
Front. Comput. Sci.

DOI 10.1007/s11704-016-5460-3

A formal model for plastic human computer interfaces

Abdelkrim CHEBIEB 1, Yamine AIT AMEUR 2

1 Computer Science School for Engineers (ESI), Algiers 16270, Algeria

2 IRIT-INPT-ENSEEIHT, Toulouse 31071, France

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Abstract The considerable and significant progress

achieved in the design and development of new interaction

devices between man and machine has enabled the emer-

gence of various powerful and efficient input and/or output

devices. Each of these new devices brings specific interaction

modes. With the emergence of these devices, new interaction

techniques and modes arise and new interaction capabilities

are offered. New user interfaces need to be designed or for-

mer ones need to evolve. The design of so called plastic user

interfaces contributes to handling such evolutions. The key

requirement for the design of such a user interface is that

the new obtained user interface shall be adapted to the appli-

cation and have, at least, the same behavior as the previous

(adapted) one. This paper proposes to address the problem

of user interface evolution due to the introduction of new

interaction devices and/or new interaction modes. More, pre-

cisely, we are interested by the study of the design process of

a user interface resulting from the evolution of a former user

interface due to the introduction of new devices and/or new

interaction capabilities. We consider that interface behaviors

are described by labelled transition systems and comparison

between user interfaces is handled by an extended definition

of the bi-simulation relationship to compare user interface

behaviors when interaction modes are replaced by new ones.

Keywords formal modeling and verification, ontology

based modeling, plastic user interfaces, adaptive systems

Received November 3, 2015; accepted March 23, 2016

E-mail: k_chebieb@esi.dz; yamine@enseeiht.fr

1 Introduction

A user interface is often designed, after some refinement

steps, for predefined interaction devices and platforms. Each

device, platform and environment is characterized by its own

interaction modes. When a user interface (UI) is designed to

run on several target platforms1) and to support different in-

teraction modes and/or devices, it can be considered as sat-

isfying the plasticity property (also qualified to be a plastic

UI). Indeed, a plastic UI shall be able to switch, statically (at

design time) or dynamically (at runtime), from a given plat-

form to another. The target platform may support (exactly,

less or more) interaction capabilities than the original one

corresponding to (equivalent, degraded or upgraded) user in-

terface.

With the emergence of new devices, new interaction tech-

niques and modes arise. Indeed, when such devices are de-

ployed to interact with hardware controllers, games, critical

applications like medicine or aircraft cockpits, classical soft-

ware applications, etc., new interaction capabilities are en-

abled. Therefore, either new user interfaces need to be de-

signed and verified for the obtained system or the former

user interface needs to evolve. In other words, some of these

user interfaces result from the evolution of the former user

interface due to the introduction and/or to the substitution of

one or more devices by other ones. In some cases, other user

interfaces may require to build a completely new user inter-

face taking into account the introduced new devices including

their new interaction modes.

1) The word platform is used to characterize the system on which the described UI is available. It gathers the software part, the hardware devices and the
offered interaction capabilities of this system

2 Front. Comput. Sci.

As a consequence, the obtained user interface (being ei-

ther a new one or the evolution of a former one) requires to

be (partly or fully) re-designed, re-verified and re-validated

although this new user interface (to be defined) still interacts

with the same application. The key requirement for the design

of such a user interface is that the new obtained user interface

shall be adapted to the application and have, at least, the same

behavior as the previous one.

The previously identified requirement advocates for the de-

sign of so called plastic user interfaces. In this case, the de-

sign relies on the concept of plasticity and plastic user in-

terfaces [1]. Plasticity is an important property to ensure the

safety and usability of interactive systems which is one of

ISO/IEC 9126-1 usability quality of service criteria [2]. It

aims at supporting user interface adaptation to several run-

ning situations by providing another design model of the

whole or part of the user interface. In a dynamic setting, this

feature is particularly useful to pursue interacting with the

system even if a failing situation occurs [3].

The description of the behavior of user interfaces is a ma-

jor concern in user interface engineering areas. Several ap-

proaches, notations, techniques, processes and methods have

been proposed in the literature. Compared to classical soft-

ware engineering, the design of user interfaces pays a lot of

attention to the usability of the designed interface. One of the

techniques allowing a designer to handle this usability char-

acteristic in the behavior description is user task specifica-

tion and analysis. Indeed, a set of user tasks is defined beside

or within the user interface specification in order to describe

expected and/or unexpected user interface behaviors. Tasks

are defined by different actors involved in the description of

the user interface (e.g., ergonomists, psychologists, users cor-

responding to specific profiles like pilots for cockpits inter-

faces, etc.). Defined user tasks contribute to the verification

and validation of the user interface, they define use cases

and scenarios. Validation and verification activities consist

in checking that the defined user tasks are supported or not

supported by the designed user interface. This checking is

ensured by any validation and/or verification technique like

testing, simulation, experimentation, formal proofs, model

checking, etc.

This paper proposes to address the problem of user inter-

face evolution due to the introduction of new interaction de-

vices and/or new interaction modes. More, precisely, we are

interested by the study of the design process of a user inter-

face resulting from the evolution of a former user interface

due to the introduction of new devices and/or new interaction

capabilities. This paper claims to handle the plasticity charac-

teristic of user interfaces by answering to the question: does

a target user interface UT resulting from the evolution (by

introducing new interaction devices or interaction modes) of

a source user interface US behave as US ? To provide with

answers to this question, one should be able to formally com-

pare the behaviors of each of the considered user interfaces

US and UT .

In order to set up our proposal for handling plastic inter-

faces and checking the capability of a user interface to be

replaced by another one, we consider that

• user interfaces are viewed as task models, and formally

described as state transitions systems,

• devices and associated interaction modes are formally

represented within a knowledge model carried out by a

domain ontology,

• and finally, the problem of interfaces behaviors compar-

ison is handled using the classical techniques for com-

paring state transitions systems. A revisited definition

of the classical bi-simulation relationship is provided.

