On the Quest for Impartiality:
Design and Analysis of a Fair Non-repudiation
Protocol

J. Cederquist', R. Corin', and M. Torabi Dashti?

! University of Twente
2 CWI Amsterdam

Abstract. We design and analyze a simple optimistic fair non-repudia-
tion protocol. Our protocol is considerably simpler and more efficient
than current proposals, due mainly to the avoidance of using session
labels. We model-check both safety and liveness properties. The safety
properties are verified using a standard intruder, and the liveness proper-
ties using an intruder that respects the resilient communication channels
assumption. Finally, to provide further confidence in the protocol, several
vulnerabilities on weaker versions of our protocol are exposed.

1 Introduction

During the last decades the use of open networks for exchanging information
has undergone an impressive growth. As a consequence, new security issues like
non-repudiation and fair exchange have to be considered. Repudiation is the
denial of a previously uttered statement. In the situation where agent A sends
a message to agent B, non-repudiation guarantees that A cannot deny having
sent the message and that B cannot deny having received it. One of the major
difficulties in designing non-repudiation protocols is to achieve fairness, i.e. to
avoid that one of the entities gets its evidence without the other one being able
to get its evidence as well.

It has been shown that achieving fair exchange is impossible without a trusted
third party (TTP) [I8]. However, using a TTP in every exchange is inefficient.
So, to avoid bottlenecks, Asokan et al. [2] introduced the optimistic approach
to fair exchange, where the TTP is used only in the case of session recovery or
abortion (which are assumed to be infrequent).

In comparison to other security issues like secrecy or authentication, fairness
has not been studied intensively. Secrecy and authentication are safety properties
for which the Dolev-Yao intruder is the most powerful intruder [7] (under certain
assumptions, such as perfect cryptography). However, we also aim at verifying
(session) termination, a liveness property that cannot be verified using the stan-
dard Dolev-Yao model. Therefore, we use a modified Dolev-Yao intruder that
respects the resilient communication channels assumption (saying that messages
sent over the network will eventually be delivered) [6].

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 27-39) 2005.
© Springer-Verlag Berlin Heidelberg 2005

28 J. Cederquist, R. Corin, and M. Torabi Dashti

In the literature, several fair non-repudiation protocols have been proposed,
e.g. [T4,211[13]. These protocols use session labels to identify session runs. A ses-
sion label typically consist of a hash of all message components. However, using
session labels does not only add computational cost, but also it may introduce
vulnerabilities, as shown in [13].

In this paper we design an optimistic non-repudiation protocol which avoids
using session labels altogether, and use a model checker to verify it. We refer the
interested reader to [6] for detailed explanations regarding the adopted analysis
technique and its comparison to other analysis approaches in the literature.

Contributions. Our contributions are threefold, as listed below.

— We propose a fair non-repudiation protocol which is simpler than existing
ones. Existing fair non-repudiation protocols use labels to identify the session
runs. Here we show that these labels can be avoided, allowing for a more
efficient protocol. Our TTP distinguishes session runs by recognizing fresh
keys, which the TTP receives in abort or resolve requests.

— We check a finite state model of our protocol, under the perfect cryptography
assumption [8], using the technique of [6], briefly presented in Section[3 Our
verification shows that an honest agent (that follows the protocol) will not
be treated in an unfair way, even if the agent communicates with a dishonest
agent that does not follow the protocol.

— To further validate the analysis method, we illustrate several vulnerabilities
found by the model-checker when different fields are missing from our pro-
tocol. This also provides confidence in the full protocol and indicates that
the fields are indeed needed.

The rest of the paper is organized as follows. In the next section we describe
our fair non-repudiation protocol. The intruder model and the formal analysis
are described in Section Bl In Section [] we present the results of our formal
analysis. We conclude with some related work and final remarks in Section

2 A Fair Non-repudiation Protocol

In this section we describe our fair non-repudiation protocol. We first describe
the underlying cryptographic assumptions and requirements on the trusted third
party (TTP). Then we present our protocol, and finally we describe the evidences
each party obtains and the fair exchange properties the protocol satisfies.

