
Rethinking of I/O-automata composition
Sarah Chabane

LIMOSE Laboratory,
Université M’hamed Bougara

Boumerdes, Algeria
chabane.sarah@univ-boumerdes.dz

Rabea Ameur-Boulifa
LTCI, Télécom ParisTech, Université Paris-Saclay

rabea.ameur-boulifa@telecom-paristech.fr

Mohamed Mezghiche
LIMOSE Laboratory,

Université M’hamed Bougara
Boumerdes, Algeria

mohamed.mezghiche@yahoo.fr

ABSTRACT

The necessity of handling the increasing complexity of em-
bedded systems has led to the usage of reuse-based design. At
the same time, the systems must still satisfy strict requirements
on reliability and correctness. This paper proposes a formal
analysis of parallel composition of I/O automata. This analysis
leads to identification of novel composition rules guaranteeing
the correctness-by-construction, and will provide a basis for a
sound compositional development of components (Intellectual
Property blocks).

I. INTRODUCTION

One approach to handle the increasing complexity of cir-
cuits and systems is the reuse of existing component mod-
els. Specifying systems in a compositional manner is an
established approach to cope with complexity. Additionally,
formally specifying designs and using formal techniques for
verification, such as the model checking technique, is an
established approach to ensure high quality of design. Based
on component-based approach, systems are designed as the
composition of interconnected, inherently parallel component
models. The composition technique we consider in this paper
is cascade and synchronous composition; two or more com-
ponents connected in series and reacting simultaneously.

Building computational models that naturally support com-
positionality is the subject of intensive studies [7], [2], [1]. One
successfully promoted direction for modelling synchronous
systems is the input/output automaton (I/O automaton for
short) proposed by [10]. Unfortunately, I/O models semantic
have a compositionality defect wrt. parallel composition: it
is not a ”behavioural” equivalence for parallel composition.
Two sequential designs are behaviorally-equivalent if they
produce the same output stream when they receive identical
input streams, and this equivalence holds cycle-by-cycle. A
related result has already been shown incorrect by Baclet
and al. in [11]. The problem we address may be described
as follows. Consider two synchronous components C1 and
C2 that are composed in cascade composition as shown in
Figure 1. The output of component C1 feeds the inputs of
C2. A reaction of C consists of reaction of both C1 and C2:
C1 reacts first, produces its output (if any) and C2 reacts.
The goal is to replace the block C1 and C2 within the
system by the component C such that the resulting system
is behaviorally equivalent to the initial one. Baclet and al.

show that building the overall system by using the classical
composability definition of I/O-models does not guarantee the
correctness of the result. This composability does not preserve
the behavioural equivalence.

The lack of behaviour preservation makes the reusability
inadequate for system development. In particular, to rigorously
develop safety-critical systems the preservation of behaviour
is a major concern.

i1
C1

o1 i2
C2

o2

i1
C

o2

Fig. 1: Cascade composition of two components

The main contribution of this paper is the definition of
behaviorally-preserving composition. Specifically, we propose
a solution for the composition problem that is able to cope
with composability of SR-models. We define novel rules for
modelling and composing synchronous components; these
rules allow the formal verification of composability. The paper
flow is as follows: we introduce in Section II the notion of
synchronous component, the model of synchronous compo-
nent, and the definition of synchronous composition. Section
III contains the main contribution of the paper; it presents
the problem of composability by using existing composition
rules. It presents also a solution: new compositional rules
that can give a guarantee of correctness. In Section IV,
we present existing approaches that dealt with synchronous
composition. Section V concludes the paper and discusses the
future perspectives of our work.

II. SYNCHRONOUS-REACTIVE SYSTEMS

In circuit design, the term synchronous refers to a style of
design where a clock that is distributed throughout a circuit
drives the execution. The design of Synchronous-Reactive
system (SR system for short) is based on synchronous style,
in which all components react simultaneously and instanta-
neously at each tick of a global clock. A SR-system interacts

with another by exchanging data. During an execution of a SR
system, the system may consume data from input, produce data
on output. The systems we considered produce and consume a
fixed number of data items per firing, and each output depends
on one input data items. SR-systems are described by two
parameters: latency and memory. The latency is the delay
required to process a single data from input to output. Latency
is expressed in time units, a suitable unit can be chosen at
implementation level depending on the target. The memory is
the maximum amount of information that can be stored, i.e,
storage capacity of the system.

