[33], soon to be followed by many closely related theories that are often collectively referred to as
process algebras, e.g. [2, 5, 22, 32, 35]. More specifically, the component of LOTOS that deals with
the description of process behaviours and interactions has borrowed many ideas from [22, 33].

LOTOS also includes a second component, which deals with the description of data structures and
value expressions. This part of LOTOS is based on the formal theory of abstract data types, and in
particular the approach of equational specification of data types, with an initial algebra semantics
(see, e.g. [16]). Most concepts in this component were inspired by the abstract data type technique
ACT-ONE [16], although there are a number of differences.

LOTOS is an FDT generally applicable to distributed, concurrent, information processing systems.
However, it has been developed particularly for OSI. The main objectives for such a technique is that
it should allow the production of OSI standards specifications that are:

• unambiguous, precise, complete and implementation independent descriptions of the
standards;

• readable reference documents for OSI users, implementers and conformance testers;

• a formally well-defined basis for the verification and validation of the standards, and for the
conformance testing of their implementations;

It is clear that these objectives are particularly important of a distributed, standard architecture, such
as OSI. Machines must communicate and cooperate with each other, and informal, ambiguous
specifications of the related software could easily lead to incompatible implementations.
Furthermore, the possibility to carry out rigorous analysis of a protocol at the design level, that is, in
an early stage of the development cycle, is crucial to avoid the proliferation of errors in the
expectedly large number of its implementations.

The consideration of the requirements above has led to a number of design criteria for the language
itself. The general criteria that have determined the present definition of LOTOS are:

• Expressive power: an FDT should be capable of expressing the wide range of properties that
are relevant for the description of OSI services, protocols and interfaces.

• Formal definition: syntax and semantics of an FDT should have a complete and formal
definition. In particular, the formal model on which the semantics of the language is based
must support the development of an analytical theory for verification, validation and
conformance testing.

• Abstraction: the language constructs should represent the relevant architectural concepts at a
sufficiently high level of abstraction, where implementation oriented details are not
expressed. This avoids the specification of undesirable constraints on implementers, and
favours of a precise representation of the requirements.

• Structure: an FDT should offer means for structuring a specification in a meaningful and
intuitively pleasing way. Good structuring implies readability, ease of maintenance, and may
simplify the analysis. If desirable, structure may also be used to reflect the logical or even
physical organization of an implementation.

LOTOS is expected to become ISO international standard by 1988.

The layout of the paper is as follows. Section 1 is meant to introduce informally the basic elements of
the underlying model of LOTOS, namely processes, their interactions and their composition, in order
to provide an intuitive support for their formal treatment in the rest of the paper. Basic LOTOS is
introduced in Section 2. This is the subset of LOTOS where processes interact with each other by
pure synchronizations, without exchanging values. In basic LOTOS we can appreciate the
expressiveness of all the LOTOS process constructors (operators) without being distracted by
interprocess value communication. Section 3 deals with equivalences, which are important for
comparing specifications, and for giving a complete, formal semantics to the language. Value
communication is not necessary to treat equivalences, and for this reason we introduce them right
after Section 2 on basic LOTOS. The reader only interested in the "surface" of the language may
safely skip this section.

The way data values are defined and expressed is the subject of Section 4 on data types. In Section 5
value expressions are integrated into the language: processes may exchange these values, or be
parametrized by them, and we have full LOTOS. A small but complete LOTOS specification is
provided in Section 6, as an example of the so called "constraint-oriented" specification style.
Section 7 contains some concluding remarks and a number of pointers to the literature on LOTOS
applications and tools. Already some tutorials on LOTOS have been published (e.g. [7]). These
however still refer to previous versions of the language and/or are less complete in their presentation.

1. Processes

In LOTOS a distributed, concurrent system is seen as a process, possibly consisting of several sub-

processes. A sub-process is a process in itself, so that in general a LOTOS specification describes a
system via a hierarchy of process definitions. A process is an entity able to perform internal,
unobservable actions, and to interact with other processes, which form its environment. Complex
interactions between processes are built up out of elementary units of synchronization which we call
events, or (atomic) interactions, or simply actions.

Events imply process synchronization, because the processes that interact in an event (they may be
two or more) participate in its execution at the same moment in time. Such synchronizations may
involve the exchange of data. Events are atomic in the sense that they occur instantaneously, without
consuming time. An event is thought of as occurring at an interaction point, or gate, and in the case
of synchronization without data exchange, the event name and the gate name coincide.

The environment of a process P, in a system S, is formed by the set of processes of S with which P
interacts, plus an unspecified, possibly human, observer process, which is assumed to be always
ready to observe anything observable the system may do. And, to be consistent with the model,
observation is nothing but interaction. Hence, when we say that process P performs an observable
action we refer to the interaction between P and, at least, the observer. (Note that although we use
the words action and interaction as synonyms, we may prefer one or the other depending on the
context: we talk about the action performed by one process and the interaction involving n
processes. The reason for blurring this distinction is simply that n processes together can be seen as
one process.)

The most abstract representation of process P, able to interact with its environment via gates, say, a
through g, is the black-box in Figure 1.1.

Figure 1.1 - Process P with gates a through g, as a black box

The process definition of P will then specify its behaviour, by defining the sequences of observable
actions that may occur (be observed) at the seven gates of the process. We will soon represent such
behaviour as a tree of actions.

Black boxes are the traditional intuitive representation for processes. Vending machines are also
used, sometimes, to give a more concrete model of processes and interactions [22]. As another
variant of the black box concept we introduce here a music instrument, to be called proto-pianola,
where interaction with the environment is achieved via a keyboard. Speaking about these devices
turns out to be essentially the same thing as speaking about LOTOS processes.

The proto-pianola fills a gap between the piano and the pianola. A piano is a completely passive
instrument, since it plays only when its keys are pressed; conversely, a pianola is active, in that it

includes a predefined score (on punched paper rolls) and is able of automatically performing it. The
proto-pianola is active and passive at the same time: it needs external interaction at the keyboard, for
playing, and yet it possesses an internal score, and is able, from time to time, to perform autonomous
choices. Figure 1.2a represents a 7-key proto-pianola. We can immediately think of it as a LOTOS
process, called, say, PP1, and write:

PP1[a, b, c, d, e, f, g]

to indicate that the 7 keys are the gates through which the process interacts with its environment. In
this case the environment, or the observer, is a player. The LOTOS view that processes cannot
engage in more than one interaction at a time is reflected by the assumption of monophony for our
musical instrument: it cannot produce more than one sound at a time.

The pressing of a key is an interaction between the proto-pianola, which is ready to have that key
pressed, and the performer/observer, who is ready to press the key. Both parties participate to, or
experience that event, and in fact the "genuine" LOTOS point of view insists on this symmetry,
without distinguishing between active and passive roles. Observable actions (thus interactions) are
simply identified by the gate where they occur (later they will be given more structure, to allow value
communication between processes). We will sometimes express the fact that a process is ready for an
interaction at gate a by saying that it offers observable action a to its environment.

A (one-finger) performer sitting at the keyboard of PP1 would not always succeed in pressing a
chosen key, since some keys sometimes are locked, and the success in pressing a key depends on the
tune played up to that point. The behaviour of the instrument (or, equivalently, its nondeterministic
score) is depicted as a tree in Figure 1.2b. In this specific case the one-finger performer will be able
to play a four note scale, but his only freedom is exercised in the choice of the initial key, which can
be a, d or g. The other four keys are initially blocked. After the choice of a or g, the performer will
succeed only in completing his scale, moving, respectively, upwards or downwards. If the initial
choice had been for the central key d, both directions would have had a chance to be successfully
executed, but this choice is not up to the performer. An i-labelled arc in the tree indicates an internal,
unobservable action autonomously performed by the machine, which the performer cannot observe
nor hear; the pair of i-labelled branches indicates that the choice of which key becomes unblocked
after d is pressed is made by the machine.

Figure 1.2 - Processes as proto-pianolas

The reason for the little holes observed in the front of the proto-pianola keys is revealed by Figure
1.1d, where two pianolas, PP1 and PP2, are coupled front to front. Their keyboards appear as mirror
images. Metal bars have been inserted into the holes to couple some of the keys. Again a performer is
supposed to play the trial and error game on the resulting "keyboard". His success in pressing an
independent (uncoupled) key of pianola PP1 (PP2) depends only on the "score" of PP1 (PP2), but for
a double-key (a pair of coupled keys) to be unlocked both scores must agree, at that point, on the
executability of that note. This is exactly the idea of parallel composition of processes in LOTOS.
The appropriate behaviour expression would be:

PP1[a, b, c, d, e, f, g]
|[a, d, g]|

PP2[a, b, c, d, e, f, g]

where '|[a, d, g]|' is a parallel composition operator: the two processes are coupled via the
synchronization gates a, d and g, thus they may (in fact, must) synchronize only at these gates. The
pair of coupled proto-pianolas is essentially a new instrument, and its behaviour is again
representable by a tree. Suppose that the behaviour of PP2 be the one in Figure 1.1c. Then the
behaviour of the new, double instrument, with the indicated key couplings, would be as in Figure
1.1e: only two three-note tone rows are allowed, starting from either extreme of the keyboard.

Observing and composing LOTOS processes is basically like playing and coupling proto-pianolas.
However, since LOTOS has been mainly designed for specifying communication protocols for
computer networks, it also includes features which the inventors of the proto-pianola failed to
anticipate. One of these is hiding. This feature is better introduced by going back to the non-musical,
more abstract world of black-boxes, where a process is represented as in Figure 1.1.

Consider Figure 1.3. The intended interpretation of the depicted system is as follows. Process Max3
is defined by composing in parallel two instances of process Max2. Each one of the component
processes may interact with its own environment, which consists of the other instance of Max2 and
the outer environment, via three gates; but the only synchronization gate between the two processes is
mid. Notice that this gate is included in the outer box which represents process Max3. Since we insist
that this box is really black, the gate is not visible from the outer environment: it has been hidden.
The two process instances are thus allowed to independently interact with the environment at all gates
except mid. At this gate they are required to synchronize with each other, without the environment
observing (taking part to) these interactions: due to the hiding, these interactions have become
internal actions of the system.

Figure 1.3 - Spatial representation of process Max3

The informal description above is made formal below.

process Max3 [in1, in2, in3, out] :=
hide mid in

(Max2[in1, in2, mid]
| [mid] |
Max2[mid, in3, out]

)
where ...

endproc (* Max3 *)

The fact that he system may interact with its environment via actions (at gates) in1, in2, in3, out, is
explicitly indicated in the first line of the specification. Since gate mid is hidden, by the hide
operator, it does not appear in that list.

The partial specification above is completed in the next section.

2. Basic LOTOS

Basic LOTOS is a simplified version of the language employing a finite alphabet of observable
actions. This is so because observable actions in basic LOTOS are identified only by the name of the
gate where they are offered, and LOTOS processes can only have a finite number of gates. Three
examples of observable actions that we have already met in the previous section are:

g
in2
out

The structure of actions will be enriched in full LOTOS by allowing the association of data values to
gate names, and thus the expression of a possibly infinite alphabet of observable actions.

Basic LOTOS only describes process synchronization, while full LOTOS also describes interprocess
value communication. In spite of this remarkable difference, we will initially concentrate on basic
LOTOS for three reasons. First, within this proper subset of the language we can appreciate the
expressiveness of all the LOTOS process constructors (operators) without being distracted by
interprocess communication; second, for basic LOTOS we can give an elegant and, most importantly,
formal presentation of the semantics, without boring the reader with cumbersome notation; third,
behavioural equivalences are more conveniently introduced at this level. Full LOTOS will be
introduced only in Section 5.

2.1. Process definitions and behaviour expressions

The typical structure of a basic LOTOS process definition is given in Figure 2.1, which completes the
definition of process Max3 started in Section 1. As a convention we will use italics for syntactic
categories, that is, nonterminal symbols (e.g. behaviour expression), and boldface for reserved
LOTOS keywords (e.g. process).

Figure 2.1 - Definition of process Max3

An essential component of a process definition is its behaviour expression. A behaviour expression
is built by applying an operator (e.g., '[]') to other behaviour expressions. A behaviour expression
may also include instantiations of other processes (e.g. Max2), whose definitions are provided in the
where clause following the expression. Given behaviour expression B, we will allow calling B also
"a process", for convenience, even when no process name is explicitly associated with the behaviour
expressed by B.