Cryptographic assumptions. In our analysis the cryptographic operations are
assumed to be “ideal”, as in Dolev and Yao [§]: First, we assume to have a secure
one way hash function h. Also, we have symmetric encryption of a message M
with key K, denoted by {M } k. In { M}k, M can only be extracted using K. We
let {K}rrp denote K encrypted asymmetrically using the trusted third party
TTP’s public key. Finally, (X)4 denotes X signed by A (using A’s private key).
The signature can be verified using A’s public key, and X can be extracted.

Design and Analysis of a Fair Non-repudiation Protocol 29

TTP assumptions. Our TTP is assumed to have a persistent database of aborted
or resolved sessions, containing entries of the form (status: X Y W Z). In our
protocol, status is either aborted or resolved; X and Y are agent identities,
W is a cryptographic key and Z is the hash of a cipher text. A query to this
database is denoted by a predicate status(X,Y, W, Z), which holds when entry
(status : X Y W Z) exists in the TTP’s database.

2.1 Protocol

The non-repudiation protocol that we present below allows an agent A to send a
message M to agent B in a fair manner, meaning that A gets evidence of receipt
(EOR) iff B receives M as well as evidence of origin (EOQO). The EOR allows A
to prove that B did indeed receive M, whilst the EOO allows B to prove that
it was A who sent M. The protocol consists of three sub-protocols:

Main protocol. Agent A wants to send M to B, using TTP for session abort or
resolution. Initially, A chooses a fresh key K. The main protocol is:

1. A— B: {M}K,EOOM for EOOM = (B, TTP, h({M}K),{K,A}TTp)A

2.B— A: EORy for EORy = (EOOM)B
3.A—-B: K
4. B— A: EORK for EORK = (A,h({M}K),K)B

First A sends {M } g, along with EOO);, which consists of B and T'TP’s iden-
tities, a commitment to send M using K in the form of a hash h({M} k), and
K encrypted with the TTP’s public key (along with A’s identity) in case the
session is later resolved. On receipt, B stores {M}k, checks the signature of
EOQO); to ensure that the message is genuinely coming from A, and extracts
the values for performing more tests: Firstly, it checks that the leftmost value of
EOO)y is B’s identity; Secondly, that TTP is a valid TTP for B, whom B trusts
for recovering a session; Thirdly, B checks that the included hash commitment
is indeed the hash of {M}x. When all this is verified, B signs EOOj; with his
private key to obtain FOR); and sends it to A. When A gets this message, it
checks whether the signature is that of B. If this is the case, A sends K to B.
Then B sends FORg, signing K along with A’s identity and h({M} k). Note
that B does not need to check whether the key in message 3 decrypts {M }k,
since (A, h({M} k), K')p would not be a valid evidence of receipt of M for A.

Abort protocol. If A does not receive a valid EFOR); from B, at step 2 in the
main protocol, then A can invoke the abort protocol, for canceling the exchange:
1. A— TTP: (abort, h({M} k), B,{K, A} rrp)a
Errp for Errp = (A, B, K,h({M}K)) TP,

if resolved(A, B, K,h({M}k))
2. TTP— A:
ABTTP for ABTTP = (Aa Ba h({M}K)’ {K’ A} TTP) TTP»

otherwise

30 J. Cederquist, R. Corin, and M. Torabi Dashti

First A sends to TTP an abort request message consisting of an abort flag, the
commitment h({M} k), B’s identity and {K, A} rrp. On receipt, TTP checks
A’s signature, and checks that it can decrypt the message {K, A} rrp. If the
decryption succeeds, TTP checks that the included identity A next to the key K
matches the signature of the whole abort request message. Next, TTP queries
its database with resolved(A, B, K, h({M}k)). If the query holds, it means that
this session has been resolved earlier. The answer from TTP to A is then Errp,
including the key K signed by the private key of TTP. In the case that the query
fails, TTP declares that the session is aborted and stores the entry (aborted :
A B K h({M}k)) in its database. The answer ABprp signed by the TTP is
returned to A, as an acknowledgment of the successful abortion. Note that this
message does not include K in the clear.