SR-systems we consider have two important properties:
determinacy and receptiveness. SR systems are deterministic
and receptive. In fact, the receptiveness ensures the interaction
between the system and its environment. Input from its envi-
ronment is never blocked by a system. Symmetrically, output
from a system is never blocked by its environment [9].

A. Modelling

Input/Output automaton (I/O-automaton for short) [10]
is a well-known mathematical model for SR-systems. I/O-
automaton is a state machine at each reaction, it receives as
input a data from the environment and produces an output that
specifies the new value of the consumed data (which may be
the same as the input value).

Definition 1 (I/O-automata): An I/O-automaton is a tuple
A , 〈S, s0,Σ,→〉 where:
• S is a set of states.
• s0 ∈ S is the initial state.
• Σ is the set.
• →⊆ S × Σ× S is the transition relation.

Transitions: Each transition (s, l, s′) ∈→ is denoted as
usual s l−→ s′. When no transition is possible for a state is
denoted s /−−→.

The execution of all transitions is simultaneous, instanta-
neous, and it occurs at ticks of the global clock. Each execution
performs an action, a ∈ Σ such that Σ = {i/o, i/ō, ī/o, ī/ō}.
This set consists of input/output events tested for their presence
or absence at each tick the clock. Intuitively, i/o means an
input and an output occur simultaneously; i/ō means an input
occurs, but no output occurs; ī/o means no input occurs but
output occurs; and ī/ō no input and no output occur.

Notations: We will use the notation π = s0s1s2 . . . to
denote a path in A which is a finite or infinite sequence of
states starting from the initial state. We denote by π̂ a simple
path to refer to a path which contains no repeated states. |π| ∈
N denotes the length of π, and for a position i < |π| we define
a path fragment from position i as π[si] = s0 . . . si. We denote
Π(s) the set of all path fragments π[s]. To count number of
transitions matching a given label α we define the following
function:

τ(si, α, si+1) =

{
1 if (si, α, si+1) ∈→
0 otherwise

An SR-model is an I/O-automaton that satisfies determinacy
and receptiveness properties. It satisfies also some behavioural

rules which describe when and how the model reacts, accord-
ing to the value of inputs and its current state. These rules that
can be used, as safety properties, to help prove the correctness
of an SR-model are the following:

• The model accepts data from the environment as long as
it has storage capacity.

• The data wait the duration of the latency before output.
• Firing a transition corresponds to a unit of time elapsed.

The latency is calculated by counting the number of tran-
sitions. Idleness is allowed only at the end of counting.
More precisely, the system stays in the same idle-state, if
the total elapsed time allows accomplishment of at least
two outputs.

• Once the data is ready to go out, the model has the choice
of outputing or waiting.

• Two states which consumed the same amount of data
and which can produce same flow results, i.e, the same
throughout, are considered equivalent. So to avoid the
states explosion problem of generated SR-model, for
the set of the equivalent states, we generate only their
representative: the state which has the shortest path from
the initial state.

• Suppose that each consumed data consists of a time
stamp. Thus the entirely of data consumed consists of
a sequence of data placed in time, along a real time line.
The representative state of the equivalent states will be a
bounded sequence (bounded by latency value).

Consider a SR-system and its corresponding SR-model A,
the parameters Latency denoted by L and Memory denoted by
M are defined formally as follows.

Definition 2 (Latency): Latency L is the size of the longest
path π of A such that ∀i < |π|, @s′ ∈ S. si

α/o−−→ s′.
Definition 3 (Memory): Memory M is the size of the longest

path π of A such that ∀i < |π|, si
i/ō−−→ si+1.