The complete list of basic-LOTOS behaviour expressions is given in Table 2.1 below, which includes
all basic-LOTOS operators. Symbols 'B', 'B1', 'B2' in the table stand for any behaviour expression.
Any behaviour expression must match one of the formats listed in column SYNTAX. We have taken
the metalinguistic liberty of representing some lists with dots. By inspecting Table 2.1 we may
observe that basic LOTOS includes nullary operators (e.g. inaction), unary operators (e.g. action
prefix) and binary operators (e.g. parallel composition), that is, operators applicable to, respectively,
none, one and two behaviour expressions.

Table 2.1 - Syntax of behaviour expressions in basic LOTOS

NAME SYNTAX
__
inaction stop
action prefix
 - unobservable (internal) i ; B
 - observable g; B

choice B1 [] B2

parallel composition
 - general case B1 |[g1, ... , gn]| B2

 - pure interleaving B1 ||| B2
 - full synchronization B1 || B2
hiding hide g1, ... , gn in B

process instantiation p [g1, ... ,gn]

successful termination exit
sequential composition (enabling) B1 >> B2
disabling B1 [> B2
__

Operator precedences are as follows:

action prefix > choice > parallel composition > disabling > enabling > hiding

This means that, for example, expression

hide a in a; P [] Q >> R || S [> T

is equivalent to expression

hide a in (((a; P) [] Q) >> ((R || S) [> T)).

2.2. A basic process, two basic operators

Inaction: stop

The completely inactive process is represented by stop. It cannot offer anything to the environment,
nor it can perform internal actions, and it is as basic in LOTOS as number zero in arithmetic. Notice
that stop can be interpreted as the behaviour expression obtained by applying the nullary operator
stop to zero arguments.

Action prefix: i ; B
g; B

This is a unary, prefix operator which produces a new behaviour expression out of an existing one, by
prefixing the latter with an action (gate name) followed by a semicolumn. Examples of action prefix
behaviour expressions, taken from process Max3 (Figure 2.1) are:

c; stop
b; c; stop

 a; b; c; stop

Choice: B1 [] B2

If B1 and B2 are two behaviour expressions then B1 [] B2 denotes a process that behaves either like
B1 or like B2. The choice offered is resolved in the interaction of the process with its environment.
If (another process in) the environment offers an initial observable action of B1, then B1 may be
selected, and if the environment offers an initial observable action of B2, then B2 may be selected. If
an action is offered from the environment that is initial to both B1 and B2, then the outcome is not
determined. An example of a choice behaviour expression, again taken from Max3, is

a; b; c; stop [] b; a; c; stop

On the basis of the three constructs above, the behaviour of process Max2[a, b, c] defined in Figure
2.1 is now clear. As we did for proto-pianolas, we can immediately build the tree of actions
associated with this expression. However, it is now time to describe the construction of action trees
in a more precise, formal way, which could be systematically applied to any behaviour expression.

2.3 Operational semantics: growing trees from expressions

The operational semantics [38] of LOTOS provides a means to systematically derive the actions that

a process (behaviour expression) may perform from the structure of the expression itself. More
precisely, given an expression B, what we derive are labelled transitions, that is triples of type:

B—x→B'

where x is an action and B' is another behaviour expression: B may perform action x and transform
into B'. In defining the semantics we will let:

G denote the set of user-definable gates;
g, g1,...,gn range over G;

i denote the unobservable action;
Act denote the set G ∪ {i} of user definable actions;
µ range over Act.

Furthermore, we will need to handle a special action (gate) ' δ', which is not user-definable, and
whose occurrence indicates the successful termination of a process and the enabling of a subsequent
process. We will thus let:

δ be the successful termination action

G+ be the set G ∪ { δ } of observable actions

g+ range over G+

Act+ be the set Act ∪ { δ } of actions

µ+ range over Act+ .

If ΒΕ is the set of behaviour expressions, then we may say, more formally, that the axioms and
inference rules of the operational semantics allow the definition of the labelled transition relation
'→', which is a subset of BEx Act xBE (' x ' is the cartesian product of sets). By applying axioms and
rules to a given expression we build the transition tree, also called synchronization tree. (An
introduction to these topics, and to the way axioms and inference rules are used, can be found by the
interested reader also in [33], which gives the operational semantics of CCS.) In a transition tree
nodes are labelled by behaviour expressions (the starting expression being the label of the root), and
arcs are labelled by actions. An action tree is a transition tree where node labels have been deleted.

Despite the tutorial nature of this paper, we found appropriate to present the semantics in a formal
way, because, in this case, the formalism directly and naturally reflects our intuitive understanding of
the meaning of expressions; and the little cost of explaining how to read axioms and inference rules is
more than compensated by the advantages in terms of clarity and conciseness. In fact, since the
beginning of the ISO/FDT activities, the definition of a formal semantics has been considered as a
major requirement in defining Formal Description Techniques.

Semantics of inaction, action prefix and choice

No axiom or inference rule is associated with behaviour expression stop, and it is thus impossible to
derive any transition from it. Hence we understand stop as a predefined LOTOS process which is

unable to perform any action or to interact with any other process.

The semantics of the action prefix behaviour expression is captured by a single axiom:

=============
µ;B —µ→B

=============

where B is any behaviour expression and µ is either the unobservable action i or some observable
action g. This axiom states the true fact, subject to no condition, that process 'µ; B' is capable of

performing action µ and transform into process B. Notice that we use µ and not µ+. This is because
the user of the language is not allowed to express the successful termination action 'δ' directly, but
only indirectly, by the 'exit' construct (to be discussed later).

B1 [] B2 is a choice behaviour expression which behaves either like B1 or like B2. Its behaviour is
captured by the two inference rules:

==

B1 −µ+→ B1' implies B1 [] B2 −µ+→ B1'

B2 −µ+→ B2' implies B1 [] B2 −µ+→ B2'
==

These rules are used to derive the actions of B1 [] B2 from those of B1 or B2. More precisely, the
action capability (set of possible actions) of a choice expression is the union of the action capabilities
of its components; however, once an action is chosen from one component, the other component
disappears from the resulting expression.

If we apply the axiom for action prefix, for example, to expression 'a; b; c; stop' we obtain the
transition:

a; b; c; stop −a→ b; c; stop

We may now use this result in applying the inference rule for choice:

a; b; c; stop −a→ b; c; stop
implies

a; b; c; stop [] b; a; c; stop −a→ b; c; stop

We have thus derived a transition for a choice expression, based on the operational semantics of the
language. By exhaustively applying the axiom and the rules in all possible ways, the reader may
easily find the seven-node tree associated to the choice expression above.

As a final example of inaction, action prefix and choice we give the basic LOTOS description of the
process illustrated in Figure 2.2. This process describes the externally observable behaviour of a full-

duplex channel between two points, which can be used only once for each direction. The description
is abstract, in the sense that it only accounts for the ordering of inputs and outputs, and not for the
data actually transmitted.

Figure 2.2 - A simple, full-duplex buffer

process duplex-buffer [in-a, in-b, out-a, out-b] :=
in-a; (in-b; (out-a; out-b; stop

[] out-b; out-a; stop)
[] out-a; in-b; out-b; stop)

 [] in-b; (in-a; (out-a; out-b; stop
[] out-b; out-a; stop)

[] out-b; in-a; out-a; stop)
endproc

As it appears from the example above, describing a behaviour using only inaction, action prefix and
choice forces the specifier to explicitly describe all different orderings in which independent actions
may take place. This is of course a rather clumsy solution, and we will show below how parallel
composition solves this problem in a more concise and structured way.

2.4 Parallelism

General case: B1 |[g1, ..., gn]| B2

Let S = [g1, ..., gn] be a set of user-defined gates, called synchronization gates. Given a parallel

behaviour expression 'B1 |S| B2', the transitions it can perform depend on the transition capabilities
of B1 and B2, and on S , as expressed by the following inference rules:

===
B1 −µ→B1' and µ ∉ S implies B1|S|B2 −µ→ B1'|S|B2

B2 −µ→B2' and µ ∉ S implies B1|S|B2 −µ→ B1|S|B2'

B1 −g+→B1' and B2 −g+→B2'

and g+ ∈ S ∪ {δ } implies B1|S|B2− g+→B1'|S|B2'
===

The rules essentially say that a parallel composition expression is able to perform any action that
either component expression is ready to perform at a gate not in S (excluding successful termination
'δ'), or any action that both components are ready to perform at a gate in S, or at gate δ. This implies
that when process B1 is ready to execute some action at one of the synchronization gates, it is forced,
in the absence of alternative actions, to wait until its "partner" process B2 offers the same action.

As an example, consider the parallel behaviour expression

'Max2[in1, in2, mid] |[mid]| Max2[mid, in3, out]'

used to define the behaviour of process Max3 in Figure 2.1. The action trees associated with the two
instances of process Max2 are given in Figure 2.3. They are easily obtained by first building the
transition tree of process Max2, also defined in Figure 2.1, and then by properly replacing its a, b, c
labels with the actual gate names used in the two process instantiations (we are giving an informal
preview of the semantics of process instantiation). By repeatedly applying the inference rules for
parallel composition, the reader may check that the action tree for the parallel expression above is as
depicted in Figure 2.4.

Figure 2.3 - Two action trees

Figure 2.4 - A parallel composition of the two action trees of Figure 2.3

Notice that action mid is not hidden, as it was in the definition of process Max3. Thus, it is available
for further synchronizations with the environment, exactly as is the case for actions in1, in2, in3 and
out. This feature of multi-process or multi-way synchronization is important for both technical and
methodological reasons. The technical reasons have to do with specific applications. In some
applications the structure of interprocess communication is reflected best by specifying a multi-way
synchronization between processes. This is the case with, for example, message broadcasting.

The methodological reasons for introducing multi-way synchronization are related to the fact that
where many processes synchronize on a single action, each of these processes may add constraints
with respect to the occurrence of that action. In other words, complex temporal ordering relations
among actions may be decomposed as the conjunction of several simpler constraints, each of which
may be captured by a simple process definition. The complex constraint is then expressed by the
parallel composition of all these simpler processes. This method is referred to as constraint-oriented
specification. We illustrate this with a small example.

 Consider (again !) the behaviour expression defining process Max2[a, b, c]:

a; b; c; stop [] b; a; c; stop

This process offers actions a and b, in either order, followed by action c. We may equivalently say
that the only temporal constraints involved are

"a precedes c" and "b precedes c",

where the 'c' in the two constraints has to be regarded as a unique action. The conjunction of these
two constraints is precisely expressed by the parallel composition operator as follows:

a; c; stop |[c]| b; c; stop

In fact, the action trees for the two expressions above turn out to be identical.

This approach of 'logical modularity' allows for an incremental combination of constraints. A further
constraint such as "x precedes c" can be added later, with no need to affect the expression built so far:

(a; c; stop |[c]| b; c; stop) |[c]| x; c; stop

There exist two special cases of the parallel operator, for which convenient shorthands are defined.
They are called pure interleaving and full synchronization.

Pure interleaving B1 ||| B2

When the set of synchronization gates, S, is empty, the parallel operator '|S|' is written '|||'. By
inspecting the inference rules for parallel composition, it is clear that in this case the third rule can
never be applied, except in the case of successful termination.

The two rules left account for the actions performed by the two component processes independently
of each other. Given expression B1|||B2, if both B1 and B2 are ready for some action (say actions b1
and b2 respectively), then both action orderings (b1 before b2, b2 before b1) are possible. Notice that
b1 and b2 may even be the same. Since B1|||B2 transforms, after an action, into an expression still
involving the '|||' operator, we conclude that this case of parallel composition expresses nothing but
any interleaving of the actions of B1 with the actions of B2.

We have now a means for expressing the simple-duplex-buffer specified at the end of Section 2.3.
As suggested by Figure 2.2, such a process is best represented by a parallel composition of two
independent processes (buffers). A more concise and better structured specification is:

process duplex-buffer [in-a, in-b, out-a, out-b] :=
simplex-buffer [in-a, out-a]

 ||| simplex-buffer [in-b, out-b]

where
process simplex-buffer [in, out] :=

in; out; stop
endproc

endproc

Full synchronization B1 || B2

When the set of synchronization gates, S, is the set G of all gates , then the parallel operator '|S|' is
written '||'. Only the third inference rule for the parallel operator is applicable, and the two composed
processes are forced to proceed in complete synchrony.