Resolve protocol. If B does not get K or A does not get FORg, then both
parties may resolve the protocol by consulting TTP:

1.P— TTP: ((B7 TTP7 h({M}K), {K, A}TTP)A)B

ABTTP, Zf aborted(A,B,K,h({M}K))

2. TTP = P {ETTP, otherwise

Here P is the party that is resolving the session (i.e. A or B). First P sends
EOR);, as a resolve request message. On receipt, TTP checks the validity of the
signatures, and the successful decryption and matching of {K, A} rrp. Then,
TTP queries its database for aborted(A, B, K,h({M}k)) to find out whether
the session has been previously aborted. If the session has not been aborted, the
resolve request is accepted and TTP stores (resolved : A B K h({M}g)) in its
database, and answers with Erpp evidence containing key K, which is signed
with TTP’s private key. If the session is already aborted, TTP answers with
AB7rp, a message representing the session abortion.

2.2 Evidences and Dispute Resolution

In case of a dispute, the parties present evidences to an external judge. In our
protocol, the evidence of receipt EOR for A is EORy; and {M} g, plus either
EORk or Eprp. The evidence of origin EOO for B is EOOy;, {M } i and K.

Dispute resolution. Suppose B claims that it did not receive M from A, when A
possesses EOR. Then A presents FORys, {M }k and either EORk or Eprp to
the judge. The messages EOR)y and {M} x provide proof that B committed
in the session to receive M, while FORyk or Errp represent that either B
received K, or he can receive it from TTP, respectively.

Suppose A claims that it did not send M to B, when B possesses EOO. Then
B presents EOO)y, {M}k and K to the judge, who can check that A had indeed
committed to communicate M to B. Since K was freshly created by A, B could
only have received it from A directly or from T7TP, who checked that A provided
the correct K in EOO)y.

Design and Analysis of a Fair Non-repudiation Protocol 31

2.3 Fair Exchange Properties

We aim at verifying effectiveness, fairness and timeliness (cf. requirements for
fair exchange in [I]). These properties are illustrated in the case where A is the
initiator and B the responder:

— Effectiveness says that if A and B behave according to the protocol and A
does not abort, then the protocol session will reach a state where B has
received the message M and EOO, and A has received EOR, and both A
and B terminate, i.e. have no further pending operations to perform in that
protocol session.

— Fairness expresses that when the protocol session has terminated then B has
received M and EOO if and only if A has received EOR.

— Timeliness means that protocol sessions terminate for all honest parties.
In other words, after an honest agent X has initiated a protocol session
with some Y, then X will reach its terminatio. Moreover, timeliness also
specifies that after this termination the degree of fairness does not decrease
for X: if X did not get his evidence before termination then it cannot be
that Y gets her evidence without X also getting his.

Effectiveness is a functional sanity check, and may thus be verified in a system
without intruder. For the other two properties, we can first verify termination
and then check fairness and timeliness assuming that the protocol sessions ter-
minate. This has the benefit of reducing the two properties to safety properties.
Thus, termination is the only liveness property that needs to be checked.

3 Formal Analysis

We now implement the necessary machinery to formally analyze whether the
protocol proposed in Section [ZI] meets the properties described in Section

3.1 Communication Model

We consider two different communication models. The first model is used for
verifying effectiveness. In this model there is no intruder (all agents are honest):
A set of agents communicate over a network, performing send and receive ac-
tions. These actions are synchronized, meaning that an agent A can only send a
message m to B (denoted by send(A,m, B)), if B at the same time receives it
from A (denoted by recv(A, m, B)). The synchronization between send(A, m, B)
and recv(A, m, B) actions is denoted by com (A, m, B).

We use a second model to verify all the remaining properties. In this model
there is an intruder I with complete control over the network. When an agent A
sends a message m with the intention that it should be received by B, it is in
fact the intruder that receives it, and it is also only from the intruder that B
may receive m. Also in this model send and receive actions are synchronized.

! Here termination refers to that particular agents’ session. An agent X may continue
executing subsequent sessions after one session is finished.