This paper is structured as follows. Section 2 addresses the

design of human centered computer interfaces, it gives an

overview of the different techniques developed to define user

tasks models. Section 3 focuses on the concept of user inter-

face plasticity. It reviews the basic definitions and surveys the

state of the art in the design of plastic user interfaces. It also

shows how devices and interaction modes can be modeled

as an explicit knowledge domain, i.e., an ontology. In Sec-

tion 4, the core principles of the proposed approach are pre-

sented. Then, Sections 5 and 6 revisit the definition of the bi-

simulation relationship needed to compare user task models.

The whole formal model for verifying plastic user interfaces

and the plasticity property is presented in Section 7 where the

different steps leading to analyze formally plastic user inter-

faces are composed into a sequence of methodological steps.

Section 8 is devoted to the development of our approach on

two illustrative case studies. The use of a model checker for

formal verification of plastic user interfaces is described in

this section as well. Finally, Section 9 concludes this work

and gives some future research directions.

2 Design of human computer interfaces: task
modelling

During the user interfaces specification, design, valida-

tion and experimentation processes, task modeling allows

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 3

user interfaces developers to capture usability characteristics

through the definition of scenarios of use. These processes

heavily rely on the definition of user tasks to be supported by

the user interface under design. The described tasks shall be

handled by the user interface whatever are the environment

and the platform where this user interface is set up. This re-

quirement defines the notion of abstract task to be handled by

every user interfaces designed to interact with the considered

system. The usability of the user interface is checked by as-

serting that the defined user tasks are handled by the interface.

In case of evolution of the user interface (e.g., new interaction

device or mode), the defined tasks shall be checked again to

ensure interface adaptation. Therefore, as mentioned above,

task models suit for plasticity of user interfaces checking.

Note that other notations and modeling languages are

available for design and specification of user interfaces. In

this paper, we focus on task models. In the remainder of this

section, we review the main research work related to formal

user tasks modeling and give an overview of the concur task

tree (CTT) user task modeling language defining a process

algebra and used in our approach for tasks description.

2.1 User task modeling

Task modeling, initially used for requirement analysis and

knowledge specification, is the starting point of user interface

design and development best practices [4]. It is the backbone

of user interface development process. Indeed, task model-

ing has been used in several situations : to derive several

user interfaces like in TERESA [5], to determine facets in

agent multi facets (AMF) [6], to determine task view point in

multi-path development [7], etc. Their common objective is

to develop usable and useful systems [2].

The study of task modeling languages and techniques has

drawn user interaction researcher’s attention since the 80’s.

Tasks may be described at different levels:

• an abstract level for the description of the task actions

to be performed through the user interface and at

• a concrete level depending on the available devices and

interaction modes within a given platform or environ-

ment.

The expressive power of task modeling languages resides

in their capability to describe different levels of the task:

abstract level, syntax (or structural) level and concrete (or

keystroke) level. Indeed, according to [8], in general a task

model is composed of three layers. First, a top layer de-

scribes the task to be achieved at the abstract level. Second,

a mid layer models the dialogue and indicates the user ac-

tions (cognitive decisions), system action and interactive ac-

tions (shared between a user and a machine or a system). Fi-

nally, the third (bottom) layer is a concretization. It models

the physical actions (keystroke interactions) needed to per-

form the described task depending on available interaction

devices of the platform where the system is expected to run.

Several techniques, notations and editing tools are dedi-

cated to process and analyze task models. The most known in

the literature are UAN [9, 10], XUAN, Xuan, HTA [11], CTT

[12,13], MAD [14] and MAD* [15] and its tool KMADE [16].

2.2 Formal modeling and verification of user tasks

The use of formal methods for the validation of user inter-

faces and particularly task models has been studied by sev-

eral authors. Various techniques, tools and models have been

proposed as a solution to support human centered design such

as task modeling [12], task achieving verification [17] multi-

modal user interface [18], and user driven design [19]. Tasks

descriptions are formally modeled by labelled transition sys-

tems (lts). This representation makes it possible to target sev-

eral formal verification techniques. Indeed, to encode task

models as labelled transition systems, Petri Nets [20], process

algebra, based on the LOTOS with CTT and CTTE [12, 21],

state based methods with B and Event-B [22, 23] or Z [24],

model checking and temporal logics by [25–27], etc., are

some of the approaches that have been proposed in the lit-

erature so far. These approaches show the attention carried

out by research to the problem of formal modeling and ver-

ification of task models for both WIMP or post-WIMP user

interfaces.

2.3 The concur task tree (CTT) notation

CTT is a notation for task model specification used to design

interactive applications. It provides a designer with a notation

to describe tasks expressions combining temporal operators

of a process algebra à la CCS (Calculus of Communicating

Systems [28]) and atomic tasks (user physical or keystroke ac-

tions on interaction devices). A CTT task model describes a

hierarchy of tasks represented by a tree-like structure, where

each node represents a composition operator and each leaf

is an atomic task. It requires identification of temporal rela-

tionships between sub-tasks of the same tree level. These op-

erators are borrowed from the LOTOS process algebra [29].

The available CTT composition operators describe activation

(Ti � T j), choice (Ti [] T j) order independence (Ti |=| T j),

interleaving Ti ||| T j, parallel tasks (Ti || T j) and iteration

4 Front. Comput. Sci.

(T ∗).
Figure 1 corresponds to the decomposition tree describing

the T3[](T7 |=| T8)� (T5 ||| T6) task expression.

[]

T0

T1 T2

T5 T6

T8T7

T3 T4

Fig. 1 Example of CTTE task model

3 Plastic user interfaces

The concept of interface plasticity is defined by Thevenin et

al. [1] as the capacity of a user interface to adapt itself or to

be adapted to the context of use (environment, platform and

user profile) while preserving usability.