A typical example of use of this parallel operator is when the capabilities of a process are determined
by two or more of its subprocesses.

process produce [a, b, c, d] :=
item-available [a, b, c, d]

 || item-acceptable [a, b, c, d]

where
process item-available [a, b, c, d] :=

a; (b; item-available [a, b, c, d]
[] c; item-available [a, b, c, d]
)

endproc

process item-acceptable [a, b, c, d] :=
a; (b; item-acceptable [a, b, c, d]

[] d; item-acceptable [a, b, c, d]
)

endproc
endproc

In this simple example we can check that 'produce[a, b, c, d]' may only perform the sequence of
actions 'a, b, a, b, ...'.

2.5 Hiding

Hiding allows one to transform some observable actions of a process into unobservable ones. These
action are thus made unavailable for synchronization with other processes. The inference rules for
the hiding operator are:

===

B −µ+→B'

and µ+ ∉ {g1, ... , gn} imply hide g1, ... , gn in B −µ+→ B'

B −g→B'
and g ∈ {g1, ... , gn} imply hide g1, ... , gn in B −i→ B'

===

Any action occurring at a gate in the set of hidden gates is transformed into an i-action (second rule).
Any other action, including 'i' and successful termination, is unaffected by the operator (first rule).
We may say that hiding introduces unobservable actions in a specification implicitly, while by action

prefix they can be introduced explicitly.

As an example, consider the hiding behaviour expression

hide mid in Max2[in1, in2, mid] |[mid]| Max2[mid, in3, out]

used to define the behaviour of process Max3 in Figure 2.1. The hiding operator makes the
synchronization between the two Max2 processes invisible, and excludes interference from their
environment. We do this since we know that no other process will be added later to impose further
temporal constraints to the occurrence of the mid action, which is to be considered as a "private"
interaction between the two instances of Max2.

The action tree for the expression above is directly obtained from the tree of expression 'Max2[in1,
in2, mid] |[mid]| Max2[mid, in3, out]', given in Figure 2.4, by replacing the mid labels with i labels.
We will use this tree later (it can be found in Figure 3.5b).

2.6 Process instantiation and recursion P[g1, ...,gn]

A process instantiation 'P[g1, ...,gn]' is formed by a process identifier 'P' with an associated list
[g1, ..., gn] of actual gates. Such a process instantiation occurs in the behaviour expression defining

some other process, or process P itself. The instantiation of a LOTOS process resembles the
invocation of a procedure in a programming language such as Pascal. Of course a process
instantiation refers to a process definition which must exist somewhere in the specification, and
whose behaviour is defined in terms of a list [g'1, ..., g'n] of formal gates. Example: in Figure 2.1,
'Max2[mid, in3, out]' is a process instantiation, where '[mid, in3, out]' is a list of actual gates, while
'[a, b, c]' is the matching list of formal gates.

Although the interpretation of process instantiation is simple, in order to formally define how formal
gates are replaced by actual gates we need to introduce an auxiliary operator, called relabelling,
which is only used for talking about LOTOS, and not for specifying processes in LOTOS.
Relabelling is a unary, postfix operator, which consists of a list of gate-pairs [g1/g'1, ..., gn/g'n], and

is interpreted as gate renaming: gate g'i becomes gate gi, i = 1, ..., n. It is required that g1 ... gn be all
different. Formally:

===
B −g'→ B' ,
φ = [g1/g'1, ..., gn/g'n], and g/g' ∈ φ implies B φ −g→B' φ

Β −µ+→ B' and µ+ ∉ {g'1, ..., g'n} implies B φ −µ+→B' φ
===

Notice that internal action and successful termination are not affected by relabelling. It follows from
these rules that the action trees of B and B φ are the same, except for the renaming of gates which
affects some of the arc labels.

The rules for process instantiation are:

===
If 'process P[g'1, ..., g'n] := BP endproc' is a process definition then:

BP [g1/g'1, ..., gn/g'n] −µ+→ B' implies P[g1,...,gn]−µ+→ B'

===

where [g1/g'1, ..., gn/g'n] is the relabelling operator. The behaviour of instantiation 'P[g1,...,gn]' is

thus defined as the behaviour of the body BP of the associated process definition, with the

appropriate gate relabelling.

Recursion

Recursion is achieved, in LOTOS, by process instantiation, and is used to express infinite
behaviours, namely those which involve action sequences of infinite length. Let us say that "process
P invokes process Q" if either an instantiation of Q, or the instantiation of another process that
invokes Q, occurs in the behaviour expression defining P. We say that process P is recursive if it
invokes itself. As a simple example of recursion (and process instantiation) we refine the definition
of the simplex-buffer given at the end of Section 2.4, by making it reusable:

process reusable-simplex-buffer [in, out] :=
in; out; reusable-simplex-buffer [in, out]

endproc

An infinite sequence in; out; in; out; ... of actions is now possible. Incidentally, an identical
behaviour is obtained by the following definition:

 process same-simplex-buffer [in, out] :=
in; same-simplex-buffer [out, in]

endproc

where every new process instantiation inverts the order of gates.
2.7 Successful termination and sequential composition

So far two ways to express sequentiality in specifications are available. We can do it directly, by
prefixing an action to a process, or indirectly, by composing in parallel two processes in such a way
that the last action of the first process synchronize with the first action of the second one. It seems
desirable to have a direct way to express sequential composition of processes too, that is, to have a

separate operator for it. This may help in reflecting more clearly the structure of a system into the
structure of its specification.

The idea behind the sequential composition operator is that the second process is enabled only if and
when the first one terminates successfully.

Successful termination exit

Exit is a process (a nullary operator, a behaviour expression) whose purpose is solely that of
performing the successful termination action δ, after which it transforms into the dead process stop.
Its associated axiom is:

=============
exit − δ→ stop
=============

Action δ plays an key role in the sequential composition of processes, as shown below. It cannot be
used directly in a specification, but only via the exit construct. Thus any gate accidentally named δ in
a specification is regarded as a "normal" gate, with no termination significance.

Sequential composition B1 >> B2

The informal interpretation of this construct is that if B1 terminates successfully, and not because of a
premature deadlock, then the execution of B2 is enabled.

==
B1 −µ→B1' implies B1>>B2 −µ→B1'>>B2

B1 − δ→B1' implies B1>>B2 −i→B2
==

The first rule accounts for the behaviour of B1 before its successful termination. The second rule
shows that it is action δ, offered by B1, which enables B2, and that this passing of control is seen as
an internal action i. Sequential composition and hiding are the only operators which introduce
unobservable actions implicitly in a specification.

It is important to realize that the successful termination of the parallel composition of two processes
is possible if and when both components are ready to successfully terminate, as expressed by the
inference rules for the parallel operator. As a negative example consider this expression:

(a; b; exit ||| a; c; stop) >> second-process[...]

The expression is equivalent to ' (a; b; exit ||| a; c; stop)', since stop cannot contribute to the
successful termination of the parallel subexpression, and no enabling of the second-process takes
place.

The enabling operator is conveniently used in conjunction with process instantiation, so that subparts
of a system can be first defined as separate processes and then instantiated in the desired sequence.
An example is given below.

process Sender [ConReq, ConCnf, DatReq, DisReq] :=
Connection-Phase [ConReq, ConCnf]

 >> Data-Phase [DatReq, DisReq]
where

process Connection-Phase [ConReq, ConCnf] :=
ConReq; ConCnf; exit

endproc
process Data-Phase [DatReq, DisReq] :=

(DatReq; Data-Phase [DatReq, DisReq]
[] DisReq; stop
)

endproc
endproc

2.8 Disabling B1 [> B2

In almost any OSI connection oriented protocol or service it is the case that the 'normal' course of
action can be disrupted at any point in time by events signalling disconnection or abortion of a
connection. This has led to the definition in LOTOS of an 'application generated' operator, namely
the disabling operator. Process B1 may be disabled by process B2 according to the following rules:

===
B1 −µ→B1' implies B1 [> B2 −µ→ B1' [> B2

B1 −δ →B1' implies B1 [> B2 −δ → B1'

B2 −µ+→B2' implies B1 [> B2 −µ+→B2'
===
Process B1 may (third rule) or may not (first and second rules) be interrupted by the first action of
process B2. In the first case control is irreversibly transferred from the interrupted B1 to the
interrupting B2. In the second case the interruptable B1 performs an action: if this action is not a
successful termination (first rule), B2 survives. If the action is a successful termination (second rule),
B2 disappears: the process which B2 was expected to interrupt has terminated, and the disabling
process itself is disabled.

As an example, let us first define the two processes:

process Activity [a, b, c] :=
a; b; c; Activity [a, b, c]

endproc

process Disrupt [discon reason] :=
discon; reason; stop

endproc

Then the expression:

Activity [a, b, c] [> Disrupt [discon, reason]

is equivalent with:

(discon; reason; stop
[] a; (discon; reason; stop

[] b; (discon; reason; stop
[] c; (Activity [a, b, c]

[> Disrupt [discon, reason]
))))

With disabling, we have completed our presentation of the basic-LOTOS operators.

2.9 Nondeterminism and internal actions

Before giving a final example of a specification in basic LOTOS, we briefly discuss how
nondetermism can be expressed in it. A simple example of nondeterminism is represented by the
following expression:

a; b; stop [] a; c; stop

where the result of observing a is not determined. The unobservable action is also a source of
nondeterminism, as shown by the expression

i; b; stop [] i; c; stop

(proto-pianola PP1 in Figures 1.2 (a) and (b) provides a similar example). In fact, from the point of
view of an observer who is interested in observing action b (or c), the two expressions above offer the
same uncertainty: in both cases the observation may succeed or fail (but in the first case a preliminary
and always successful observation of a is also needed). We discuss now, with an example, the

special case of nondeterminism where the alternative is between an observable and an unobservable
action.

We want to model a vending machine (although very little remains to be written about these devices
after the publication of [22]). After accepting a coin, it will offer some candy. The user can obtain
the latter by pulling a drawer.

process Vending_machine [coin, candy1, candy2] :=
coin;

(candy1; Vending_machine [coin, candy1, candy2]
[] candy2; Vending_machine [coin, candy1, candy2]
)

endproc

Now suppose the system also contains a little devil that can try at any time to pull a drawer (before
the user) and consume the candy.

process Devil [candy] :=
candy; Devil [candy]

endproc

The total system, as observed by the client, is defined by

process System [coin, candy]:=
hide candy' in

Vending_machine [coin, candy, candy']
|[candy']|
Devil [candy']

endproc

By applying the axiom and inference rules introduced so far we could start the construction of the
action tree for this System. We would then soon realize that the behaviour of the system is equally
well described by this expression:

coin; (candy; System [coin, candy]
[] i; System [coin, candy]
)

The first alternative in the choice subexpression represents the "normal" behaviour expected by the
client. The second alternative is the Devil's one, where i models the hidden interaction between the
Devil and the machine on action candy'. Although this interaction is invisible, we cannot drop it
from our expression without affecting the behaviour of the system. If we write:

coin; (candy; System [coin, candy]
[] System [coin, candy]
)

we are describing a system where the client can choose between getting his candy and inserting a new
coin. In the original description, on the contrary, the occurrence of i is not at the client's discretion; it
may simply happen, unnoticeable, and the client is confronted afterwards with only one possible
course of action, viz. System.

The case of "asymmetric" nondeterminism with a choice between an observable and an unobservable
action as was just discussed, is often found in an OSI context. Typically we have:

normal-course-of-action
[] i; disconnect indication; ...

where a process may be forced to accept a disconnect indication although, in principle, other
alternatives exist.

2.10 An example in basic LOTOS

In all OSI protocol specifications one can identify parts that are responsible for the management of
the connections in the underlying service, i.e. the setting up, using and disconnection of the logical
communication channels that exist between the service users. Here we present a small and simplified
portion of the manager of a Transport service, which would typically be a part of a Session protocol.
We do not discuss the Transport service here; the uninitiated reader is referred to [44] for more
information.

process Handler[ConReq,ConInd,ConRes,ConCnf,DatReq,DatInd,DisReq, DisInd]:=
Connection-phase[ConReq,ConInd,ConRes,ConCnf,DisReq, DisInd]

 >> (Data-phase[DatReq,DatInd]
[> Termination-phase[DisReq, DisInd]
)

 >> Handler[ConReq,ConInd,ConRes,ConCnf,DatReq,DatInd,DisReq, DisInd]
where

process Connection-phase[CRq,CI,CR,CC,DR,DI] :=
(i; Calling[CRq,CI,CR,CC,DR,DI]
[] Called[CRq,CI,CR,CC,DR,DI]
)

where

process Calling[CRq,CI,CR,CC,DR,DI] :=
CRq; (CC; exit

[] DI; Connection-phase[CRq,CI,CR,CC,DR,DI]
)

endproc

process Called[CRq,CI,CR,CC,DR,DI] :=
CI; (i; CR; exit

[] i; DR; Connection-phase[CRq,CI,CR,CC,DR,DI]
)

endproc

endproc (* Connection-phase *)

process Data-phase[DtR,DtI] :=
i; DtR; Data-phase[DtR,DtI]

 [] DtI; Data-phase[DtR,DtI]
endproc

process Termination-phase[DR,DI] :=
i; DR; exit

 [] DI; exit
endproc

endproc (* Handler *)

3. Behavioural equivalences

One can describe systems at various levels of abstraction; for example it is possible to describe how
they are structured internally in terms of predefined subcomponents, or how they behave from the
point of view of a user or of an external observer. In moving within this range of descriptive levels, it
is common to distinguish between:

specifications, which are rather high level descriptions of the desired behaviour of the
system, e.g. as seen by the user (extensional description);

implementations, which are more detailed descriptions of how the system works or of how
it is constructed starting from simpler components (intensional description).