32 J. Cederquist, R. Corin, and M. Torabi Dashti

3.2 The puCRL Specification Language and Toolset

We briefly describe the symbols used in the yCRL code of the intruders below.
For a complete description of the syntax and semantics of pCRL we refer to [12].
The symbols ‘.” and ‘+’ are used for the sequential and alternative composition
(“choice”) operator, respectively. The operator) ., P(d) behaves like P(d;)+
P(dz2) 4 - - -. The process expression p < b > ¢, where b is a Boolean term and p
and g are processes, behaves like p if b is true, and like g if b is false. Finally, 7
represents an internal action, and the constant § expresses that, from then on,
no action can be performed.

The formalization of the protocol described in Section [2 is carried out in
pCRL [12]. The uCRL toolset includes an automatic state space generator and
symbolic state space reduction tools. The fair exchange properties are expressed
in the regular alternation-free p-calculus [I6]. The model checker EVALUA-
TOR 3.0 [16] from the CADP tool set [9] is then used to verify these properties.

3.3 Intruder Models

We use two different intruder models. For safety properties the normal Dolev-Yao
intruder [§] is used. As mentioned earlier, this intruder is not suitable for veri-
fication of liveness properties [I7], so to verify termination we use the intruder
suggested in [6]. This intruder is shown to be equivalent, w.r.t. termination, to
the Dolev-Yao intruder that respects the resilient communication channels as-
sumption (RCC, messages sent over the network will eventually be delivered) [6],
which is enough for our purposes. The Dolev-Yao intruder stores all received
messages in a set X, representing its knowledge. The intruder uses X for synthe-
sizing new messages (synth in the code below), using the usual rules of message
(de)composition (in particular, the intruder can decrypt and sign messages only
if it knows the corresponding key). The intruder can also block communications.
Below we illustrate a specification of an intruder DYp, in this case played by
dishonest agent B. The intruder DYp can perform a special evidence action
evidencep(k,m). This action is parameterized by a key k and a message m,
meaning that the gathered evidence regards message m and was provided in
the session using key k. We allow DYp to perform the action evidenceg(k, m)
only when it can synthesize EOO(k,m). In general, the particular data that
constitutes an evidence is protocol specific, denoted below by EOO(k, m).

DYg(X) = Z recv(p,m, B).DYg(X U{m}) +

pEAgent
meEMessage

Z send(B, m,p).DYp(X) +

pEAgent
synth(m,X)

Z evidencep(k,m).DYp(X) < synth(EOO(k,m)) > 6 +

keKey
memsg

7.0

Design and Analysis of a Fair Non-repudiation Protocol 33

According to the operational semantics that underlies uCRL, a process p + ¢
behaves like p. So to express that the intruder shall be able to stop all communi-
cations at its own will, we let it perform an internal action 7 before deadlock 6.
The intruder Ip for verifying termination maintains, besides X, a set Y for
messages that have been received but not yet sent (cf. RCC). To distinguish the
send actions that the intruder eventually has to perform (according to RCC) from
the ones that it can perform (but does not have to), the send actions are tagged
with X and Y, respectively. The synchronizations between send and receive
actions are denoted com, comx and comy referring to the synchronizations
between send and recv, sendx and recv, and sendy and recv, respectively.

Ig(X,Y) = Z recv(p,m, B).Ig(X U{m},Y U{m}) +

pEAgent
meEMessage

Z sendx (B, m,p).Ip(X,Y) +
pEAgent
megyY
synth(m,X)

> sendy(B,m,p).Ip(X,Y \ {m})
pEAgent
meyY
Note that when we split the fairness and timeliness properties into termina-

tion and two safety properties, as described in Section 23], we also verify these
properties using respectively the two intruders above. This can be done since
the intruder Ig is equivalent to the Dolev-Yao intruder that respects the com-
munication channels assumption [6].