3.1 Some characteristics of plasticity

The capability of a user interface to adapt itself or to be

adapted is possible only if the user interface is adaptable and

adaptive. These two relevant characteristics, i.e., adaptivity

and adaptability, relate to plasticity. Adaptivity concerns a UI

capable to adapt itself to a target platform, while adaptability

characterizes a UI that allows a user to adapt it to a target plat-

form. Adaptation of the UI impacts not only its software part,

but also the involved devices and interaction modes, available

for this platform. Following [30], Adaptability is the capac-

ity to change and adaptivity is the capacity to accept changes.

According to [31], a user interface is adaptable when it allows

a user or a designer the possibility to adapt it. It is adaptive

when it adapts itself to occurring changes.

A user interface is often designed for predefined interac-

tion devices and platforms, and each platform and environ-

ment is characterized by its own interaction modes. Plasticity

is an important property to ensure the safety and usability

of interactive systems which is one of ISO/IEC 9126-1 us-

ability quality of service criteria [2]. It aims at supporting UI

adaptation to several running situations by re-modeling a part

of or the whole user interface. This is particularly useful to

continue interacting with the system even if failing situations

occur [3]. The continuity of the interaction is an important

concern to be taken into account when a user interface is de-

signed.

3.2 Previous work

Nowadays, it is well accepted that plasticity is an impor-

tant characteristic [1], to be addressed during the user inter-

face design process. Studying plasticity of user interfaces has

drawn the attention of researchers. The work [2] records that

several plastic UI design approaches focused on the software

parts of a user interface, at the expense of interaction and di-

alogue parts.

Previous research work addressing plasticity suggested

technical solutions to address the problem of user interface

adaptation.

One can mention solutions based on specific software de-

velopments at the adaptation level like the Adaptive toolkit

ACE [32], FRUITS [33], Multimodal Widgets [34]. The

adaptation capabilities are implemented at software level.

Beside software, some techniques promoting the imple-

mentation of interaction adaptation at runtime as a feature of

the operating system, like in ToolGlasses [35] or FACADE

[36] were suggested. The objective of these approaches is to

support adaptation of the UI at runtime without any modifi-

cation of its internal code. The key idea consists in embed-

ding, inside software components, integrated to the software

part of the user interface, the various characteristics of inter-

action modalities and devices present on different platforms.

The operating system integrates these adaptive components.

Here, adaptive user interfaces (the user is in charge of the

adaptation by supplying these components) are promoted but

not adaptable interfaces.

In 2003, the European project Cameleon [4] initiated by

the Human Computer Interaction community proposed a con-

sensual reference framework defining the development pro-

cess of plastic user interfaces in order to cover all aspects of

human computer interaction (both software and human as-

pects). This reference framework promotes handling of plas-

ticity characteristics, at early stages of the user interface

development process. The key idea consists in designing a

user interface once and equipping it with several interac-

tion modes and devices. Successive suitable transformations

to fit the characteristics (interaction techniques, modalities,

environment, etc.) are applied on the designed user inter-

face. These transformations lead to various target platforms.

Several techniques and toolboxes result from this approach.

The most significant ones are USIXML [7], COMET [37],

WAHID [38] and MultiModel Widgets [39]. USIXML is

an XML-based framework, where a user interface is spec-

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 5

ified once and multiple implementations, for various target

platforms, may be produced from this description. In the

COMET environment [37], a UI is specified at a logical level

and multiple rendering technologies can be used to imple-

ment it, using a variety of widgets, thanks to a rich toolbox of

UI component running in a wide range of platforms. Similar

solutions are also provided by WAHID [38] and MultiModel

Widgets [39].

The adaptation of presentation and rendering was also

studied. The AMF [40] approach defines a set of interaction

patterns in a multi-agent setting. Each pattern is defined so

that it adapts user interface input/output according to the de-

scribed interaction mode. In a similar approach, the user in-

terface Module Adaptation approach of [41] supports GUI

adaptation to the context of use (platform, environment, user

profile). The user rearranges the application’s user interface.

Hiding and/or showing presentation elements of the interface

are performed according to a matching algorithm with user

interaction preferences and requirements.

More recently, taking into account the context of use has

been addressed, particularly the user profile and environment.

In [42], a UI is adapted according to user profiles, stored in

an ontology. User profiles are also in the center of nomadic

adaptable UI design [43, 44], exploited in MAGALLEN [45]

to synthesize UI prototypes. In the ubiquitous widgets ap-

proach [46], user interactions are captured and transmitted by

specific components, called IBC (Interactor Business Com-

ponent) used to implement adaptive UI widgets.

Most of the previously discussed approaches to handle

plasticity focused on the software part of the user interface.

They led to the definition of techniques for the adaptation

of software components of the interface. Few approaches ad-

dressed interaction handling adaptation of the dialogue be-

tween the user and the interface. This last aspect is handled

by the third generation approaches. In these approaches, user

profiles and the environment of the user interface are taken

into account for adaptation. Ontologies are used to store user

profiles in approaches like [42, 45].

4 Our approach

Our approach advocates the formalization of both user task

models and interaction substitutions in order to handle for-

mal verification of plasticity of user interfaces.

4.1 Plasticity and user task models

From the overview of the different approaches to handle plas-

ticity in user interfaces of Section 3, it appears that

• a lack of interest is paid to the design and validation

of a dialogue between a user and an interface when

achieving a given user task with several interaction de-

vices and different platforms representing “the context

of use” as defined by Coutaz [2];

• no existing approach has addressed the problem of for-

mally modeling the plasticity property in order to allow

user interface designers to check this property at design

time.

In this paper, we consider that,

• if the adaptation of the interaction is achieved through

the adaptation of the task model, usually used to de-

scribe the interaction, then plasticity would be ad-

dressed at the interaction level rather than at the soft-

ware part of a user interface;

• if the task models and substitutions of interactions oc-

curring in task models are formalized, then it becomes

possible to formally verify the plasticity of a given user

interface.

4.2 Plasticity seen as an explicit knowledge domain

Several approaches to address the diversity and the hetero-

geneity of interaction devices and modes have been proposed.

These approaches rely on the definition of a set of potential

interaction devices and modes that can be used as substitutes

for other ones in a given situation or context. Most of the sig-

nificant approaches are based on

1) modeling interaction styles using pattern descriptions

similarly to the agent multi-facets approach (AMF) [6].