LOTOS is a specification language which allows the specification of systems at different descriptive
levels. In LOTOS the words 'specification' and 'implementation' have a relative meaning, not an
absolute one. Given two (syntactically homogeneous) LOTOS specifications S1 and S2, we will say
that S2 is an implementation of the specification S1 when, informally, S2 gives a more structured
and detailed description of the system specified in S1. Structure in a LOTOS specification is another
concept which cannot be given an absolute measure. We might say that a specification is made
structured by a "generous" use of the parallel, the enable, and, perhaps, the disable operators, and of
process definitions. For example, process 'duplex-buffer' in Section 2.4 shows more structure than its
version in Section 2.3.

The relationships between different LOTOS descriptions of a given system and, in particular,
between specifications and implementations, can be studied by using a notion of equivalence,
proposed in [37] and used for a CCS-like calculus in [34]. This equivalence, known as observational
equivalence, is based on the idea that the behaviour of a system is determined by the way it interacts
with external observers. Theories of equivalences turn out to be very useful. In fact, they allow one
not only to prove that an implementation is correct with respect to a given specification but also to
replace complex subsystems with simpler, equivalent ones, within a large system, thus simplifying
the analysis of the latter.

A typical example of two different descriptive levels found in the OSI architecture is provided by the
concepts of protocol and service [24, 39]. The specification of the N-service is implemented by the
composition of the N-protocol entities with the (N-1)-service, and it seems natural to require that the
two descriptions be equivalent. Unfortunately the complexity of OSI services and protocols is such
that a proof of equivalence will certainly require the assistance of automated tools; and when the full
language is used (this is of course the case for applications to OSI) the development of verification
algorithms is a challenging task in itself. We are not concerned about analytical tools here. For our
illustrative purposes it will be enough to give an example of a specification/implementation pair for
which the equivalence proof can be carried out by hand. But before doing this, we want to stress the
importance of equivalences from a slightly different perspective, namely for having a satisfactory
definition of the formal semantics of the language. This will also give us the opportunity to shift our
discussion of equivalences into the domain of trees, with the obvious pictorial advantages.

What is the meaning of the LOTOS expression below ?

a; (b; stop [] i; c; stop) [] a; c; stop

We might apply the operational semantics of Section 2 for deriving the action tree of Figure 3.1(a)
from the expression, and then be tempted to say that the tree is the semantics of the expression.

Figure 3.1 - Comparing action trees

Since we regard the tree as a description of a behaviour in terms of observable actions, we would
consider the colour of the tree arcs and nodes as immaterial. Similarly, we would not object on the
choice of a different ordering for the outgoing arcs of a node. For instance, we could accept the tree
in Figure 3.1(b) as well. On the other hand, expression 'a; c; stop [] a; (b; stop [] i; c; stop)' also
admits tree (a), or tree (b), as an action tree, and we may conclude that the two expressions should
also be considered as equivalent. Rather than viewing the semantics of an expression as a tree, we
will talk then about equivalence classes of trees and, consequently, of expressions. Once a proper
notion of equivalence between trees is chosen, we will say that two expressions are equivalent (or
that they have the same meaning) if their trees are in the same equivalence class. Thus the meaning of
an expression can be identified with its equivalence class. We concentrate now on trees.

We have easily accepted the equivalence between trees (a) and (b) in Figure 3.1. Following the
discussion on nondeterminism and internal actions in Section 2.9, we would not put tree (c), where an
i action has been dropped, in the same class as (a) and (b). Consider now trees (a) and (d): do they
represent the same observable behaviour ? In order to give a convincing answer we need a formal
definition of observational equivalence.

The idea of observational equivalence is that two systems are considered as equivalent whenever we
cannot tell them apart by external observations. As external observers we do not directly see trees (a)
and (d) as in Figure 3.1, but we may only experiment with the keys of the two proto-pianolas in
Figure 3.2, which incorporate these two trees as their hidden scores. As discussed in Section 1,
observations consist in simply pressing keys, one at a time, and noticing whether they are free or
blocked. Our experiments are formalized by the observable sequence relation ' ⇒'. We refer to the
notational conventions fixed in Section 2.3. However we may now imagine that B, B' and Bi denote

simply tree nodes, or states, rather than behaviour expressions (recall that behaviour expressions are
node labels in derivation trees). An element of the observable sequence relation is a triple (B, s, B'),
where s is a string of observable actions, and is written B =s⇒ B'. The purpose of this relation is to
abstract from the invisible actions that are on the path between two tree nodes.

Figure 3.2 - Are these two proto-pianolas observationally equivalent ?

Definition 3.1
i) Let s denote a string µ+1 µ+ 2... µ+n of actions. We define relation −s→ as the obvious extension

of the transition relation (tree arcs) to action sequences:

 B−s→B' if and only if there exist Bi, 0≤ i≤ n, such that B=B0− µ+ 1→B1...Βn-1− µ+ n→ Bn=B'. In

particular, for n = 0 we have B− ε→B for any B, where ε is the empty string.

ii) Let s denote now a string g+1 g+2... g+n of observable actions, and let ik denote a sequence of k

(k≥0) i-actions. Then we have B =s⇒ B' whenever there exists a sequence (ik0 g+1 ik1 g+2... g+n

ikn) of actions such that:

B− (ik0 g+1 ik1 g+2... g+n ikn)→B'.

This implies that B = ε⇒ B' whenever B− ik→B', and that B = ε⇒ B for any B. •

Examples: given a tree path B0− i→B1−a→B2− i→B3− b→B4, we may write:

B0− iaib→B4
B0 =ab⇒ B4
B1 =a⇒ B2
B0 =ε⇒ B1
B0 =ε⇒ B0.

Based on the observable sequence relation, we define a notion of bisimulation.

Definition 3.2
A relation ℜ between tree nodes is a bisimulation if for any pair (B1, B2) in ℜ and for any string s

of observable actions:
i. whenever B1 =s⇒B'1 then, for some B'2: B2 =s⇒B'2 and B'1ℜ B'2
ii. whenever B2 =s⇒B'2 then, for some B'1: B1 =s⇒ B'1 and B'1ℜ B' 2. •

The idea of bisimulation is that two bisimilar nodes must be able to "simulate" each other, in terms of
observable sequences, and then reach still bisimilar nodes. Finally:

Definition 3.3
Two tree nodes B1and B2 are observationally equivalent , written B1 ≈ B2, if there exists a

bisimulation ℜ which contains the pair (B1, B2). •

When we talk about the observational equivalence of two trees we refer, of course, to the equivalence
of their roots. For proving the observational equivalence of trees (a) and (d) in Figure 3.1, we must
then provide a bisimulation between their nodes, which include also the pair of roots. The reader
may check that the relation defined by the dashed lines in Figure 3.3 is in fact a bisimulation: any pair
of nodes connected by a dashed line satisfies conditions (i) and (ii) in Definition 3.2.

Figure 3.3 - A bisimulation

Hence the two trees are observationally equivalent, and we can write:

a; (b; stop [] i; c; stop) [] a; c; stop ≈ a; (b; stop [] i; c; stop)

Now that we have switched from trees back to expressions, we may try to solve our equivalence
problems directly, by algebraic manipulations of the given expressions. In particular we might want
to substitute some subexpression F of a given expression E with an expression F' equivalent to F,
without affecting the overall behaviour, that is, without leaving the equivalence class of E.
Unfortunately, observational equivalence is not a substitutive relation. We need to consider a

different relation, called observational congruence, written ' ≈c'.

We will not formally define observational congruence here (see [33]). It will only suffice to say that

it is defined in terms of observational equivalence, it is stronger than it (that is: B1 ≈c B2 implies B1
≈ B2), it is substitutive, and it satisfies a number of useful laws [21]. Three observational congruence

laws are given in Figure 3.4, in tree form. Recall that, by our conventions, µ+ denotes any action.

Figure 3.4 - Three observational congruence laws

Notice that the third law matches trees (a) and (d) of Figure 3.1, thus providing another proof of their
observational equivalence. We will now use the first two laws to provide the proof of observational
equivalence between two systems. Consider the following basic LOTOS processes:

Process Max3-Spec [in1, in2, in3, out] :=
in1; (in2, in3, out, stop

[] in3, in2, out, stop)
[] in2; (in1, in3, out, stop

[] in3, in1, out, stop)
[] in3; (in1, in2, out, stop

[] in2, in1, out, stop)
endproc

Process Max3 [in1, in2, in3, out] :=

hide mid in

(Max2[in1, in2, mid] |[mid]| Max2[mid, in3, out])
where

process Max2 [a, b, c] :=
a; b; c; stop
[]
b; a; c; stop

endproc
endproc

Process Max3 (which was already introduced in Section 2.1, Figure 2.1) can be seen as an
implementation of process Max3_Spec, in terms of process Max2. The latter describes a black-box
which outputs a signal only after receiving two input signals, in any order. Max3_Spec, instead,
describes a black-box which outputs a signal only after receiving three input signals, in any order.
Our claim is that Max3_Spec and Max3 are observationally equivalent. Consider the two action trees
of the processes, shown in Figure 3.5.

a) Action tree for Max3-spec

b) Action tree for Max3

Figure 3.5 - Two observationally equivalent action trees

The proof can be easily conducted by simple graphical manipulations. The first congruence law is
applied to collapse six 'i' actions of the tree of Max3. Then two subtrees of the resulting tree are
reduced according to the second law, and eventually the first law can be applied twice again to give
us a tree identical to the one of Max3-spec. The substitution of subtrees is allowed because we work
with a congruence relation. In doing this we obtain a slightly stronger result: the two trees are not
only observationally equivalent, but also congruent.

A survey on observational equivalence verification algorithms can be found in [4] (see also [30]).

Apart from observational equivalence, there exist a number of other ways to compare LOTOS
processes. When specifying complicated behaviours it is a generally adopted strategy to specify all
the behaviour that would be acceptable in implementations of the specification. This usually leads to
a specification that includes a number of options of behaviour, all of which need not necessarily be
part of any single implementation. In this case, one may want to establish that the behaviour of an
implementation is an acceptable reduction of the behaviour of the specification, rather than verifying
their equivalence.

To deal with this question, a number of asymmetric relations between behaviours have been
suggested, which all are based on the same main idea. For CSP this 'implementation relation' was
introduced in [11], and for CCS in [15], which was generalized to the context of labelled transition
systems in [14]. The elaboration of such a relation for LOTOS can be found in [10].

The main idea is that 'B red S' (behaviour B reduces specification S, where B and S are processes) iff

i) B can only execute actions that S can execute; and
ii) B can only refuse actions that can be refused by S.

We still consider action i as invisible, and when we say "B can execute action x" we mean that x is
observable, and that B=x ⇒ B', for some process B'. The key to the understanding of this relation is
that a specification S may be nondeterministic: after having interacted in a sequence of events s, S
may both offer and refuse a particular set A of actions. Two instances of this relation are:

a) B red i; B [] i; C
b) B red i; B [] C

To fix ideas, let us consider case (b). It is clear that B can only perform actions that are also in
i; B [] C, so that condition (i) is fulfilled. Also, every non-initial state of B has an equivalent state in
i; B [] C, so that condition (ii) needs only verification for the initial state of B. It follows easily from
(i; B [] C) = ε⇒ Β that all actions that can be refused by B after a sequence of invisible actions can
also be refused by i; B [] C after a sequence of invisible actions.

Note that C red i; B [] C does not hold: C may refuse initial actions of B that cannot be refused by

i; B [] C.