3.4 Regular Alternation-Free p-Calculus

The regular alternation-free p-calculus is used here to formulate properties of
(states in) labeled transition systems. It is a fragment of p-calculus that can be
efficiently checked. Here we briefly describe what is needed for expressing the fair
exchange properties of the protocol we investigate. For a complete description of
the syntax and semantics we refer to [16]. The regular alternation-free p-calculus
is built up from three types of formulas: action formulas, regular formulas and
state formulas. We use ‘", ‘V’, ‘=’ and ‘*’ for concatenation, choice, complement
and transitive-reflexive closure, respectively, of regular formulas. The symbols F’
and T are used in both action formulas and state formulas. In action formulas
they represent no action and any action, respectively. The meaning of F' and T
in state formulas are the empty set and the entire state space, respectively. The
operators (---) and [-- -] have their usual meaning (¢ and O in modal logics).
The CADP toolset also allows wildcards ‘x’ in action parameters.

3.5 The Fair Exchange Properties

Here we formalize the fair exchange properties that we verify. To enhance read-
ability, the protocol implementations are extended with certain abstract actions

34 J. Cederquist, R. Corin, and M. Torabi Dashti

that do not affect the behavior of the agents. An agent P performs the actions
initp(k,m) when it engages in a protocol session, terminatep(k,m) when the
session is over from P’s point of view, and evidencep(k,m) when it receives a
valid evidence, for the key k and item m. The TTP performs abort(k, m) when
a session is successfully aborted, for the key k and item m.

First, we check that the protocol is effective. Note that this is verified in
the model without intruder. Whenever agent P has started execution, then P’s
termination is inevitable:

[T*.initp(k,m)] pZ.((T)T A [~terminatep(k, m)]Z) (1)
Also, if there is no abort, P receives its evidence before termination:
[(—(abort(k,m) V evidencep(k,m))*.terminatep (k, m)|F (2)

Now we turn to the fairness and timeliness properties, to be verified in the
model with intruder. We assume that the intruder plays the role of Q). The prop-
erties below are thus defined to describe “fairness for P”. The corresponding
properties for () are defined in a similar way. The properties fairness and timeli-
ness are verified, as described above, by verifying termination separately, using
the intruder described in Section

[T*.initp(k,m).(—terminatep (k, m))*)
((mcom x (*, %, *))*.terminatep (k, m))T, (3)
i.e. whenever initp(k, m) has happened, but not yet terminatep(k, m), there is
a path to terminatep(k, m) that does not contain comx actions. This means
that, whenever initp(k, m) has happened, but not yet terminatep(k, m), and
assuming RCC, terminatep(k, m) will happen.

The remaining properties concern safety so we use the normal Dolev-Yao
intruder. Fairness (for P) means that if @ gets its evidence, then so shall P:

[(—evidenceg(k, m))*.evidencep(k, m).(—evidenceg (k, m))*. (@)
terminatep (k, m)|F
This property says that P does not terminate in an unfair state for P. But
since P will eventually terminate (property Bl), P will indeed terminate in a fair
state.

Finally, timeliness for P says that after P’s termination, if P has not got his
evidence, Q cannot get her evidence unless P initiates a new session with same
key and item:

[(—evidencep(k, m))*.terminatep(k, m). (5)
(—initp(k, m))*.evidenceg (k, m)|F

In the case when P does initiate a new session with same key and item, P will
get his evidence if @ gets hers (according to the properties B and [).

Design and Analysis of a Fair Non-repudiation Protocol 35
4 Results

In this section we describe the results obtained from the formal analysis described
in Section [performed on our protocol proposed in Section 21

Honest scenario So: A and B are honest. We first encode a scenario in which
both A and B are honest, along with the TTP. A exchanges items with B
using fresh keys. To model timeouts, we use nondeterministic choices between
communication actions. For instance, either A receives an answer timely from
B in Message 2, in the main protocol, or it initiates the abort sub-protocol.
Correspondingly, B has a choice between a send action and a 7 action, which
models an asynchronous communication in which the message is ignored by A.
This scenario was model-checked and showed to be deadlock-free and effective.

Result 1. The protocol in Section[21l is effective for scenario Sy, satisfying the
properties {dl) and (@) in Section 33

Dishonest scenario Si: A dishonest and B honest. When A is dishonest and
B is honest, we execute B along with the intruder, who takes the identity of
A. We first verify the safety properties {]) and (@) using the standard intruder
(the first intruder in Section B3). Then we model check whether A can unfairly
generate B’s evidence, and verify that this is impossible, thus rendering the
protocol secure.