AMF proposes to specify different interaction tech-

niques in a set of patterns to be used in adaptation strate-

gies;

2) the definition and the use of a catalogue of human

computer interaction development technologies follow-

ing [47]. COMET [37] suggests to build a catalogue of

user interface development technologies consulted by

COMET at runtime to define which adaptation style ap-

plies;

3) producing target user interfaces by transformation of

a source one. For example, genetic algorithms based

approaches were applied in MAGALLEN [45] to pro-

duce user interfaces prototypes by a mutation mecha-

6 Front. Comput. Sci.

nism tuned by a given user profile. These approaches

choose the suited interaction technique, mode or device

among a set of different candidate ones.

Therefore, whatever is the chosen adaptation strategy (at

design time or at runtime) or the adaptation mode (by a user

[6, 20] or automatically [37, 45]), it is necessary to define

and model the description of the different concepts needed

to achieve this adaptation (user interface development mod-

els, interaction modes, interaction devices, mappings and

correspondences between different interaction devices and/or

modes, etc.).

We claim that domain ontologies [48, 49] are good can-

didates for modeling such concepts and mappings between

these concepts. According to [48], domain ontologies are

knowledge models that provide with an explicit specification

of the concepts of a domain. They can be viewed as a dic-

tionary of concepts and of properties that hold among these

concepts [49]. The interest of ontololgies is to provide ex-

plicit semantic definitions of concepts independently of any

context of use.

A first attempt to use ontological approach in plastic

user interface design was carried out by [7]. It consists of

integrating ontology reasoning in USIXML to be able to

describe multi-path development approaches. The ontology

provides definitions of concepts manipulated by different

models of a user interface design according to the Cameleon

framework [4]. This approach exploits terminological aspects

available in the ontology. A more recent approach uses do-

main ontologies to adapt information system user interfaces

to a user profile in the transportation domain [42].

4.3 Two key requirements

Two characteristics of a user interface must be taken into ac-

count to ensure the plasticity of user interfaces. One relates to

the implementation of the presentation software components

and the other to the interaction techniques offered by the de-

vices. These characteristics are handled in the bottom part of

a user tasks model associated to a given user interface.

• Req1− Adaptation of the implementation techniques

At presentation level, adaptation requires that the im-

plementation of the presentation components is sup-

ported by the used implementation technologies avail-

able in the target environment and/or platform to best

adapt the user interface [2].

Indeed, implementation techniques differ from one

platform to another according to the underlying oper-

ating system, graphic display technology, interaction

modes, etc. Two adaptation techniques are identified.

The presentation side of the UI can be adapted either

– by remodeling or redesigning the interface, for ex-

ample, in the case of a substitution of a set of radio

buttons by a menu [50];

– or by the transfer (move) to a target platform of a

part of the interface (redistribution), for example

in the painter application of [51] where the color

palette is implemented in a personal digital assis-

tant (PDA) while a drawing board is implemented

on a personal computer (PC) platform.

The first adaptation technique requires to replace pre-

sentation widgets according to alternatives allowed by

the underlying operating system of the target platform.

The second adaptation technique requires

1) to chose which part of the interface can be dis-

tributed according to interaction techniques al-

lowed by the target operating systems (is it pos-

sible to run this part of the UI ?),

2) the environment of execution (does the environ-

ment of the target platform allow the execution?

are light, sound, etc. available ?) and

3) the opportunity to migrate a part of the whole ap-

plication (for example in the painter application,

the color palette is the part of the UI which can be

separated from the drawing board as it is the case

in the real world).

• Req2− Adaptation of the interactions offered by the de-

vices

At interaction level, adaptation requires the knowl-

edge of how a given interaction device can be replaced

by another one in order to allow users to pursue inter-

acting with the system. This interaction shall continue

even if failures occur [3].

The physical actions offered by an interaction device

may differ from one interaction device to another, but

they may often produce the same effect on the user in-

terface components. In fact, the effect produced by a

physical action corresponds to an abstract interaction

that may be realized by different interactions offered

by the physical device. For instance, a click on the left

mouse button produces the same effect as a press on the

keyboard ENTER key. From the abstract task point of

view, it corresponds to the GO action as defined in a

canonical abstract interaction [52].

The replacement of an interaction of a source device

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 7

by the ones of another target device requires the sub-

stitution of the physical actions performed within the

source device by those of the target device which pro-

duce the same effects on the user interface. As a conse-

quence, to handle plasticity, matching mechanisms be-

tween an action and the effect it produces on the user

interface are needed.

4.4 Our approach

As stated in Section 2, most of the work in the field of UI

plasticity focussed on the first requirement (Req1) related to

the implementation techniques adaptation which gained a rel-

ative maturity.

We focus on the second requirement (Req2) related to the

adaptation of the interaction where we consider that a lack of

interest still exists.

Moreover, the design life cycle of a multi-platform inter-

face entails building a task model for each platform. The ab-

stract part (top level) of this task model remains identical

for each platform while the concrete part (bottom level) is

adapted to each specific platform according to its interaction

modes and/or devices. The main drawback of this approach

is the need to perform task model verification and validation

for each platform. In other words, check if the different task

models still describe the same task. Adaptation of task model,

due to the variations on the platform and/or on the hardware

side of the UI (lose and/or gain of interaction devices in the

platform), is identified as a “main axis” of the “design space

for UI adaptation” in [1].

In the context of user interface plasticity, our approach

aims to address the problem of adaptation of the interaction

to different platforms. When several strategies of interaction

techniques are often allowed to implement a given task (top

level of a task model) on several platforms, we propose to

use formal techniques to check if these strategies are equiva-

lent. We compare task models corresponding to each strategy,

leading to compare user behavior in each strategy.