Given a state s we denote by m(s) the number of data
consumed by the component when it fires. It is calculated by
a maximum number of transitions labelled by i/ō from s0 to
s. More formally:

m(s) = max
⋃

π∈Π(s)

{pre(s)∑
si=s0

τ(si, i/ō, si+1)
}

where pre(s) refers to a previous state of the state s.
The safety property, stating that ”it is never possible to

overflow a memory” holds in every state. It is expressed:
∀s∈ S.m(s) ≤ M.
Staying in the same state with the idle action, waiting until
new input or output events occur is specified: (s = s0)∨

(∃s′ ∈ S.s ī/o−−→ s′)∧
(s′ = s0 ∨ ∃s′′ ∈ S.s′

ī/o−−→ s′′)

⇒ (s
ī/ō−−→ s)

Intuitively, this property says that the system will stay in
state s only if there is no data or only one data available, or

if there are at least two data which are ready to output.
Example 1: Consider an SR-system with M= 2 and L= 2,

the corresponding automaton is depicted graphically in Figure
2.

〈 〉start 〈1〉 〈2; 1〉

〈2〉

ī/ō

i/ō

ī/ō

i/ō

ī/ō

i/o
ī/o

ī/ō

i/o

ī/o

Fig. 2: SR-model of system having M=2 and L=2

For convenience, each state is labelled by a time-stamp
(see Figure 2) corresponding to the number of consumed
data at that state and for each data the amount of time spent
waiting for the output. The initial state 〈〉 corresponds to the
component when it is empty. In this state, two transitions are
possible : (̄i/ō) is a passive waiting, it stays in the same state
〈〉, the second transition (i/ō) leads to the state 〈1〉, which
can accept an input i/ō that leads to the 〈2; 1〉, or have an
active waiting to reach the latency (L = 2), ī/ō to 〈2〉. Only
in two states 〈2〉 and 〈2; 1〉, is an output possible (i/o), (̄i/o).
Both can continue waiting ī/ō and stay in the same states. 〈2〉
can accept a new input without output i/ō that leads to 〈2; 1〉,
where the component is full and cannot accept a new input.

B. Composition

Parallel composition of a set of I/O-automata A1 . . .An,
denoted A1‖ . . . ‖An is defined formally as:

Definition 4 (Composition): Composition of I/O-automata
A1 = 〈S1, s01

,Σ,→1〉 and A2 = 〈S2, s02
,Σ,→2〉 is the

following I/O-automata: A1‖A2 =〈S1 × S2, (s01
, s02

),Σ,→〉
with S1 × S2 the set of states, Σ the set of labels, (s01

, s02
)

the initial state and → is given by the following rules:

→,

{
(s1, s2)

α1/β1−−−−→ (s′1, s
′
2) if (s1

α1/α
∗

−−−−→ s′1∧s2
β∗/β1−−−−→ s′2)

undefined otherwise

where α∗ and β∗ is denoting the handshaking synchronisation,
i.e, α = o and β = i or α = ō and β = ī. Informally, the
definition says a composition can be performed if the partners
play the same roles for both absence and presence of events.

The SR-model resulting from composition of two SR-
models should obviously satisfy properties and behaviour of
SR-system. Unfortunately, the result of composition (given in
Definition 4) applied to two SR-models does not satisfy all
the SR-system properties. Figure 3 illustrates the problem with
this composition on an example (detailed in Example 2). The

resulting model from a composition may not be a well-formed
model. Therefore, this composability is shown inefficient.

The main problem is that the parallel composition rules
(Definition 4) appear to be based on stream processing.
They put in place data transfer within the resulting model
in a pipeline style which is not the baseline behavior of
the corresponding component. This composition arises issues
that are intrinsic to pipelining: retiming, adding delays and
increasing of latency. Actually, the problem occurs with certain
configurations or states of its operands, their composition does
not allow obtainment of the canonical behavior of the pipeline;
and they cause pipeline hazards. Specifically, they produce a
model that automatically inserts pipeline bubbles and untidy
timeline.