Result 2. The protocol in Section [21] respects fair exchange and timeliness
(properties [{f)) and () in Section[F, with respect to A) for scenario Si.

Second, we force the intruder to respect RCC (by using the second intruder
in Section [33]). This scenario, called S}, is used to verify termination:

Result 3. The protocol in Section[Z1l respects termination (property (3) in Sec-
tion [F3, with respect to A) for scenario Sj.

Dishonest scenario Sy: A honest and B dishonest. In the opposite case, in which
A is honest and B is dishonest, we obtain similar results to the above statements.

4.1 Further Experiments

We now illustrate vulnerabilities found by analyzing modified versions of the
protocol presented in Section Bl The protocol is modified in such a way that
certain assumptions are removed or different message components are excluded.
The encountered vulnerabilities expose the need for the particular assumptions
or excluded message components.

Reuse of keys. Suppose that A reuses a key K in a subsequent session. Then our
analysis reports that for dishonest scenario Sy, A may be attacked by B. The
attack is reproduced in standard notation below:

36 J. Cederquist, R. Corin, and M. Torabi Dashti
al.A— B:{M}k,EOO) for EOOyn = (B, TTP,h({M}Kk),{K, A} rrP)a

bl. A — B {M’}K,EOOM/ fOI‘ EOOM/ = (B, TTP,h({M’}K),{K, A}TTP)A

First A sends the message al, initiating a session. Then the session runs normally.
When A later starts another session by sending message b1, B can immediately
obtain M’ and thus obtain the evidence EOQO, before A can obtain its corre-
sponding evidence. The vulnerability above was found in a scenario where A is
honest, and uses two items and one key, and B is dishonest. This violation of
property (@) shows that A needs to use fresh keys for each new session.

Missing hash in EOOp;. Consider EOO)y, the second component of the main
protocol in Section 2l If we exclude the hash h({M}k), obtaining a new
EOO); = (B, TTP,{K, A}rTp)4, the following vulnerability is found:

1. A— B: {M}K/,EOO;W for EOO/ = (B, TTP, {KaA}TTP)A
2. B— A: EOR), for EOR), = (EOO},)p

Agent A starts a session with B, but uses a key K’ to encrypt message M and
embeds a different key K in FOO),;. When B replies A can run the resolve
protocol and obtain evidence EOR. However, when B wants to recover, TTP
returns K which is not useful to decrypt { M}k, hence the evidences of A and B
do not match. This vulnerability was found in a scenario where A is dishonest,
and uses two keys, and B is honest. Again property () is violated which shows
that including the hash in FOO); is necessary for security of the protocol in

Section 211

Missing A’s identity in EOQO);. We now consider the case in which A’s iden-
tity is excluded from the component {K, A}rrp in EOO);. Suppose then that
EOOY;, = (B,TTP,h({M}k),{K}rrp)a. The following attack is found:

al.A—>B: {M}K,EOOM fOI" EOOI = (B7 TTP,h({M}K),{K}TTP)A
bl. B — C: {M}x, EOOy for EOO,, = (C, TTP,h({M}x),{K}r7p)5
2.C — B: EOR), for EOR); = (FOO),)c

When A starts a session with B, B immediately starts another session with
another agent C', reusing the information that A used. When C answers, B
resolves and obtains K and hence the evidence. However A cannot obtain FOO
since B never answers to A’s first message. When A is honest and B is dishonest,
B can simply reuse its own identity and resolve to “itself” (we disallow the TTP
to check this). Property) is thus violated, indicating that the identity of A is
needed in {K, A}rrp.