The implementation relations also induce equivalences between behaviours: B equivalent C iff B red
C and C red B. This equivalence is referred to as failure equivalence in [11], and testing equivalence
[15, 14, 10]. An advantage of these equivalences is that they do not distinguish between processes
that cannot be distinguished by experiments, while this may happen with observational equivalence.
As an example, consider the following processes:

B1 = a; (a; a; stop [] a; stop)

B2 = a; a; a; stop [] a; a; stop

Both of them will certainly support the observation of action sequences a and aa, and may or may
not support the observation of aaa; any other observation will not be supported. In spite of this, they
would be distinguished by observational equivalence, since:

B1 −a→ (a; a; stop [] a; stop) = B3 and

B2 −a→ a; a; stop = B4 and B2 −a→ a; stop = B5.

Clearly B3 is not equivalent to B4 because B3 may refuse to accept the action sequence 'aa' while B4
will certainly accept it; and B3 is not equivalent to B5 because B3 may accept 'aa' while B4 will

certainly refuse it.

The name testing equivalence was chosen because in some sense this relation identifies exactly those
processes that cannot be distinguished by testing. In [9] and [8] it is indicated how this relation may
be further modified to support the practical testing of processes for conformance to their
specification.

One of the advantages of LOTOS is that, on the basis of its operational semantics, different relations
between specifications can be defined, which suit different needs.

4. Data types

The representations of values, value expressions and data structures in LOTOS are derived from the
specification language for abstract data types (ADT) ACT ONE [16]. The choice of abstract data
types for LOTOS, as opposed to concrete data types, is consistent with the requirement of abstraction
from implementation details which has been a guiding principle also in the design of the other
component of the language (process definitions). A concrete data type implies a description of how
data values are represented in memory, and how some associated procedures operate on them. In
other words the data type is defined by explicitly giving its implementation. For example a Pascal
queue can be defined as a list of records and a pair of procedures which manipulate it to realize the
'Add' and 'Remove' operations. An abstract data type can be seen as the formal specification of a
class of concrete data types. It does not indicate how data values are actually represented and
manipulated in memory, but only defines the essential properties of data and operations that any

correct implementation (concrete data type) is required to satisfy. Ultimately, an ADT definition
identifies a mathematical object, namely an algebra, formed by sets of data values, called data
carriers, and a set of associated operations. The reader interested in the specification of ADT's in
general may refer to [19] and [20].

ACT ONE is an algebraic specification method to write unparametrized as well as parametrized ADT
specifications. ACT ONE, and thus LOTOS, includes the following features for the production of
structured specifications:

1. use of a library of predefined data types;
2. extensions and combinations of already existing specifications;
3. parametrization of specifications, and actualization of parametrized specifications;
4. renaming of specifications.

The most basic form of data type specification in LOTOS consists of a signature and, possibly, a list
of equations.

4.1 Signature

The first step in specifying a data type consists of defining names of data carriers and operations.
The names of the data carriers are referred to as sorts. The declaration of every operation will
include its domain , which consists of a list of zero or more sorts, and range , which consists of
exactly one sort. The sorts and operations of a data type are referred to as the signature of that data
type.

Below we list a type definition of the natural numbers, which only consists of a signature. The
definition is named 'Nat_numbers', so that it may be referred to by other definitions, and combined
with them. The signature of Nat_numbers consists of the single sort 'nat', and the operations '0' and
'succ'. Operation 'succ' can be applied to a single element of sort 'nat', and yields also an element of
'nat' as a result, as indicated by the notation 'nat → nat'. Operation '0' is an operation that has no
arguments, yet it yields an element of 'nat', as indicated by the notation ' → nat'.

type Nat_numbers is

sorts nat
opns 0 : → nat

succ: nat → nat

endtype

We express the fact that an operation has n arguments by saying that it is an n-ary operation. Thus
'succ' is a unary operation, while '0' is a nullary operation. Nullary operations are called constants.

An additional example of a complete data type definition that consists only of a signature is the
definition of a set of characters {a1, ..., an} , where each character is defined as a constant:

type Character is

sorts char
opns a1, ..., an, e: → char

endtype

Note that there is a special symbol 'e' which is used in the next chapter to represent an error that is of
sort 'char'.

The signature of a type gives all the information required to build syntactically correct terms, or value
expressions , which represent data values of (some sort of) that type. A term is the result of applying
an n-ary operation to n terms. In particular, a constant is clearly a term. More precisely, if a
signature contains the constant declaration:

c : → s

where s is some sort, then we say that c is a constant (or a term) of sort s. Similarly, if an operation
is declared as:

op : s1, ..., sn → s

then op(t1, ..., tn) is a term of sort s, or an s-term, for short, where ti is an si-term, for i = 1, ..., n.

For example, given the signature of type Nat_numbers above, we may construct the following terms,
all of sort nat:

0, succ(0), succ(succ(0)), ...

which are meant to denote, respectively, the elements 0, 1, 2 ... of the algebra of natural numbers.

4.2 Equations

Suppose now that we want to define a 'plus' operation, which combines two nat-terms into a new nat-
term:

+ : nat, nat → nat.

The two underscore symbols '_' mark the position of the operands with respect of the operator, which
is thus defined as an infix operator. We have now the possibility to write new nat-terms, such as '0 +
succ(0)'. To interpret these new nat-terms correctly, we need a new construct to express properties of
operations. This construct is the equation. The purpose of an equation is to state that two
syntactically different terms denote the same value. For instance, we want to express the fact that
terms 'succ(0)' and 'succ(0) + 0' denote the same value, or, more generally, that for any nat-term x,
terms 'x' and 'x + 0' denote the same value. A correct definition of the properties of the '+' operator
is:

eqns
forall x, y : nat:
ofsort nat

x + 0 = x;
x + succ(y) = succ(x + y);

where the equations identify nat-terms (ofsort nat), and are valid whenever variables x and y are
replaced by any pair of nat-terms (forall x, y : nat). The first equation expresses the behaviour of the
plus operator when it is combined with the constant '0'. The addition with a non-zero number is
covered by the second equation (note that term 'succ(x)' always denotes a non-zero number). By
induction on the structure of terms, and by using these equations, it can be easily proved that any term
containing one or more plus operations is equal to a term containing only '0' and 'succ'. This means
that by introducing the plus operator we have not introduced terms that denote 'new' values which
could not be expressed before. In this case, we say that the equations of '+' are complete w.r.t. the
definition of 'Nat_numbers'.

The specification of the natural numbers extended with the plus operation is:

type Extended_nat_numbers is

sorts nat
opns 0 : → nat

succ: nat → nat
+ : nat, nat → nat.

eqns
forall x, y : nat:
ofsort nat

x + 0 = x;
x + succ(y) = succ(x + y);

endtype

4.3 Extensions and combinations of type specifications

To specify data types with a large number of operations we need language constructs to combine
already existing specifications, and/or to extend them by adding further sorts, operations and
equations. This way bulky specification can be given in a stepwise fashion, and a same, simple data
type can be used as a basis for several, more complex definitions.

As an example of enrichment of a type, we re-define the type Extended_nat_numbers on the basis of
type NaturalNumbers (both definitions are given in the previous section):

type Extended_nat_numbers is Nat_numbers with
opns _+_ : nat, nat → nat.
eqns

forall x, y : nat:
ofsort nat

x + 0 = x;
x + succ(y) = succ(x + y);

endtype

In 'Extended_nat_numbers' we have imported the whole definition 'Nat_numbers' by referencing it in
the heading of the former, and we have enriched it with one operation and two equations, given after
the with keyword. In general we may combine several type definitions, and then add specific new
elements:

type T is T1, ..., Tn with
sorts ...
opns ...
eqns ...

endtype

4.4 Parameterized types

Parameterized data type specifications can be considered as partial specifications where only some
general features of the type are described, and 'holes' are left to be filled later with further details. A
queue, for instance, can be described as a parametrized type, which can later be actualized to become
a queue of integers or a queue of characters.

In the absence of the parameterization feature, we could define the queue of natural numbers and the
queue of characters as respective enrichments of the types Nat_numbers and Characters:

type Nat_number_queue is Nat_numbers with
sorts queue
opns create: → queue

add: nat, queue → queue
first: queue → nat

eqns forall x, y: nat, z: queue
ofsort nat

first(create) = 0;
first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, z));

endtype

type Character_queue is Characters with
sorts queue
opns create: → queue

add: char, queue → queue
first: queue → char

eqns forall x, y: char, z: queue
ofsort char

first(create) = e;
first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, z));

endtype

In these new types the enrichment consists of a new sort 'queue' and of two new operations 'first' and
'add'. 'First' produces the first element at one end of the queue, and 'add' appends an element at the
other end of it. The constants '0' and 'e' were already introduced respectively in the type definitions
'Nat_numbers' and 'Characters'. They are used to indicate an error when the 'first' operation is applied
to an empty queue. It is clear that the two definitions above are almost the same. To avoid such
duplication, we can make the sub-type of the queue that is variable a formal part of a parametrized
type specification. Thus we specify a queue of a generic element, and the type of this element is
made formal:

type Queue is
formalsorts element
formalopns e0 : → element
sorts queue
opns create: → queue

add: element, queue → queue
first: queue → element

eqns forall x, y: element, z: queue
ofsort element

first(create) = e0;

first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, z));

endtype

The queue is now equipped with formal components 'element' (a sort) and 'e0' (a constant), which can
be actualized by the 'NaturalNumbers' or 'Characters' as follows:

type Nat_number_queue is
queue actualizedby Nat_numbers using

sortnames nat for element
opnames 0 for e0

endtype

type Character_queue is
queue actualizedby Characters using

sortnames char for element
opnames e for e0

endtype

The formal part of a type definition can even contain formal equations, which are interpreted as
requirements that must be fulfilled by an actual type that is substituted for it. For example we could
have defined:

type Extra_queue is
formalsorts element
formalopns e0 : → element

* : element → element
formaleqns forall x, y: element

ofsort element
x * y = y * x

sorts queue
opns create: → queue

...
endtype

This time we could actualize 'Extra_queue' with 'Enriched_nat', using the '+' operator for '*', but not
with Characters.

4.5 Type renaming

Renaming of data type specifications is useful during the development of a specification in the case
where an already defined data type is needed in a specific environment, but without any changes in
the intended semantics. Therefore, renaming may be done explicitly by rewriting the data type
definition with new sorts and operations. Changes in the signature imply changes in the declaration
of variables and in equations. Expecially for long definitions this can be a cumbersome task.

The renaming operation avoids this drawback. Let us assume that the data type definition 'Queue' of
the previous section is to be used in the OSI transport service environment, which deals with
channels and objects to be transferred. Then the definition 'Queue' can be conveniently renamed as
follows:

type Connection is
Queue renamedby

sortnames channel for queue
object for element

opnames send for add
receive for first

endtype

5. Full LOTOS

In Section 2 we have presented the main features of LOTOS by illustrating a subset of the language
based on a finite alphabet of events. Here we increase the expressive power of basic LOTOS by
giving a finer structure to observable actions, thus to process interactions, using the facilities for the
description of data structures and values presented in Section 4. As a major advantage, in full
LOTOS we will be able to enrich synchronizations with value passing, thus providing interprocess
communication.

While in basic LOTOS an observable action coincides with a gate name, in full LOTOS (or, simply,
LOTOS) it is formed by a gate name followed by a list of zero or more values offered at that gate:
g <v1 ... vn>. For example:

g <TRUE, "tree", 3>

is the observable action offering the boolean value TRUE, character string "tree", and natural number
3 at gate g. Since the offered values may range over infinite sets (e.g. the natural numbers), an
infinite number of observable actions is expressible in full LOTOS.

We have given the operational semantics of basic LOTOS in Section 2 with the purpose to formally
define the transition relation '→'. The axioms and inference rules for full LOTOS are meant to
achieve the same goal, except that a transition may now have the form:

B1 g <v1 ... vn>→ B2

that is, it may involve structured, observable actions. Here we will not insist in using a formal style
of presentation however, in order to avoid the introduction of further notational complexity (the
complete set of axioms and inference rules for LOTOS is found in [27]).

The integration of type definitions and process definitions in a full LOTOS specification is illustrated
in Figure 5.1, which shows the syntax of a typical specification and a typical process definition.

specification:

specification typical_spec [gate list] (parameter list) : functionality
type definitions

behaviour
behaviour expression

where
type definitions
process definitions

endspec

process definition:

process typical_proc [gate list] (parameter list) : functionality :=
behaviour expression

where
type definitions
process definitions

endspec

Figure 5.1 - Typical structures of specification and process definition

Process and type definitions may appear in the where clause of a specification or process definition,
in either order or even interleaved. It clearly appears that a specification and a process definition
have a similar structure. A minor difference is that the behaviour expression is preceded by the
keyword behaviour in the first case, and by the definition symbol ':=' in the second case. A more
significative difference is that some type definitions may appear before the behaviour expression of a
specification, whereas this is not allowed in a process definition. Such type definitions are meant to
be global definitions, which can be referenced in the parameter list of the specification and,
potentially, by the environment where the specification is set to operate.