To achieve this goal, we represent each task model by an

automaton, i.e., a labelled state transition system, and check

equivalence (more precisely, behavioral equivalence) of task

models by bi-simulation relationship. Since the interaction

devices used in these different adaptation strategies are often

different, the obtained labelled transition-systems have differ-

ent sets of labels (interaction events). This leads to compare

different behaviors expressed by labelled state transition sys-

tems with different sets of labels. However, the classical defi-

nition of the bi-simulation relationship of Milner in [53] does

not handle different sets of labels. Thus, it cannot be used di-

rectly to compare different labelled state transition systems

issued from two different task models associated to different

platforms. Therefore, to compare different user task models

associated to different user interfaces platforms, the labelled

state transition systems need to be reworked before the clas-

sical bi-simulation relationship is applied.

In our approach [54], we advocate the definition of an on-

tology model including descriptions of user tasks, interaction

modes and interaction devices. The subsumption and equiva-

lence relationships are used to define substitutable tasks, in-

teraction modes and devices.

This approach [54] relies on equivalence checking. It con-

sists of two main steps:

• First, unifying task models using a domain knowledge

model expressing semantic equivalences between inter-

action devices and/or interaction modes;

• Second, equivalence checking of unified task models by

checking observational equivalence by means of weak

bi-simulation relationship.

By reworking task models, we mean the identification of

equivalent interactions (those offered by the physical devices

and/or their composition). Because of the continuous evolu-

tion and the emergence of new interaction devices and the

associated interaction techniques, we advocate the use of do-

main ontologies to formalize equivalence matchings between

device interactions and/or their compositions. These match-

ings are expressed by explicit links between physical actions

allowed by an interaction device and all the possible effects

they may produce. Moreover, we also require to categorize

these effects at the abstract level of interaction in order to

characterize each physical interaction by an abstract one. The

availability of this tacit knowledge for software adapters may

enhance automatic UI adaptation and even self-adaptation at

runtime.

5 Comparing labelled transition systems

The proposed approach relies on the capability to compare

labelled transition systems in order to establish behavioral

equivalence of such systems. Different relationships have

been introduced in the literature to define various kinds of lts

comparison from a behavioral point of view. Indeed, simula-

tion is used to link a lts that includes the behavior of another

lts. Symmetrically, bi-simulation defines a binary equivalence

relation on lts states. This equivalence may be an exact equiv-

8 Front. Comput. Sci.

alence through strong bi-simulation and observational or be-

havioral with weak bi-simulation. In general, weak relation-

ships are used to identify labelled transition systems that

share a same behavior.

In this section, we recall the basic definitions related to

labelled transition systems and their comparison. These defi-

nitions were set up by the fundamental and seminal work of

Milner [28, 53] for observational equivalence.

5.1 Basic definitions

Definition 1 A labeled transition system L is a structure

L = 〈S , s0, E, −→〉 where S is a set of states, s0 ∈ S de-

notes an initial state, E is a set of labels and −→ ⊆ S × E × S

is a transition relation between states.

Notations When specifying systems by labelled transition

systems, labels denote actions and the specific label τ ∈ E is

used to denote internal actions, i.e., non observable actions.

We note E∗ to represent the set of all possible sequences of

labels of E and LTS as the set of all labelled transition sys-

tems.

Definition 2 A transition (s, e, s′), also written, s
e−→ s′ de-

notes the transition from state s to state s′ with label e. E∗ is

the set of all sequences of labels. Let t = e1, e2, e3, . . . , en ∈
E∗ be a sequence of labels. A path or a trace s1

t−→ sn is a se-

quence of transitions of the form s1
e1−→ s2

e2−→ s3 . . . sn−1
en−1−→

sn. It can be a finite trace or an infinite one. We write
e�−→ to

denote a sequence of zero or more transitions of label e in E.

We also write s
e
=⇒ t the trace s

τ∗−→ s′
e−→ t′

τ∗−→ t.

5.2 Relations on states

Let T = 〈 S , s0, E, −→〉 be a lts.

Definition 3 (Simulation relationship on states) Let ≺ ⊆
S × S be a binary relationship on states. ≺ is a Simulation

when for any states p, p′, q ∈ S and for any a ∈ E, if

(p, q) ∈ ≺ and p
a−→ p′, then there exists q′ ∈ S such that

q
a−→ q′ and (p′, q′) ∈ ≺.

We say that state q simulates p according to ≺. Note that

simulation is not a symmetric relationship.

Definition 4 (Weak simulation relationship on states) Let

∼ ⊆ S × S be a binary relationship on states. ∼ is a weak

simulation when for any states p, p′, q ∈ S and for any a ∈ E,

if (p, q) ∈ ∼ and p
a
=⇒ p′, then there exists q′ ∈ S such that

q
a
=⇒ q′ and (p′, q′) ∈ ∼.

We say that state q simulates p according to ∼. Note that

weak simulation is not a symmetric relationship.

Definition 5 (Strong bi-simulation relationship on states)

A bi-simulation is a symmetric relation of simulation. Let

� ⊆ S × S be a binary relationship on states and p, q ∈ S

such that (p, q) ∈ �.

� is a strong bi-simulation relationship if

• p
a−→ p′ implies that there exists q′ ∈ S such that

q
a−→ q′ and (p′, q′) ∈ �;

• q
a−→ q′ implies that there exists p′ ∈ S such that

p
a−→ p′ and (p′, q′) ∈ �.

Definition 6 (Weak bi-simulation relationship on states)

Let ≈ ⊆ S ×S be a binary relationship on states and p, q ∈ S

such that (p, q) ∈ ≈.

≈ is a weak bi-simulation relationship if

• p
a−→ p′ implies that there exists q′ ∈ S such that

q
a
=⇒ q′ and (p′, q′) ∈ ≈;

• q
a−→ q′ implies that there exists p′ ∈ S such that

p
a
=⇒ p′ and (p′, q′) ∈ ≈.

5.3 Extensions to labelled transition systems

The previous definitions are extended to labelled transition

systems. Let lts = 〈S , s0 E, −→〉 and lts′ = 〈S ′, s′0 E, −→〉
be two labelled transition systems with the same set of labels

E and S ∩ S ′ = ∅.
Informally, this extension of these relations to labelled

transition systems consists in requiring the existence of a cor-

responding relation on the initial states of these labelled tran-

sition systems.