In order to avoid the generation of unwanted configurations
and to explain formally the problem, we will introduce flow
phenomenons occurring pipelines.

A system is said to be bubbly, if it inserts stalls and bubbles
in the data flow. Intuitively, a system which accepts and stores
data as long as there is available memory and propagates down
all data at the same time, then no bubbles can be inserted in
it. Thus, we can state that all states of an SR-model satisfies
non-bubbly property, this is denoted by ∀s ∈ S.¬bubble(s).

A system is said untidy, if it puts data flows into a messy
state or the wrong order. Intuitively, a system timestamps
each arrival of data with the clock. If data are consumed one
by one, then data can be tagged with a unique timestamp.
Then, the input stream within the system is timestamped
and ordered. Thus we can state that all states of an SR-
Model satisfies non-untidy property, this is denoted by
∀s ∈ S.¬untide(s).

Example 2: Consider a SR-system having the parameters
M = 1 and L = 1, the corresponding SR-Model is given in
Figure 3 (left). Parallel composition of this model with itself
by applying rules of Definition 4 produces an SR-model given
in Figure 3 (right). Serial composition of two SR-systems
with M = 1 and L = 1 should build a SR-system such that
M = 2 and L = 2 (M = M1 +M2 and L = L1 +L2). However,
the resulting composed model (given in Figure 3 (right))
is slightly different from what we expected (see Figure 2).
Moreover, it is behaviorally incorrect since this automaton is
not deterministic. The composition produces two unexpected
transitions (see dashed arrows outgoing from the states denoted
〈1〉〈〉 and 〈1〉〈1〉). These undesired transitions result from the

ability to apply the rules (〈1〉 ī/ō−−→ 〈1〉 ∧ 〈〉 ī/ō−−→ 〈〉) and

(〈1〉 ī/o−−→ 〈〉∧〈〉 i/ō−−→ 〈1〉).

III. TOWARDS SAFE COMPOSITION

We have previously shown that the application of compo-
sition rules given in Definition 4 generates unwanted states
or transitions. These undesired configurations produce an
unexpected or incorrect behaviour. This section will discuss
and formalize the system configurations that prevent the re-
sulting model from reaching correctness. For this, we need

〈 〉start 〈1〉

ī/ō

i/ō

ī/ō

i/o
ī/o

〈 〉〈 〉start 〈1〉〈 〉 〈1〉〈1〉

〈 〉〈1〉

ī/ō

i/ō

ī/ō

i/ō

ī/ō ī/ō

i/oī/o

ī/o

ī/ō

i/o

ī/o

Fig. 3: SR-Model with M=1 and L=1 (left) and SR-model resulting from composition (right)

to introduce some vocabulary and notations. SR-systems may
have several different states, each state with its own properties.
An SR-system in state s is said to be in:
• full state if the system reached full memory capacity.

full(s)⇔ @s′ ∈ S.s i/ō−−→ s′

• ready state if the system is willing to deliver outputs.

ready(s)⇔ ∃s′ ∈ S.s α/o−−→ s′

In order to define unexpected states we introduce also useful
predicates for reasoning about flow-related properties of states.
An SR-system in state s is said to be in:
• steady state if m(s) = L. We specify the steadiness on

SR-model by:

steady(s)⇔ s
i/o−−→ s ∧ ∃s′ ∈ S.s ī/o−−→ s′ ∧ s′ /

i/o−−→ s′

it means there is exactly one data ready to go out. In this
state, simultaneous consumption and production of data
keep the system in the same state.

• frozen state if m(s) > L. We specify the frozeness on
SR-model by:

frozen(s)⇔ s
i/o−−→ s ∧ ∃s′ ∈ S.s ī/o−−→ s′ ∧ s′ i/o−−→ s′

it means there are more than one data is waiting to go
out. The effects of new inputs are no longer important,
implying the timeline of data in the system is full.

• delayed state if m(s) < L. We specify the lateness on
SR-model by:

delayed(s)⇔ s /
i/o−−→ s

it means data consuming is slow, and the system doesn’t
reach steady state.