The inclusion of type definitions in specifications, and thus the possibility to express data values, are
used to enrich the language in five different aspects. Values can be:

1) offered at gates, and exchanged among processes (enrichment of the action prefix operator);

2) used to express conditions to be satisfied for a given behaviour to take place (introduction of
the new construct of guarding , and enrichment of action prefix with selection predicates);

3) used to generalize the choice operator.

4) used to instantiate parametric process definitions or actualize parametric behaviour
expressions (parametric process definition and instantiation, 'let' construct);

5) passed by a successfully terminating process to a subsequent, enabled process (enrichment of
successful termination and enabling operators);

For everyone of the five features above we have indicated the corresponding constructs of the
language which are affected, or newly introduced. We will address them one-by-one in the sequel.

5.1 Value offers and interprocess communication

In formally describing formal languages it is very important to clearly distinguish between the
linguistic and the meta-linguistic levels. Going back to basic LOTOS for a moment, consider the
following transition of an action prefix expression:

a; B a→ B

It is clear that the first occurrence of a is an actual syntactic element of the language, while the
second one pertains to the meta-linguistic level used to formally describe the semantics of LOTOS
expressions. Similarly, the notation 'g<v1 ... gn>' used for structured actions has only meta-linguistic
value, and does not belong to the actual LOTOS syntax. We show now how the syntax of the
(observable) action prefix operator is enriched in order to express such structured, observable actions.
Since the structure of observable action prefix expression is:

action denotation ; behaviour expression

(where the semicolon is a terminal symbol), we will concentrate on (observable) action denotation .
The general structure for this construct is:

g α1 α2 ... αn
where g is a gate name and the α's represent a finite list of attributes. Two types of attribute are
possible: a value declaration and a variable declaration.

Value declarations

A value declaration has the form '!E', where E is a value expression, i.e. a LOTOS expression
describing a data value. Examples of value declarations are:

!(3+5), !(x+1), !TRUE, !'example', !not(x), !min(x,y).

If we combine a value declaration attribute with a gate name g, and its value expression describes the
value v, then the action denotation describes action g<v>. For example, tsap !(3+5) describes action
tsap<8>. If the value expression contains variables, then for each set of actual values for those
variables an action is described. For example, if x=3 and y=5, then g !min(x,y) describes event
g<3>. The binding of variables to values is determined by the context, as explained below. In
conclusion, if E is a value expression, and B is a behaviour expression, then the action prefix
expression 'g !E; B' may offer the value of E at gate g and transform into B:

g !E; B g<value(E)>→ B

Example
c !largest(0, 3); stop c<3> → stop

Variable declarations

A variable declaration has the form '?x:t', where x is a name of a variable and t is its sort identifier.
As was explained in Section 4, the sort identifier indicates the domain of values over which x ranges.
Examples of variable declarations are

? x:integer, ?text:string, ?x:nat, ?active:boolean.

If a gate name is attributed with a variable declaration '?x:t', then action denotation 'g ?x:t' describes
a set of actions, viz. the set of all actions g<v> for all values v in the value domain of sort t. Thus ,for
example, 'a ?x:nat' describes the set of actions {a<n> | n ∈ N

�
N

�
} . Everyone of these actions is the label

of a possible transition of the transition tree. The effect of a transition in this case is slightly more
complicated than for the case of value declaration. Consider the action prefix behaviour expression 'g
?x:t; B(x)', where B(x) denotes a behaviour expression parameterized by some variable x occurring in
some value expression. Then the associated transitions are:

g ?x:t; B(x) g<v>→ B(v)

where 'v' is any value in the domain of sort t, and B(v) indicates that after the transition has occurred,
the value 'v' has been substituted for 'x' in B(x). B(x) represents the scope where the binding
associated with the value declaration '?x:t' applies. Let us clarify these concepts with an example.
Consider the action prefix expression in Figure 5.2:

Figure 5.2 - Binding occurrences of variables and associated scopes

The whole expression does not include free variables, since the occurrences of 'x' and 'y' in the value
expression 'largest(x,y)' are bound, that is, they fall within the scopes associated to their binding
occurrences in the two variable declarations. However, if we consider expression 'b ?y:nat; c
!largest(x,y); stop' in isolation, then the occurrence of 'x' in 'largest(x,y)' is free, as no binding
occurrence of 'x' is there any more to bind a value to it. A possible sequence of two transitions for the
whole expression is:

a ?x:nat; b ?y:nat; c!largest(x,y); stop —a<0>→
b ?y:nat; c !largest(0,y); stop —b<3>→
c !largest(0,3); stop

Note how variables are replaced by values, in two steps. Because of the binding of values 0 and 3 to
variables x and y, which allows the new process to refer to these values, we could say that, rather than
offering values, the process offers to accept values, and think of the '?' symbol as indicating input. In
contrast, the values offered via a value declaration in an action prefix expression ('g !E; B') may be
thought of as outputs.

The usual rules for nested scopes apply. For instance, consider expression 'a ?x:t; b ?x:t; c !(x+1);
stop' : the value output at gate c will depend on the value input at gate b, not gate a.

The combination of value declarations and variable declarations in the same action denotation
'g α1 α2 ... αn' has the obvious interpretation. For example:

g1 !sap1 ?x:cep-sort !'test'; B(x) — g1<sap1, cep-3, 'test'>→ Β(cep-3)

if cep-3 is a value of sort cep-sort.

Interprocess communication

Interprocess communication may occur when two processes composed in parallel are offering the
same structured action (same gate, same values), and the gate is one of the interaction gates identified
by the parallel operator itself. The semantics of parallel composition is unchanged with respect to
basic LOTOS, but now, in light of the discussed input (resp. output) interpretation of variable (resp.
value) declaration, value passing is achieved.

Consider this example:

g1 !sap1 ?x:cep-sort !'test'; g2 !x; stop
 | | g1 !sap1 !cep-3 ?y:string; g3 !y; stop

The two composed expressions (processes) may synchronize, since they are both able to offer, say,
action g1<sap1, cep-3, 'test'>. Once the interaction has taken place, the obtained expression is:

g2 !cep-3; stop
 | | g3 !'test'; stop

where the proper substitutions have been carried out.

Notice that value declarations ('output') or variable declarations ('input') can match with other value
declarations or variable declarations without constraints, except for the existence of a common
value offer. On this basis we can define three types of interaction between two processes, as listed in
table 5.1, which is self-explanatory.

Table 5.1 - Types of interaction

Process A Process B synchron. type of effect
condition interaction

g !E1 g !E2 value(E1) value matching synchronization

= value(E2)

g !E g ?x:t value(E) value passing after
synchronizationis of sort t
x = value(E)

g ?x:t g ?y:u t = u value generation after
synchronization
x = y = v, where v is
some value of sort t

As an application of the constructs for value offers and interprocess communication we refine pure
LOTOS process Max3 (Figure 2.1), by adding to it the capability of manipulating data values, finally
giving a justification for the names chosen for these processes.

Specification Max3 [in1, in2, in3, out]:noexit

(* Defines a 4-gate process that accepts three natural numbers at three input gates, in any
temporal order, and then offers the largest of them at an output gate *)

type natural is
sorts nat
opns zero: → nat

succ: nat → nat
largest: nat, nat → nat

eqns ofsort nat
forall x:nat

largest(zero, x) = x
largest(x, y) = largest(y, x)
largest(succ(x), succ(y)) = succ(largest(x, y))

endtype (* natural *)

behaviour

hide mid in
(Max2[in1, in2, mid] |[mid]| Max2[mid, in3, out])

where

 process Max2[a, b, c] : noexit :=
a ?x:nat; b ?y:nat; c !largest(x,y); stop
[]
b ?y:nat; a ?x:nat; c !largest(x,y); stop

endproc (*Max2*)

endspec (*Max3*)

Notice that we have now given a specification, not a process definition. However, it is perfectly
acceptable, and convenient, to keep talking about process Max3 as the one defined by such
specification. As far as pure synchronization is concerned, this process has exactly the same
behaviour as its basic LOTOS version. However, subprocess Max2 is now able to accept any pair of
natural numbers at (formal) gates a and b , and offer the largest between them at gate c.
Consequently, process Max3 will accept three natural numbers at gates in1, in2, in3, in any order, and
offer the largest of them at gate out. The keyword noexit has to do with successful termination,
which is discussed in Section 5.5.

5.2 Conditional constructs

Having added the facilities for defining and describing values in LOTOS we may now express
behaviours that depend on conditions on values. Such conditions are expressed as equations that
relate two value expressions: the condition is met if the two expressions evaluate to the same value, in
the data type environment of that condition. Also value expressions of sort Bool of the standard data
type Boolean are allowed as conditions: an expression E of sort Bool is used as a shorthand for the
equation E = true. Below we will refer to the conditions of both kinds as predicates. By convention,
predicates appear enclosed in square brackets.

Selection predicates

An additional feature of action denotations is that of the selection predicates. An action denotation
may now terminate with a predicate, containing some of the variables that occur in the variable
declarations of the action denotation. Such predicate is meant to impose restrictions on the values
that may be bound to these variables in synchronization events. We illustrate this by two examples.

The only possible transitions of expression 'sap ?x:nat [x<3]; sap2 !x; stop' are:

sap ?x:nat [x<3]; sap2 !x; stop —sap1<0>→ sap2 !0; stop
sap ?x:nat [x<3]; sap2 !x; stop —sap1<1>→ sap2 !1; stop
sap ?x:nat [x<3]; sap2 !x; stop —sap1<2>→ sap2 !2; stop

In OSI applications there exist examples where two processes negotiate the value of a parameter in an
interaction, each one imposing its own condition. For example, two Transport entities may negotiate
the 'quality of service' of the underlying Network service [25]. A simplified example of negotiation is
given below.

hide sap in
sap ?x:nat[x<max]; B1(x)
|[sap]|
sap ?y:nat[y>min]; B2(y)

This process can make internal transitions to any of the processes

hide sap in
B1(n)|[sap]| B2(n)

with 'n' in the open interval (min, max).

Guarded expressions

Any behaviour expression may be preceded by a predicate and an arrow (that is, by a 'guard'). The
interpretation is that if the predicate holds, then the behaviour described by the behaviour expression
is possible, otherwise the whole expression is equivalent with stop. A typical scenario is one of a

choice between several guarded expressions.

Examples:

[x>0]→sap !x; P[...](x, ...)
 [] [x≤0]→sap !-x; P[...](x, ...)

If x = 1 the above process is equivalent with ' sap !1; P[...](1, ...)'. If x = -3, it is equivalent with 'sap
!3; P[...](-3, ...)'. Case analysis can be specified easily, viz.

[cond1] → process1
 [] [cond2] → process2
 ...

 [] [condn] → processn

The conditions in the guards need not be exclusive, e.g.

[x>0] → process1
 [] [x=5] → process2
 [] [x<9] → process3

5.3 Generalized choice

Using the choice-operator '[]' we can only express a finite number of alternatives. In general, we may
want to do more. Let B(x) be a behaviour expression that may depend on a variable x, say, of sort
'nat'. We can now specify the choice among the processes B(v) for all nat-values v by writing:

choice x:nat [] B(x)

Notice that the generalized choice construct allows an alternative representation for the action prefix
construct, when this includes a variable declaration :

a ? x:t; B(x) is equivalent to choice x:t [] a !x; B(x)

There are more useful applications, however:

 choice x:t [] i; B(x)

offers a nondeterministic choice between the different instances of B(x), and so does:

choice x:t [] a; B(x)

where a may be any action denotation. More than one variable may be used as an index, so that we
may write:

choice x1:t1, ..., xn:tn [] B(x1, ..., xn)

Also, sets of gate identifiers may be used for indexing, e.g.:

choice g in [a1, ..., an] [] Process-X[g](...)

In this case a choice is expressed among n instances of Process-X: for each one of them formal gate
g is actualized with a different element of the gatelist [a1, ..., an].