Definition 7 (Simulation relationship on lts) Let ≺ ⊆ S ×
S ′ be a simulation relationship. We define ≺lts ⊆ LTS × LTS

as a simulation relationship between two labelled transition

systems.

Then (lts, lts′) ∈ ≺lts if (s0, s′0) ∈ ≺. Informally, the relation

≺lts on lts is a simulation relationship if it is possible to build

a state simulation relation (≺) that includes their initial states.

We say that lts′ simulates lts.

Definition 8 (Weak simulation relationship on lts) Let

∼ ⊆ S × S ′ be a weak simulation relationship. We define

∼lts ⊆ LTS ×LTS as a weak simulation relationship between

two labelled transition systems.

Then (lts, lts′) ∈ ∼lts if (s0, s′0) ∈ ∼. Informally, the relation

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 9

∼lts on lts is a weak simulation relationship if it is possible to

build a state weak simulation relation (∼) that includes their

initial states.

We say that lts′ weakly simulates lts.

Definition 9 (Strong bi-simulation relationship on lts) Let

� ⊆ S × S ′ be a strong bi-simulation relationship.

We define �lts ⊆ LTS × LTS as a strong bi-simulation

relationship between two labelled transition systems.

Then (lts, lts′) ∈ �lts if (s0, s′0) ∈ �.

Informally, the relation �lts on lts is a strong bi-simulation

relationship if it is possible to build a state strong bi-

simulation relation (�) that includes their initial states.

We say that lts′ and lts are bi-similar.

Definition 10 (Weak bi-simulation relationship on lts) Let

≈ ⊆ S × S ′ be a weak bi-simulation relationship.

We define ≈lts ⊆ LTS × LTS as a weak bi-simulation rela-

tionship between two labelled transition systems.

Then (lts, lts′) ∈ ≈lts if (s0, s′0) ∈ ≈. Informally, the re-

lation ≈lts on lts is a weak bi-simulation relationship if it is

possible to build a state weak bi-simulation relation (≈) that

includes their initial states.

We say that lts′ and lts are weakly bi-similar.

6 Revisiting lts comparison

The previously defined relationships support the comparison

of labelled transition systems that act on the same set of la-

bels. The situation where the need of comparing labelled tran-

sition systems with different sets of labels may occur. For ex-

ample, interactive systems, addressed in this paper, are one of

the cases where different interaction possibilities are offered

to interact with a given system.

In this section, we define another bi-simulation relation-

ship that relaxes the classical definition. It relates labelled

transition systems with different sets of labels.

The proposed definition relies on the introduction of a re-

lation on labels. This relation links pairs of labels. It is ex-

ploited to transform the labelled transitions systems to be

compared labelled transition systems by substituting labels

so as they get the same set of labels.

6.1 Rewriting labels and transforming labelled transition

systems

Let lts = 〈S , s0 E, −→〉 and lts′ = 〈S ′, s′0 E, −→〉 be two

transition systems such that S ∩ S ′ = ∅, E � E′ and E′ � E.

Let A be another set of labels different from the ones of

E ∪ E′, in other words, A ∩ (E ∪ E′) = ∅

Definition 11 (Bi-directional relation on labels) Γ ⊆
(E − E′) × (E′ − E) is a relation on labels of two labelled

transition systems. It satisfies

∀ α ∈ E − E′,∃ β ∈ E′ − E we have (α, β) ∈ Γ;
∀ β ∈ E′ − E,∃ α ∈ E − E′ we have (α, β) ∈ Γ.

Left and right projection functions Pro jl and Pro jr are as-

sociated to Γ. Informally, the relation Γ on labels defines a

total relation on the labels that do not belong to E ∩ E′, i.e.,

the labels that are not shared by the two labelled transition

systems.

Definition 12 (Rewriting function on labels) The function

Φ : E × E′ −→ (A ∪ E ∪ E′ ∪ {τ}) on labels of two labelled

transition systems is defined by

∀ (α, β) ∈ Γ ∃ γ ∈ A ∪ E ∪ E′ ∪ {τ} such that Φ(α, β) = γ.

Four main rules can be associated to the definition of the

rewriting function.

1) Substitution ∃ e ∈ A such that Φ(a, b) = e to denote

that labels a and b are replaced by a new label e in A.

2) Right replacement : for a ∈ E ∃ b ∈ E′ such that

Φ(a, b) = a to denote that a label b ∈ E′ of lts′ is re-

placed by a label a ∈ E of lts.

3) Left replacement : for b ∈ E′ ∃ a ∈ E such that

Φ(a, b) = b to denote that a label a ∈ E of lts is re-

placed by a label b ∈ E′ of lts′.

4) Hiding : for a ∈ E, b ∈ E′ with Φ(a, b) = τ, we denote

the case of a pair of labels that should be hidden on both

labelled transition systems lts and lts′ after rewriting.

Definition 13 (Transforming labelled transition systems)

The labelled transition systems lts = 〈S , s0 E, −→〉 and

lts′ = 〈S ′, s′0 E, −→〉 are respectively rewritten to lts� =
〈S �, s�0 E�, −→�〉 and lts�′ = 〈S �′ , s�′0 E�′ , −→�′〉 accord-

ing to the label relation Γ and to the rewriting function on

labels Φ with

- same sets of states S � = S and S �′ = S ′;

- same initial states s�0 = s0 and s�′0 = s′0;

- sets of labels where different labels are rewritten thanks

to theΦ rewriting function E� = (E−Pro jl(Γ))∪A∪{τ}
and E�′ = (E′ − Pro jr(Γ)) ∪ A ∪ {τ};

- transition relations are redefined with the new labels

−→�⊆ S � × E� × S � and −→�′⊆ S �′ × E�′ × S �′ ,
where

10 Front. Comput. Sci.

−→� = {s e−→ t ∈−→| ∀e′ ∈ E′. (e, e′) � Γ}
− {s e−→ t ∈−→| ∀e′ ∈ E′. (e, e′) ∈ Γ}
∪ {s a−→ t | ∃(e, e′) ∈ Γ ∧ Φ(e, e′) = a},

−→�′ = {s′ e′−→ t′ ∈−→′| ∀e ∈ E. (e, e′) � Γ}
− {s′ e′−→′ t′ ∈−→′| ∀e ∈ E. (e, e′) ∈ Γ}
∪ {s′ a−→′ t | ∃(e, e′) ∈ Γ ∧ Φ(e, e′) = a}.

lts� and lts�′ are labelled transition systems with the same

set of labels, since E� = E�′ .