Missing A’s identity in EORk. If A’s identity is missing in FORk (so that
EORk = (h({M}K), K)B), the following vulnerability is found:

Design and Analysis of a Fair Non-repudiation Protocol 37

al. A — B : {M}K,EOOM for EOOM = (B, TTP,h({M}K),{K,A}TTp)A

a2. B— A: EORM for EORM = (EOOM)B

a3. A— B: K

a4. B— A: EORgk for EORk = (h({M}k),K)p

bl. C — B: {M}K,EOOM fOI" EOOM = (B7 TTP,h({M}K), {K, C}TTP)C’
b2. B — C : EORM for EORM = (EOOM)B

Here, A runs a normal session ¢ with B which terminates. A is allied to another
user C, who starts a replay of the session by A: we assume A hands over M
and K to C. Now, B replies with EFOR};, at which point C' aborts the session
with B. Then B is unable to obtain evidence, but C' has evidence since FORg
does not mention A nor C, and thus it constitutes valid evidence EOR for C' as
well. This vulnerability appears in our analysis when we hand out information
to a dishonest A about previous sessions giving some EORg to A (which may
be from an old session of B with some other agent X which we assume is allied
to A). In such a scenario, property (@) is violated immediately when A runs
the abort protocol after B answers its second message. Thus, we conclude that
FEORgk needs to include A’s identity.

Missing hash in EORk. Finally we consider the case in which h({M}x) is
missing in FORk, so FORk = (A, K)p. The following attack is then possible:

al. A — B : {M}K,EOOM for EOOM = (B, TTP, h({M}K),{K, A}TTP)A

a2. B — A: EORM for EORM = (EOOM)B

a3. A— B: K

a4. B — A: EORy for FEORk = (A, K)p

bl. A — B {M/}K,EOOM fOI‘ EOOM = (B, TTP7 h({M/}K),{K, A}TTP)A
b2.B — A: EORM for EORM = (EOOM)B

Similar to the previous case, A runs a normal session a with B. Then A starts
another session, but now using a different message M’, reusing the same key K.
After obtaining an answer from B, A aborts the session. In this state A has valid
evidence since the previous EORg is not bound to M, and thus it is valid also
for an exchange between A and B with K. One could argue that B could also
remember K and obtain M’. But B is not supposed to be stateful and save old
keys, B just follows the protocol as is specified. In a scenario with A dishonest
and B honest, property (@) is violated, exposing the mentioned vulnerability.
This shows that EORk has to contain h({M} k).

5 Conclusion and Related Work

We present a novel optimistic non-repudiation protocol, simpler than previous
proposals. The simplicity is due to avoiding the usage of labels to identify sessions
and assuming the usage of fresh keys per-session. We model-check the proposed
protocol and verify the fair exchange properties using the technique in [6]. A
full formalization can be found in an extended version of this document [5]. To

38 J. Cederquist, R. Corin, and M. Torabi Dashti

provide further confidence in our proposal we illustrate vulnerabilities when dif-
ferent fields are missing in the protocol.

Related Work. Several non-repudiation and fair exchange protocols have been
previously proposed. Early tries on optimized exchange protocols [11L10], i.e.
those with only three message exchanges in honest protocol runs, have been
found flawed [4,20]. A recent optimized protocol suggested by Zhou [20], de-
veloped on previous ones, remarkably does not suffer from previously reported
problems. But it has an elaborate dispute resolution phase requiring both par-
ticipants to attend the court. We believe an evidence of receipt or origin must be
self sufficient to settle a dispute, which requires the addition of a fourth message
in our protocol.

More recently, Kremer and Markowitch [14] proposed a four-message protocol
(KM) to achieve non-repudiation. Their protocol is analyzed by Kremer and
Raskin [I5] using a game-based technique. Quite similar to the KM protocol is
Zhou-Gollman’s protocol (ZG) [2I]. Giirgens et al. [13] present several potential
unfair situations that may happen in both the KMB and ZG protocols. These
unfair situations arise from confusion in the labels used to identify the session
runs. By carefully setting (complex) labels, Giirgens et al. propose a protocol
for achieving fair exchange. The ZG protocol was also analyzed by Bella and
Paulson [3] who used the theorem prover Isabelle to model the protocol by an
inductive definition and to prove some desired properties. Another interesting
approach to formal verification of fair exchange is the work by Shmatikov and
Mitchell [I9] who used the model checker Murp to analyze fair exchange and
contract signing protocols, using a Dolev-Yao intruder.