5.4 Parametric processes

Full LOTOS offers the possibility to parameterize process definitions not only in terms of formal
gates (as is the case with basic LOTOS) but also in terms of a parameter list, which is a list of
variable declarations: x1:t1, ..., xn:tn. The syntax for process definition in full LOTOS (as
anticipated in Figure 5.1) is thus:

process typical_proc [gate list] (x1:t1, ..., xn:tn) : functionality := ... endproc

Also specifications can be parametric, and the syntax is extended analogously. Typically, the
variables x1, ..., xn occur as free variables in the behaviour expression which defines the behaviour of

the process or specification. In instantiations, these variables are replaced by value expressions
(which may include variables): an instantiation of the typical_proc above has the form:

typical_proc [actual gate list] (E1, ..., En)

Of course it is required that expressions E1, ..., En match, one-by-one, the sorts of the variables x1,

..., xn .This is similar to passing parameters to procedures or functions in traditional programming

languages.

Example:

process compare[in, out] (min, max: int) : noexit :=
in ?x:int;
([min < x < max] → out !x; compare [in, out] (min, max)

[] [x ≤ min] → out !min; compare [in, out] (x, max)
[] [x ≥ max] → out !max; compare [in, out] (min, x)
)

endproc

The meaning of the instantiation of a process is the behaviour expression that is obtained by
substituting the actual parameters for the formal ones, avoiding naming clashes by suitable renaming
of binding and bound identifiers, e.g.

compare[one, two](x, 2*x)
is equivalent with

one ?y:int;
([x < y < 2*x] → two !y; compare [one, two] (x, 2*x)
[] [y ≤ x] → two !x; compare [one, two] (y, 2*x)
[] [y ≥ 2*x] → two !2*x; compare [one, two] (x, y)
)

A more direct way to associate value expressions E1, ..., En to the free variables x1, ..., xn of a

behaviour expressions B(x1, ..., xn) is offered by the 'let' construct:

let x1:t1=E1, ..., xn:tn =En in B(x1, ..., xn)

5.5 Sequential composition with value passing

Having the possibility to express values it is useful and, sometimes, highly desirable to be able to
pass information from the first process in a sequential composition to the second process. In the
previously used example:

Connection-Phase[...] >> Data-Phase[...]

we would like to express that the behaviour of the Data-Phase depends on parameters that are
established in the Connection-Phase. The Data-Phase is defined as a parametric process, with such
parameters as the expedited-data-option that indicates whether expedited data can be transmitted or
not, and the quality-of-service that determines the quality of the connection during the Data-Phase.
Therefore, we need a mechanism for passing these parameters from the Connection-Phase to the
Data-Phase, at the moment when the former enables the latter. To be able to do such things we must
generalize the notion of successful termination, and with that extend the language features with
respect to sequential and parallel composition, and add some static constraints to the language.

5.5.1 Successful termination with value offers

In basic LOTOS the exit process is used to specify the successful termination of a process. We allow
now the exit process to have a finite list of value expressions added to it. The values expressed are
those that are passed on to the subsequent process. Examples:

a ?x:nat; b ?y:nat; exit(largest(x, y))

tsap !cei ?quality-of-service : quality-parameter-sort ?expedited-data-option : bool;
exit(quality-of-service, expedited-data-option)

The list of the sorts of the values offered at successful termination is called the functionality of that
termination. The examples above have respective functionalities <nat> and < quality-parameter-
sort, bool>.

In a sequential composition the number and sorts of the values that are passed at the successful
termination of the first process must be known. This implies that all the (alternative) successful
terminations of the first process must have the same functionality; this functionality is defined as the
functionality of the first process. Some rules are needed for determining the functionality of
behaviour expressions, together with some constraints on the ways expressions with different
functionalities can be combined. They are listed below. (We write 'func(B)' to denote the
functionality of expression B.)

stop

The functionality of processes that do not terminate successfully at all, like stop, is indicated with
noexit.

exit

Simple successful termination without value passing has a functionality that is indicated by the same
name: func(exit) = exit.

Action prefix

The functionality of an expression is clearly unaffected by the prefixing of an action denotation:
func(action denotation; B) = func(B).

Choice

If B1 and B2 are processes that both can terminate successfully, then the functionality of the choice

expression ' B1 [] B2' can only be defined if the restriction is imposed that B1 and B2 have the same

functionality, in which case this is the functionality of the expression. On the other hand, if
func(B1)=noexit, or func(B2)=noexit, then func(B1 [] B2) is defined, respectively, as func(B2) and

func(B1).

For generalized choice the rule is simple: func(choice ... [] B') = func(B').

Disabling

This case is analogous to that of (binary) choice:

func(B1) = func(B2) = func(B1[>B2) =, or

func(B1) = noexit, and func(B1[>B2) = func(B2), or

 func(B2) = noexit, and func(B1[>B2) = func(B1).

Parallel composition

In the case of parallel composition, the functionality restrictions/definitions are:

func(B1) = func(B2) = func(B1op B2), or

func(B1) = noexit, and func(B1op B2) = noexit, or

 func(B2) = noexit, and func(B1op B2) = noexit.

where 'op' is any parallel operator. Again, if B1 and B2 are processes that terminate successfully,

then we can compose them in parallel only if they have the same functionality, in which case this
becomes the functionality of the parallel expression. In fact, the parallel composition of two
processes only terminates successfully if both terminate with the same list of values, in which case
the composition terminates also with that list. In this respect, it may be convenient to use the any-
construct, as a parameter of the exit process. It has the format 'any sort-identifier', and can match any
value of sort sort-identifier'. For instance, exit(any nat) is a process that can terminate successfully
with the offer of any nat-value at the special gate δ. It is clear that 'B1 op B2' cannot terminate
successfully whenever one of the component processes cannot do so.

Examples:

a ?x:int; exit ||| b !'anystring'; exit has functionality exit.

a ?x:int; exit ||| b !'anystring'; stop has functionality noexit.

exit(3) ||| exit(5) has functionality 'nat', but does not terminate successfully.

exit(3, any bool) ||| exit(any nat, true) has functionality 'nat, bool', and terminates successfully

by offering value pair (3, true).

exit(3) ||| (a !3; exit [] a ?x:nat; exit(x)) is not a well-formed LOTOS expression.

The reason why there may exist a process B that cannot terminate successfully, while func(B) is
different from noexit, is that functionality and actual termination are two different things. The
former is a sort of static typing mechanism, which is only meant to guarantee the predictability of the
list of sorts offered at successful termination, in case that such termination occur. The actual
occurrence of a successful termination, in general, cannot be decided statically, nor dynamically,
since this problem is equivalent to the well-known 'Halting Problem' for Turing machines [23]. The
functionality typing scheme helps in avoiding constructions however, of which the absence of
successful terminations can be decided statically.

Process definitions and instantiations

Both a specification and a process definition include in their headers a parameter indicating the
functionality of that specification or process definition, (see Figure 5.1), which is defined as the
functionality of the behaviour expression of that specification or process definition. In this
functionality parameter a functionality ' t1, ..., tn' is combined with the keyword exit, so that the

three possible formats of this parameter are:

noexit
exit
exit(t1, ..., tn)

where t1, ..., tn is a list of sorts. On the other hand, in process instantiations the functionality is not

given explicitly; it is defined however, as that of the associated process definition.

Examples:

process P[a]: exit(nat, bool) :=
a ?x:nat ?y:nat;

(i; exit(x, true) [] i; exit(y, false))
endproc

process Q[a, b]: exit :=
a ?x:nat;

(b !x; exit [] i; Q[a, b])
endproc

process R[a, b]: noexit :=
a ?x:nat ?y:nat;

(b !x; stop [] b !y; stop)
endproc

5.5.2 Accepting values from the enabling process

Once a process B1 with the desired functionality, say exit(t1,...,tn), has been defined, its sequential

composition with another process B2 has the following form:

B1 >> accept x1:t1, ..., xn:tn in B2

Here x1, ..., xn are the variables used in B2 for the n values passed at the successful termination of

B1. The obvious requirement is that the functionality of B1be matched by the list of sorts t1,...,tn
after the accept keyword. It is also clear that the functionality of the whole construct is defined as the
functionality of B2.

The example quoted at the beginning of this section can now be correctly specified as follows:

Connection-Phase...
 >> accept quality-of-service : quality-parameter-sort

expedited-data-option : bool
in
Data-Phase[...](quality-of-service, expedited-data-option)

As a concluding remark we would like to observe that the value passing in sequential composition
can be considered as a special case of the value passing in parallel composition. We may indeed
imagine that the enabling process synchronizes its last action (successful termination) with an
"accepting" action implicitly prefixed to the enabled process, and that data is passed by this
interaction. We should also regard this communication as private to the enabling and the enabled
processes, that is, hidden to other processes. In fact, the operational semantics of the enabling
operator in full LOTOS [27] exactly reflects this point of view.

6. An example of constraint-oriented specification

Structured programming, in the context of traditional programming languages, allows the
programmer to take a "divide-and-conquer" approach and partition his/her task into smaller sub-tasks

to be handled separately. Similarly, the constraint-oriented specification style is a "divide-and-
conquer" approach by which the LOTOS user conceives his/her specification as a collection of
clearly separated, small pieces (processes), each one expressing few constraints on the temporal
ordering of the system events. All these pieces are then composed via the parallel operator (with
synchronization), which acts as a logical conjunction (AND) of all the constraints. As a
consequence, any action occurring at some synchronization gate is simultaneously subject to all the
constraints expressed by the processes sharing that gate. We gave a trivial example of a composition
of constraints in Section 2.4, in discussing the general parallel operator. We provide here a more
complex example of the constraint-oriented specification style, written by Chan and Turner [13].

In the 'Daemon Game' a player may start a new game, probe the system for randomly incrementing or
decrementing his score, ask for the score, and quit the game. The system may support an unlimited
number of players, and every player is required to specify his own 'id' every time he/she interacts
with the system. In the specification all users interact with the system via a unique gate (usr), but
they are distinguished by their respective id's. All the observable actions have the unique form:

usr <id, sig>

where id, of id_sort, is the identifier of some player and sig, of sig_sort, is a signal in the set
{newgame, endgame, probe, win, lose, result} ∪ Scores (a set isomorphic to the set of integers). The
specification has been conceived as the composition of two main concerns, embodied by processes
Login_Check and Sessions. The first process does not impose any temporal constraint on actions,
and is only sensitive to the actions where the signal is either 'newgame' or 'endgame', since its only
concern is to properly maintain the set of user id's (Used_Id_Set). Any other action is simply
absorbed. The second process (Sessions) is the interleaved composition of an infinite number of
sessions, where an individual session is described by the behaviour expression at the left of the '|||'
operator. A session is opened and closed when a player gives, respectively, the 'newgame' and the
'endgame' signals; the actual game is described by process 'Game'. Any individual instance of
process Game is only concerned with actions characterized by a fixed value of parameter 'id', in order
to properly maintain and display the score of a specific player. Processes Sessions and Game do
impose some temporal constraints to the actions: for instance, winning or losing must always be
preceded by probing.

(*__

This is a slightly modified version of
the Daemon Game specification by W. F. Chan and K. J. Turner [13]

__*)

specification Daemon_Game [usr] : noexit

library

Boolean, Set, NaturalNumber
endlib

behaviour
Login_Check [usr] (empty) (* no users initially *)
||
Sessions [usr]

where

type Integer is

sorts int

opns 0 : → int
inc, dec: int → int

eqns forall n : int
ofsort int

inc(dec(n)) = n;
dec(inc(n)) = n

endtype

type Signal is

sorts sig_sort

opns newgame, endgame, probe, win, lose, result : → sig_sort
score : int → sig_sort

endtype

type Identifier is NaturalNumber
renamedby

sortnames id-sort for nat
endtype

type Identifier_set is Set
actualizedby Identifier using

sortnames
id_sort for elem
id_set_sort for set

endtype

(*__

The following process ensures that users are given different identifiers on logging in. A set of
identifiers in use is maintained

__*)

process Login_Check [usr] (used_id_set : id_set_sort) : noexit :=

usr ?id : id_sort !newgame [id NotIn used_id_set];
Login_Check [usr] (insert (id, used_id_set))

[] usr ?id : id_sort !endgame [id IsIn used_id_set];
Login_Check [usr] (remove (id, used_id_set))

[] usr ?id : id_sort !probe [id IsIn used_id_set];
Login_Check [usr] (used_id_set)

[] usr ?id : id_sort !win [id IsIn used_id_set];
Login_Check [usr] (used_id_set)

[] usr ?id : id_sort !lose [id IsIn used_id_set];
Login_Check [usr] (used_id_set)

[] usr ?id : id_sort !result [id IsIn used_id_set];
Login_Check [usr] (used_id_set)

[] choice x:int [] usr ?id : id_sort ?score(x) [id IsIn used_id_set];
Login_Check [usr] (used_id_set)

endproc

(*__

The following process specifies the permitted sequences of interactions between the users and the
game as an infinite set of processes in parallel, one for the independent behaviour of each user
session

__*)

process Sessions [usr] : noexit :=

(usr ?id : id_sort !newgame;
(Game [usr] (id, 0) (* score initially zero *)
[> usr !id !endgame; exit
)

)
|||
Sessions [usr]

where

(*__

The following process specifies the behaviour of a logged-in user.
(*__

process Game [usr] (id : id_sort, total : int) : noexit :=

usr !id !probe;
(i;

usr !id !win;
Game [usr] (id, inc(total))

[] i;
usr !id !lose;
Game [usr] (id, dec(total))

)
[]

usr !id !result;
usr !id !score (total);
Game [usr] (id, total)

endproc

endproc (* Sessions *)

endspec

7. Conclusions

We have presented the specification language LOTOS. The language has a strong algebraic nature
and the first impact with the apparently complex symbology of specifications may be discouraging.
However, we hope we have proved, with the examples given, that once the user has achieved some
familiarity with the operators of the language, he/she can specify systems in a natural way which
reflects quite directly the way the system's structure and behaviour are conceived at the intuitive
level. The specifier, in general, does not feel forced to express unnecessary details with respect to
his/her abstract view of the processes being specified.