6.2 Comparison of labelled transition systems with differ-

ent sets of labels

Let 〈lts, lts′, Γ,Φ〉 be a structure where

- lts and lts′ are two labelled transition systems such that

S ∩ S ′ = ∅, E � E′ and E′ � E,

- Γ ⊆ E × E′ is a relationship on labels according to Def-

inition 11,

- Φ is a label rewriting function according to Definition

12.

Definition 14 (Relational simulation relationship on lts)

≺Γ,Φlts ⊆ LTS × LTS is a relational simulation relationship

on labelled transition systems if there exists a simulation re-

lationship on labelled transition systems between the trans-

formed lts. We write

(lts, lts′) ∈≺Γ,Φlts ⇐⇒ (lts�, lts�
′
) ∈≺lts .

Definition 15 (Relational weak simulation relationship on

lts) ∼Γ,Φlts ⊆ LTS × LTS is a relational weak simulation rela-

tionship on labelled transition systems if there exists a simu-

lation relationship on labelled transition systems between the

transformed lts. We write

(lts, lts′) ∈∼Γ,Φlts ⇐⇒ (lts�, lts�
′
) ∈∼lts .

Definition 16 (Relational strong bi-simulation relationship

on lts) �Γ,Φlts ⊆ LTS ×LTS is a relational strong bi-simulation

relationship on labelled transition systems if there exists a

strong bi-simulation relationship on labelled transition sys-

tems between the transformed lts. We write

(lts, lts′) ∈�Γ,Φlts ⇐⇒ (lts�, lts�
′
) ∈�lts .

Definition 17 (Relational weak bi-simulation relationship

on lts) ≈Γ,Φlts ⊆ LTS ×LTS is a relational weak bi-simulation

relationship on labelled transition systems if there exists a

weak bi-simulation relationship on labelled transition sys-

tems between the transformed lts. We write

(lts, lts′) ∈≈Γ,Φlts ⇐⇒ (lts�, lts�
′
) ∈≈lts .

From the definitions of the relationships introduced in the

previous definitions, it becomes possible to compare labelled

transition systems with different sets of labels.

6.3 About Γ and Φ

The definition of Γ and Φ are of great importance to de-

fine label mappings and label rewritings. The formal setting

described above requires the existence of a

1) relation Γ between the labels associated to one labelled

transition system which do not occur in the other one;

2) transformation functionΦwhich associates to each pair

of labels in Γ another label different from those of the

two considered labelled transition systems.

The definitions of Γ and Φ given above are minimal defi-

nitions. Strengthening these definitions with additional con-

straints and properties remains possible. This strengthening

shall preserve the capability to rewrite the labels. In this case,

new properties on the labels of labelled transition systems

and thus of the labelled transition systems themselves can be

deduced.

7 A formal model for designing plastic inter-
faces

The classical simulation and bi-simulation relationships are

defined on a single set of labels. Their definitions compare

transitions with the same labels. The need of comparing sys-

tems with close or equivalent behaviors that do not use the

same transition labels may occur in several situations partic-

ularly in the case of system substitution and thus in the case

of plastic user interface.

Systems for which relational simulation or relational bi-

simulation relationships are useful are those systems whose

behavior may lead to equivalent states but which use differ-

ent actions. Plastic interactive systems described in Section 3

correspond to such systems. These systems use different in-

teraction modes and devices to achieve the same user tasks.

As stated in Section 2, by plasticity we mean the capability

to achieve a given interactive task using different interactive

modes and/or devices. In other words, two interactive systems

may realise the same action using different interaction modes

or devices. Relational bi-similarity can be used to check that

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 11

these two systems are equivalent modulo the relations on the

labels.

In the remainder of this section, we put into practice the re-

lational bi-simulation and show how it is set up to check the

plasticity property of interactive systems. An ontology is de-

fined in order to semantically model relations on labels. We

also give a stepwise methodology to support this checking

process.

7.1 Task models as labelled transition systems

A task model allows a designer to describe tasks to be sup-

ported by the designed user interface. A task model gives the

details of both a static aspect which corresponds to the struc-

ture of the task (a decomposition tree in our case) and a dy-

namic aspect which corresponds to behavior of the user and

the system (labelled transition systems in our case) during the

achievement of the task.

Various experiences reported in the literature have repre-

sented task models by labelled transition systems. For in-

stance, in [13] lts have been derived from a task model to

simulate user behavior in order to verify task achievement.

In [55], lts built from a task model are used to formally ver-

ify properties of multi-modal user interfaces. In both experi-

ences, the set of states is built from attributes available in the

user interface components and the set of transitions is built

from user actions.

A task model expresses a hierarchical decomposition of

the task into subtasks up to physical actions (keystroke). At

the same time, it specifies a temporal interleaving of these

subtasks and actions (consecutive, parallel, alternative, itera-

tive composition operations). In other terms, it describes the

behavior of the user interacting with the interface entailing a

modification in its state. This behavior is captured by a formal

model described as a labelled state-transition system made of

user actions composing the task and of the interface reaction.

User actions are modeled by transitions and the interface re-

actions are denoted by the states of the system.

Task models written in CTT task modeling notation of Sec-

tion 3 are particularly suitable to be represented by a labelled

transition system. A lts describes the behavior of the interac-

tion between the user and the system, when achieving a task.