What is particularly interesting about steady-state and
frozen-state is that the timeline of consumed data stream at
this stage is continuous, it means the timeline is an arithmetic

sequence with common difference of 1. We denote a state s
satisfying this arithmetic sequence property by seq(s). Note
that seq(s) is slightly different from untide(s). For both data
stream is a sequence of data that are in order. But for the first,
the sequence has a rule to find the value of each data.

It is obvious that every state of the system satisfies exactly
one of these flow-related properties at the same time. In
addition, we have ¬frozen(s) ⇔ steady(s) ∨ delayed(s),
¬delayed(s) ⇔ steady(s) ∨ frozen(s) and
¬steady(s)⇔ frozen(s) ∨ delayed(s).

a) Misbehavior analysis: we analysis various configura-
tions of interest to survey the usual composition of SR-models
in order to identify causes of misbehavior.

As discussed in the example given above (Example 2),
the composition rules, as defined (Definition 4), lead to
undesirable non-determinism. This undesirable result for
synchrony modelling is caused by configurations for which
both composition rules are applicable and are applied. More
precisely, the problem occurs when both the following rules
are applied:

(
s1

α/o−−→ s′1 ∧ s2
i/β−−→ s′2

)
then (s1, s2)

α/β−−→ (s′1, s
′
2)

and(
s1

α/ō−−→ s′′1 ∧ s2
ī/β−−→ s′′2

)
then (s1, s2)

α/β−−→ (s′′1 , s
′′
2)

The problem happens when both rules (enabled and dis-
abled handshaking) are possible. It means when s1 and s2

satisfy (ready(s1) ∧ ¬full(s2)). According to the behavioural
convention: once the data is ready to go out, the model has the
choice of outputing or waiting, component one may produce
a data or not. So there are two possible rules to apply.

We identified another types of configuration causing mis-
behavior. In this type, the configurations generate states from
which expected next states are never reached. This is due to the
inability to apply any more composition rules on the obtained
state. There are several of these kinds of states. Consider a

composite state (s1, s2) that satisfies :

• ¬full(s1, s2). Suppose that this state is generated from
s1 and s2 that satisfy (full(s1) ∧ ¬full(s2)). We know
from the SR-model, there should exist (s′1, s

′
2) such that

(s1, s2)
i/β−−→ (s′1, s

′
2). But, if s1 satisfies ¬ready(s1),

then (s′1, s
′
2) will never be generated. Actually, it can be

generated by applying either:

(s1
i/o−−→ s′1)∧(s2

i/β−−→ s′2) or (s1
i/ō−−→ s′1)∧(s2

ī/β−−→ s′2).
Nevertheless neither the first nor the second rule can be
applied. Actually, as s1 satisfies ¬ready(s1), it means

s1 /
i/o−−→ s′1, hence the first rule cannot be matched and as

s1 satisfies also full(s1), it means s1 /
i/ō−−→ s′1, hence the

second rule cannot be matched.
Actually, (s1, s2) is bubbly state, it inserts bubbles in the
resulting system. Even if there is still memory available,
it cannot accept any data. Bubbly states ere specified as:

∀s1∈S1,∀s2∈S2.(full(s1) ∧ ¬ready(s1)) ∧ ¬full(s2)
⇒ bubble(s1, s2)

• ¬ready(s1, s2). Suppose that this state is generated from
s1 and s2 that satisfy (ready(s1)∧¬ready(s2)). We know
from the SR-model, there should exist (s′1, s

′
2) such that

(s1, s2)
α/ō−−→ (s′1, s

′
2). But if s2 satisfies full(s2), then

s2 /
i/ō−−→ s′2. Hence (s1

α/o−−→ s′1) ∧ (s2
i/ō−−→ s′2) cannot be

applied. Actually, component one is ready to output data,
but waits until component two is ready to pick up. This
will cause a propagation delay. The time that will take the
data to travel from component one (input) to component
two (output) will be greater than latency.
(s1, s2) is an untidy state, it is specified as:

∀s1∈S1,∀s2∈S2.ready(s1) ∧ (full(s2) ∧ ¬ready(s2))
⇒ untide(s1, s2)

More generally, an untide composite state can be gen-
erated since component one is willing to output data,
but it does not. Specifically, when we have the following
configuration: (s1

α/o−−→ s′1) ∧ (s2 /
i/β−−→ s′2) or we apply

(s1
α/ō−−→ s′1) ∧ (s2

ī/β−−→ s′2).