Acknowledgments. We thank Ana Almeida Matos, Sandro Etalle, Wan Fokkink,
Pieter Hartel, Steve Kremer and the anonymous reviewers for helpful comments.

References

1. N. Asokan. Fairness in electronic commerce. PhD thesis, University of Waterloo,
1998.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In 4th ACM Conference on Computer and Communications Security, pages 7—-17.
ACM Press, 1997.

3. G. Bella and L. C. Paulson. Mechanical proofs about a non-repudiation protocol.
In R. J. Boulton and P. B. Jackson, editors, TPHOLs 2001, volume 2152 of LNCS,
pages 91-104. Springer-Verlag, September 2001.

4. C. Boyd and P. Kearney. Exploring fair exchange protocols using specification
animation. In Information Security Workshop (ISW), volume 1975 of LNCS, pages
209-223. Springer-Verlag, 2000.

5. J. Cederquist, R. Corin, and M. Torabi Dashti. On the quest for impartiality:
Design and analysis of a fair non-repudiation protocol (extended version). Technical
Report TR-CTIT-05-32, University of Twente, The Netherlands, 2005.

2 The KM protocol was not originally designed to provide fair exchange but simply
non-repudiation (private communication, 2004).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Design and Analysis of a Fair Non-repudiation Protocol 39

J. Cederquist and M. Torabi Dashti. An intruder model for verifying termination
in security protocols. Technical Report TR-CTIT-05-29, University of Twente,
Enschede, The Netherlands, 2005.

I. Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. In J. Halpern,
editor, LICS’01, Boston, MA, 16-19 June 2001. IEEE Computer Society Press.
D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 1T-29(2):198-208, March 1983.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A protocol validation and verification toolbox. In R. Alur and T. A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verifi-
cation, volume 1102 of LNCS, pages 437-440. Springer-Verlag, 1996.

J. Ferrer-Gomila, M. Payeras-Capella;, and L. Huguet i Rotger. A realistic protocol
for multi-party certified electronic mail. In Proceedings of the 5th International
Conference on Information Security, pages 210-219, UK, 2002. Springer-Verlag.
J. L. Ferrer-Gomila and L. H. Rotger. An efficient asynchronous protocol for
optimistic certified mail. In International Workshop on Cryptographic Techniques
and E-Commerce (Cryptec), 1999.

J. F. Groote and A. Ponse. The syntax and semantics of uCRL. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes
’94, Workshops in Computing Series, pages 26—62. Springer-Verlag, 1995.

S. Giirgens, C. Rudolph, and H. Vogt. On the security of fair non-repudiation
protocols. In Information Security Conference (ISC), volume 2851 of LNCS, pages
193-207. Springer, 2003.

S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of non-repudiation
protocols. Computer Communications, 25(17):1606-1621, November 2002.

S. Kremer and J. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. In K. Larsen and M. Nielsen, editors, Proceedings of the 12th
International Conference on Concurrency Theory, volume 2154 of LNCS, pages
551-565. Springer-Verlag, 2001.

R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program., 46(3):255-281, 2003.

C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues
and trends. IEEE Journal on Selected Areas in Communication, 21(2):44-54, 2003.
H. Pagnia and F. C. Géartner. On the impossibility of fair exchange without a trused
third party. Technical Report TUD-BS-1999-02, Darmstadt University, 1999.

V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419-450, 2002.

J. Zhou. On the security of a multi-party certified email protocol. In Proc.
ICICS 04, volume 3269 of Lecture Notes in Computer Science, pages 40-52.
Springer, 2004.

J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 55-61, Oakland, CA,
1996. IEEE Computer Society Press.

	Introduction
	A Fair Non-repudiation Protocol
	Protocol
	Evidences and Dispute Resolution
	Fair Exchange Properties

	Formal Analysis
	Communication Model
	The CRL Specification Language and Toolset
	Intruder Models
	Regular Alternation-Free -Calculus
	The Fair Exchange Properties

	Results
	Further Experiments

	Conclusion and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