LOTOS has the merit (and takes the risks) of being based on relatively new and powerful theories,
which so far have mainly been confined to academic environments. The wide exposure that the
language is currently undergoing by its application to the specification of OSI protocols and services
[42] is a valuable test for the practical applicability of those theories. The first results are
encouraging: the LOTOS specifications that have been produced so far (e.g. [1, 3, 12, 17, 40, 41, 43,
44, 45, 47] and many others), indicate that such quite complex systems can be specified with an
intuitively appealing structure, and be relatively concise (when compared with other formal
description techniques). The conciseness and readability could be increased even further if good
notational facilities are developed for the specification of data types, which now in many cases are a
substantial part of a specification. Work in this direction is under development [29].

An important problem to be addressed in producing a realistically complex specification relates to the
tradeoff between process and type definitions. It is a fact that many elements of a system can be
specified both as processes and as data types. On one hand we may rule out this problem as a mere
matter of taste and style. On the other hand the interplay between processes and types has an impact
also on the analysis of specifications. It is felt that a deeper understanding of the relation between the
two components could be beneficial, and that some harmonization between them could be attempted
(in the sense, for instance, of devising a common semantical model). This is an area where interesting
developments are possible.

An important element in the eventual success of LOTOS will be the adequate training of those that
are to apply it in practice [28]. The current trend of the growing importance of formal methods in
computer science and telecommunications is not yet reflected in the education of many of its
practitioners. This requires a coordinated effort in the development of courses and teaching material,
to which this tutorial is a contribution. However, as time passes this problem will disappear. In the
longer run the prospects for techniques like LOTOS are bright. Its link to a sound formal theory, and
the ongoing efforts to build tools for its application to the design, analysis and testing of open
distributed systems [6, 18, 31, 46] offer hopes of a future in which such systems can be developed
faster and with more reliability than today.

Acknowledgements

The authors gratefully acknowledge the direct and indirect contributions to this tutorial from their
fellow LOTOS-eaters, with whom they have worked together during several years developing the
language, applying it, and building tools for it. This work has taken place in several environments, of
which the most important are COST11 bis/TOS, ISO/TC97/SC21/WG1/FDT Subgroup C, the
ESPRIT/SEDOS Project, and the IPS Group at the University of Twente (The Netherlands). We
would like to mention specifically Luigi Logrippo, Jan de Meer, Elie Najm, Giuseppe Scollo,
Alastair Tocher and Chris Vissers. We would like to thank Ken Turner and W. F. Chan for their
example of the Daemon Game in LOTOS, which we have included in the paper. The first author also
wishes to thank Rocco De Nicola for useful discussions during the writing of parts of this paper. This
work was partially supported by the CEC as part of the ESPRIT/SEDOS project.

References

[1] I. Ajubi, "Draft Formal Specification of the OSI Connection-Oriented Session Protocol in
LOTOS", ISO/TC 97/SC 21 N. 1486, February 1986.

[2] J. Bergstra, J. W. Klop, "Process Algebra for Synchronous Communication", Information and
Control 60, pp. 109-137, 1984.

[3] F. Biemans, P. Blonk, "On the Formal Specification and Verification of CIM Architectures
Using LOTOS", Computers in Industry 7, pp. 491-504, 1986.

[4] T. Bolognesi, S. A. Smolka, "Fundamental Results for the Verification of Observational
Equivalence: a Survey", proceedings of the IFIP Seventh International Symposium on Protocol
Specification, Testing, and Verification, H. Rudin and C. West (eds.), North-Holland, 1987.

[5] G. Boudol, "Notes on algebraic calculi of processes, Rapport de Recherche No. 395, INRIA,
Sophia Antipolis, April 1985.

[6] J. P. Briand, M. C. Fehri, L. Logrippo, A. Obaid, "Executing LOTOS Specifications", in: B.
Sarikaya, G. V. Bochmann (eds.), Proceedings of IFIP Workshop 'Protocol Specification,
Testing, and Verification VI', pp. 73-84, North-Holland, Amsterdam, 1987.

[7] E. Brinksma, "A Tutorial on LOTOS", in: M. Diaz (ed.), Proceedings of IFIP Workshop
'Protocol Specification, Testing, and Verification V', pp. 171-194, North-Holland, Amsterdam,
1986.

[8] E. Brinksma, "On the Existence of Canonical Testers", Memorandum INF-87-5, University of
Twente, January 1987.

[9] E. Brinksma, G. Scollo, "Formal Notions of Implementation and Conformance in LOTOS",
Memorandum INF-87-13, University of Twente, November 1986.

[10] E. Brinksma, G. Scollo, C. Steenbergen, "LOTOS specifications, their implementations, and
their tests", in: B. Sarikaya, G. V. Bochmann (eds.), Proceedings of IFIP Workshop 'Protocol
Specification, Testing, and Verification VI', pp. 349-360, North-Holland, Amsterdam, 1987.

[11] S. D. Brookes, C. A. R. Hoare, A. D. Roscoe, "A Theory of Communicating Sequential
Processes", Journal of ACM, Vol. 31, No. 3, pp. 560-599 , 1984.

[12] V. Carchiolo, A. Faro, O. Mirabella, G. Pappalardo, G. Scollo, "A LOTOS Specification of the
PROWAY Highway Service", IEEE Trans. on Computers, Vol. C-35, No. 11, pp. 949, 968,
November 1986.

[13] W. F. Chan, K. Turner, "The Daemon Game in LOTOS", in: ESTELLE, LOTOS, SDL Draft
Examples, Joint Meeting ISO/CCITT (ISO/TC97/SC21/WG1/FDT - CCITT X/3), Turin,

December 15-19, 1986.

[14] R. De Nicola, "Extensional Equivalences for Transition Systems", Acta Informatica, Vol. 24,
pp. 211-237, 1987.

[15] R. De Nicola, M. Hennessy, "Testing Equivalences for Processes", Theoret. Comput. Sci.,
Vol. 34, pp. 83-133, North Holland, Amsterdam, 1984.

[16] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification - 1, Springer-Verlag, Berlin,
1985.

[17] ESPRIT/PANGLOSS, Parallel Architectures Networking Gateways Linking OSI Systems.
ESPRIT Project 890.

[18] ESPRIT/SEDOS, Software Environment for the Design of Open Distributed Systems. ESPRIT
Project ST410.

[19] J. A. Goguen, J. W. Thatcher, E. G. Wagner, "An Initial Algebra Approach to the
Specification, Correctness and Implementation of Abstract Data Types", IBM Research Report
RC 6487, 1976. Also: Current Trends in Programming Methodology IV: Data Structuring,
R.Yeh (Ed), Prentice Hall, 1978.

[20] J. Guttag, "Abstract Data Types and the Development of Data Structures", Communications of
the ACM, Vol.20, N.6, June 1977.

[21] M. Hennessy, R. Milner, "Algebraic Laws for Nondeterminism and Concurrency", Journal of
ACM, Vol.32, No. 1, pp. 137-161, 1985.

[22] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall Intl., 1985.

[23] J. Hopcroft, J. Ullman, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley 1979.

[24] ISO - Information Processing Systems - "Basic Reference Model for Open Systems
Interconnection", IS 7498, 1983.

[25] ISO - Information Processing Systems - Open Systems Interconnection - "Connection Oriented
Transport Protocol Specification", IS 8073, 1986.

[26] ISO - Information Processing Systems - Open Systems Interconnection - "ESTELLE - A
Formal Description Technique Based on an Extended State Transition Model", DIS 9074,
1987.

[27] ISO - Information Processing Systems - Open Systems Interconnection - "LOTOS - A Formal
Description Technique Based on the Temporal Ordering of Observational Behaviour", DIS

8807, 1987.

[28] ISO/TC 97/SC 21 N. 1534, "Guidelines for the Application of FDT to OSI Protocols and
Services", 1986.

[29] ISO/TC 97/SC 21 N. 1540, "Potential Enhancements to LOTOS", 1986.

[30] K. G. Larsen, "Context Dependent Bisimulations Between Processes", Ph.D. Thesis, University
of Edinburgh, Dept. of Computer Science, May 1986.

[31] A. Marshal l , "LOTOS Tools Development", C3 Progress Report ,
ESPRIT/SEDOS/C3/WP/20/IK, STC Tech. Ltd., Newcastle-under-Lyme, England, January
1987.

[32] G. Milne, "CIRCAL and the Representation of Communication, Concurrency and Time",
ACM Toplas Vol. 7, No. 2, pp. 270-298, 1985.

[33] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science,
Vol.92, Springer-Verlag, 1980.

[34] R. Milner, "A Complete Inference System for a Class of Regular Behaviours", Journal of
Computers and Systems Sciences, Vol. 28, No. 3, pp.439-466, 1984.

[35] R. Milner, "Calculi for Synchrony and Asynchrony, Theor. Comp. Science 25, pp.267-310,
1983.

[36] E. Najm, "A verification oriented specification in Lotos of the Transport Protocol",
proceedings of the IFIP Seventh International Symposium on Protocol Specification, Testing,
and Verification, H. Rudin and C. West (eds.), North-Holland, 1987.

[37] D. Park, "Concurrency and Automata on Infinite Sequences", Proc. 5th GI Conference, LNCS
104, pp. 167-183, 1981.

[38] G. Plotkin, "A Structural Approach to Operational Semantics", Lecture Notes, Aarhus
University, 1981.

[39] Proceedings of the IEEE - Special issue on OSI, Vol.71. No.12, Dec. 1983

[40] J. Quemada, Data Link Service LOTOS Specification, SEDOS/C1/6&7/M, December 1986.

[41] G. Scollo, "Formal Description in LOTOS of the OSI Transport Protocol (Version 9),
ESPRIT/SEDOS/C1/WP/41/T, March 1987.

[42] G. Scollo, F. Minissale, "On the Specification in LOTOS of OSI Protocols", in: G. Bucci, G.
Valle (eds.), Computing '85, Proc. 8th ACM European Conf. ICS '85, Florence, Italy, March
1985, pp. 197-206, North-Holland, 1985.

[43] G. Scollo, G. Pappalardo, L. Logrippo, E. Brinksma, "The OSI Transport Service and its
Formal Description in LOTOS", in: L. Csaba, K. Tarnay, T. Szentivanyi (eds.), Computer
Network Usage: Recent Experiences, pp. 465-488, North-Holland, Amsterdam, 1986.

[44] A. J. Tocher, "OSI Transport Service: A Constraint-Oriented Specification in LOTOS",
ESPRIT/SEDOS/C1/WP/25/IK, ICL, Kidsgrove, August 1986.

[45] K. J. Turner, "OSI connection-oriented network service: a constraint-oriented specification in
extended LOTOS (draft 4), SEDOS/C1/WP/15/IK, ICL Kidsgrove, England, May 1986.

[46] P. Van Eijk, "Tools for the Specification Language LOTOS", University of Twente, November
1986 (submitted for publication).

[47] M. Van Sinderen, "Draft formal specification of the OSI connection-oriented session service in
LOTOS (version 5)", SEDOS/C1/WP/35/T, November 1986.