The last undesirable configuration we consider is the frozen
composite state, frozen(s1, s2). This state can be generated
from s1 satisfying any flow-related properties and from s2 sat-
isfying necessarily frozen(s2). But, if s1 satisfies delayed(s1)
then the result of the composition will be false, (s1, s2) doesn’t
satisfy arithmetic sequence property. Therefore, s1 and s2 such
that delayed(s1) and frozen(s2) should not be composed. This
is specified as:

∀s1∈S1,∀s2∈S2.delayed(s1) ∧ frozen(s2)⇒ ¬seq(s1, s2)

The idea of the proposed solution is on one part, to prevent
the composition of any states s1 and s2 that can generate an
undesirable composite state (s1, s2), namely (s1, s2) satisfying
bubble(s1, s2) and untide(s1, s2); on the other part, to find a
way to avoid the problem of missing expected states.

b) Proposed composition: To solve in practice the
problem of behavioral correctness of SR-models composition,
basic needs will have to be dealt with, namely to give the
possibility of consuming data as long as there is available
memory. Clearly, to consume when component two is not
full even if component one is full. And to carry on with
calculating elapsed time for data which are ready to go
out in component one, even if component two is not ready
to receive them. Our proposal is based on the idea of
extension of SR-models of analyzed components. Actually,
in order to build global models for the serial-composition
of components having respectively the parameters M1 and
L1, and M2 and L2. We construct the parallel composition
of extended SR-models instead of their corresponding SR-
models. Consider a component having the parameters M and
L, and A the corresponding SR-model. We denote by A+m

its extended SR-model with an increase of memory storage
capacity by an amount of memory equals to m. Therefore,
the storage capacity of the component goes from M to M + m.
The serial-composition of the two components is defined by
A+m1

1 ‖A+m2
2 where:

m1 =

{
min(L1 − M1, M2) if M1 < L1

0 otherwise

m2 =

{
L2 − M2 if M2 < L2

0 otherwise

Referring to Figure 1, the composition that we propose
extends the storage capacity of both components C1 and C2,
so as to be able to solve the problem of data storage and
the calculation of latency. The memory of C1 is extended by
amount m1 so as to receive the data that it was not possible
to put in C2 due to pipeline transport of data. The memory
of C2 is extended by amount m2 so as to receive the data that
C1 has to bring out but C2 cannot receive due to the lack of
memory space. Notice that if M1 ≥ L1 (resp. M2 ≥ L2) there
is no need to extend C1 (resp. C2) because stream is flowing
freely and the memory is never full.

Before defining the composition of the extended SR-models,
we introduce some notation. We will use a priority operator,
denoted f, for specifying the order in which the rules are
applied when a state has several applicable rules. We typically

write
R1

f
R2

to mean if both rules R1 and R2 are applicable we

apply R1, otherwise we apply R2. We also define a predicate
exceed that indicates if a component exceeds a given amount
of data.

exceed(s,M)⇔ m(s) > M

Logically, no state of a well formed SR-model satisfies
exceed(s, M) with M the memory size. We will use another
predicate that we call idle that indicates if a component is
willing to bring out data but without emptying.

idle(s)⇔ s
ī/ō−−→ s ∧ ∃s′′ ∈ S.s ī/o−−→ s′′ ∧ s′′ 6= s0

According to semantics of a SR-model, the idle action can

be supported by a state that has either zero or a single data,
or at least two data ready to go out. Accordingly, a state s
satisfying idle(s) means from s there is a next state that is
also willing to produce data.

We now define the composition of extended SR-models.
Definition 5 (Extended Composition): Consider two com-

ponents C1 and C2 with parameters M1, L1 and M2, L2,
respectively. The composition of the corresponding SR-models
A1 = 〈S1, s01

,Σ,→1〉 and A2 = 〈S2, s02
,Σ,→2〉, written

A+m1
1 ‖A+m2

2 is an SR-model 〈S1 × S2, (s01
, s02

),Σ,→〉 such
that → is defined by the following rules:

1) s1
i/α∗
−−−→ s′1, s2

β∗/o−−−→ s′2
s1

i/o−−→ s′1, s2
i/o−−→ s′2

f
s1

i/ō−−→ s′1, s2
ī/o−−→ s′2

(s1, s2)
i/o−−→ (s′1, s

′
2)

2) s1
ī/α∗
−−−→ s′1, s2

β∗/o−−−→ s′2
s1

ī/o−−→ s′1, s2
i/o−−→ s′2 if seq(s′1, s

′
2)

f
s1

ī/ō−−→ s′1, s2
ī/o−−→ s′2

(s1, s2)
ī/o−−→ (s′1, s

′
2)

3) s1
i/α∗
−−−→ s′1, s2

β∗/ō−−−→ s′2
if ¬ exceed((s1, s2),M1 +M2) then

s1
i/o−−→ s′1, s2

i/ō−−→ s′2 if seq(s′1, s
′
2)

f
s1

i/ō−−→ s′1, s2
ī/ō−−→ s′2

(s1, s2)
i/ō−−→ (s′1, s

′
2)

4) s1
ī/α∗
−−−→ s′1, s2

β∗/ō−−−→ s′2

if idle(s2) then (s1, s2)
ī/ō−−→ (s1, s2)

else

s1
ī/o−−→ s′1, s2

i/ō−−→ s′2 delayed(s2)

f
s1

ī/ō−−→ s′1, s2
ī/ō−−→ s′2

(s1, s2)
ī/ō−−→ (s′1, s

′
2)

Intuitively, defining the composition on extended SR-models
allows the generation of the missing states. And defining
conditions under which the rules apply prevents the generation
of the undesirable states. Note the use of the operator priority
in each case which specifies the method for applying rules:
when both rules are applicable the transfer takes precedence.
Otherwise, rules behave roughly as basic rules except that
a transfer between two SR-models is allowed only if the
resulting composite state guarantees the sequentiality in data
flow (seq(s′1, s

′
2)). However, the composition is not allowed for

states leading to the memory overflow of the global compo-
nent. Indeed, due to the additional memory of the extended
SR-models, the amount of data in a composite state can

exceed the size M1 + M2, so the composition avoids generation
of such states (¬ exceed(s1, s2)). The particular case is the
generation of the idle action. If the second component is in
a state idle (idle(s2), the global system will also be in idle
state. Otherwise, an idle action can be a result of applying
composition rules.

We developed in Ocaml programming language, a tool
which implements the algorithm of construction of an SR-
model from a component defined by its parameters. The
composition rules were implemented in the tool. We validated
the correctness of the result by using the CADP model
checker [8]. We checked the equivalence of the composition
result of different test-cases with the expected SR-models, the
comparison succeed for all test-cases.

IV. RELATED WORK

Component-based development has in recent years become
an established approach. It has proven successful in many
application domains such as in distributed and embedded
systems. There are several component models that are supplied
for building complex hardware or software systems: Fractal
[5], Ptolemy [6], CCM [14], AADL, BIP [2] and GCM [1].
But there are only a few that have a theoretical framework
that allows reasoning about compositional modelling systems,
specially about modelling synchronous systems and verifica-
tion of their behavioural properties. Among the researches
dedicated to the component-oriented verification of embedded
systems that we are aware of [15], [12], [13], [3], the closest is
BIP. The BIP tool provides a formal framework for modeling
system behavior and architectures. A component’s behaviour
is described as a Petri net extended with data and functions,
whereas coordination is described as interactions between
components and scheduling policies between interactions.
Even if the BIP framework allows powerful compositional
reasoning on the system, it is shown [4] that the proposed
semantics is not sound and the synchrony is weakened to get
more synchronous computation models.

V. CONCLUSION

Through this paper, we presented models for compositional
reasoning about complex systems. We have introduced new
compositional rules for serial composition of synchronous
components, with the hope of making formal verification
apply to a wider range of complex designs. We provide
rules for compositional design and verification based on I/O
automata. We argue that the compositionality of I/O au-
tomata has the ability, from an engineering point of view,
to allow reasoning about component-based systems of many
different kinds, including real-world components, computer
programs, communication channels, sensors, etc. Our solution
handles stream processing between components, particularly
synchronous components and can be applied generally to all
SR-models. The reasoning rules have already been imple-
mented and their validity has been verified by using CADP
tool. We aim to further improve the verification by proving the
equivalence between the result of composition and expected

SR-models. Finally, we would like to take into account further
data-relationship by considering one-to-many and many-to-
many relationship between input data and output data of
components.

REFERENCES

[1] R. Ameur-Boulifa, L. Henrio, O. Kulankhina, E. Madelaine, and
A. Savu. Behavioural semantics for asynchronous components. Journal
of Logical and Algebraic Methods in Programming, 89:1 – 40, 2017.

[2] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz,
Mohamad Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous
Component-Based System Design Using the BIP Framework. IEEE
Software, 28(3):41–48, May 2011.

[3] Julien Boucaron and Jean-Vivien Millo. Compositionality of statically
scheduled IP. Electronic Notes in Theoretical Computer Science
(ENTCS), 200:71–87, February, 2008.

[4] Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling
Synchronous Systems in BIP. In Proceedings of the Seventh ACM
International Conference on Embedded Software, EMSOFT ’09, pages
77–86, New York, NY, USA, 2009. ACM.

[5] Eric Bruneton, Thierry Coupaye, M. Leclerc, V. Quema, and
Jean Bernard Stefani. An Open Component Model and Its Support
in Java. In 7th Int. Symp. on Component-Based Software Engineering
(CBSE-7), LNCS 3054, 2004.

[6] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia R. Sachs, and Yuhong
Xiong. Taming Heterogeneity - the Ptolemy Approach. Proceedings
of the IEEE, 91(1):127–144, January 2003.

[7] Fabrı́cio Fernandes and Jean-Claude Royer. The STSLib project:
Towards a formal component model based on STS. Electronic Notes
in Theoretical Computer Science, 215:131–149, 2008.

[8] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001.
European Association for Software Science and Technology Newsletter,
4:13–24, aug 2002.

[9] Mark B. Josephs. Receptive process theory. Acta Informatica, 29(1):17–
31, 1992.

[10] N. Lynch and M. Tuttle. An introduction to Input/Output automata.
CWI-Quarterkly, 2(3):219–246, 1989.

[11] R. Pacalet M. Baclet and A. Petit. Register transfer level simulation.
Research Report LSV-04-10. Laboratoire Spécification et Vérification.
ENS de Cachan. France, may, 2004.

[12] Florence Maraninchi. Operational and compositional semantics of
synchronous automaton compositions. In International Conference on
Concurrency Theory (CONCUR). LNCS 630, Springer Verlag, aug 1992.

[13] Florence Maraninchi and Tayeb Bouhadiba. Programmable models of
computation for a component-based approach to heterogeneous embed-
ded systems. In Proceedings of ACM-GPCE’07., 2007.

[14] Object Management Group, Inc. (OMG). CORBA Component Model
Specification, OMG Headquarters edition, April 2006.

[15] Annie Ressouche Sabine Moisan and Jean-Paul Rigault. Towards
formalizing behavioral substitutability in component frameworks. Pro-
ceedings of the Software Engineering and Formal Methods, Second
International Conference, pages 122–131, September 28-30, 2004.

	Introduction
	Synchronous-Reactive Systems
	Modelling
	Composition

	Towards safe composition
	Related work
	Conclusion
	References