Physical actions (leaves) of the task model become transition

labels and temporal operators are compositions of transitions.

Figure 2 shows a lts derived from the task model ex-

ample depicted in Fig. 1 of Section 2. Its set of labels

{T3, T4, T5, T6, T7, T8} is built from the user actions of the task

model (the user actions are in the leaves of the task tree of the

Fig. 1) and the set of states {S 0, S 1, . . . , S 8} is composed of

some relevant user interface components attributes impacted

by these actions.

Fig. 2 The lts representing task model

7.2 An ontology of interaction

The labels of a transition system derived from an interactive

task model (e.g., a CTT task model) represent actions per-

formed on the interactive system either by the human (user)

or by the machine. The semantics of these actions can be de-

fined within and ontology which also gives a label classifica-

tion.

We define an ontology providing hierarchical categories of

interactive actions or devices. As shown on the UML class

diagram model depicted on Fig. 3, the basic concepts of our

ontology are the interaction device, the interactive task and

the user interaction respectively denoted by DEV, INTTASK,

INTR in Fig. 3.

7.2.1 Basic concepts

1. The interaction device (DEV) concept defines a hierar-

chical category of devices, well known in the human

computer interaction domain, which may be used to

perform tasks. This category is inspired from the tax-

onomy of interaction devices defined by Buxton [56],

Card et al. [57] and Frohlich [58].

2. The interactive task (INTTASK) concept refers to the

user interaction at abstract level in the same manner as

“abstract interaction” defined in [52] (select, copy, text

input, etc.).

3. The user interaction (INTR) concept describes patterns

of interaction techniques as well as those defined in [3]

for user interaction reconfiguration. They are similar

to those used to define interaction strategies for AMF

agents [6] and to those defined for input adaptability in

the ICON toolkit [59]. A user interaction can be basic

12 Front. Comput. Sci.

Fig. 3 The ontology model represented as a UML class diagram

or composite.

• A basic interaction (ATOMIC-UA) defines an

atomic physical user action (keystroke). It is

linked to an element (ELMT) of the interaction

device concept on which it has effects. A user ac-

tion may affect the behavior of the user interface.

For example, a click (atomic user action) on a left

button (element) of the mouse (interaction device)

triggers the GO behavior of the user interface.

• A composite interaction (COMPOSITE) de-

scribes the case of an interaction composed of a

set of user actions using the composition oper-

ators of sequence (SEQ), concurrence (PARA),

choice (CHOI) and iteration (ITER). Each inter-

action materializes a way to perform an interac-

tive task with a set of user actions offered by the

interaction devices available on a user interface

platform.

7.2.2 Basic relations

Our ontology acts like a dictionary of interaction techniques

that formalize a set of patterns defining different implemen-

tations of a single interactive task, depending on various in-

teraction devices existing in the human computer interaction

domain. It offers different kinds of relations between user

actions. As usual for ontologies, two main relationships be-

tween concepts are introduced: equivalence and subsump-

tion.

1) Equivalence This relation means that two user actions

linked to an element of an interactive device (or two sets

of user actions based on two user interactions) have the

same effects on an interactive system. In other words,

the equivalence relationship expresses that an interac-

tive task can be performed by one of the two single user

actions or one of two user interactions.

2) Subsumption This relationship defines a hierarchical

relationship encoded by inheritance. When a user ac-

tion subsumes a set of other user actions Us, then the

effect of this user action entails the ones belonging to

this set of actions Us. Subsumption relation expresses

the fact that an interactive task can be performed either

by a single user action or by a set of user actions com-

posing a user interaction.

7.3 Rewriting rules for labels

When rewriting labels of lts derived from user actions, the

relation linking an interactive task and the user interaction is

exploited as follows.

• Rule1 If two single user actions are equivalent, they

may be rewritten with the label corresponding to the in-

teractive task they perform.

Example 1 Press Enter key and click left button are

equivalent since both of them correspond to a GO be-

havior on the UI. They may be rewritten as the GO label

corresponding to the interactive task they perform.

• Rule2 If a single user action u subsumes a set of user

actions Us composing a user interaction, then this sin-

gle user action may be rewritten with as the label corre-

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 13

sponding to the interactive task it performs. Moreover,

all the user actions of the set of user interaction Us is

rewritten with a single label corresponding to the same

label as the one of interactive task.

Example 2 The user action point tablet screen entails

the GO behavior equivalent to the ones entailed by the

sequence of user actions move mouse SEQ click. We

say that the former subsumes the later and both single

action point tablet screen and the interaction may be

rewritten as the single label GO.

• Rule3 If a pair of two sets of user actions (two user

interactions) are equivalent they may be rewritten in the

same manner as a single label corresponding to the in-

teractive task they perform.

Example 3 The composite user interaction press

mouse button down in parallel with move mouse fol-

lowed by release mouse button up defines the selection

of a set of icons on a screen. The same behavior can be

obtained by the composite user interaction performed

by the user action press of the shift key down in parallel

with the press of direction key followed by the release

of the shift key up. This means that the two composite

user interactions are equivalent. Therefore, both of them

may be rewritten to the single label Multi-Selection cor-

responding to the interactive task they perform.

7.4 Methodology

The whole material required to check the plasticity of a user

interface is now set up. Checking the plasticity property con-

sists in checking that two different interactive systems allows

a user to achieve the same tasks using different interactive

modes and/or different devices.

• Basic principle The proposed approach consists in for-

malizing the considered interactive systems by labelled tran-

sition systems, and then checking a relational bi-simulation

on these two systems, provided that a relation on labels of

their corresponding labelled transition systems is available.

To check the plasticity property of a pair (Systsource,

Systtarget), we have set a stepwise methodology consisting in

the following steps:

1) Design Design the pair (ltssource, ltstarget) of labelled

transition systems formalising (Systsource, Systtarget).

2) Irrelevant action identification For (ltssource, ltstarget),

identify the possible internal actions that are not rel-

evant for the interaction. The labels corresponding to

these actions in (ltssource and/or ltstarget) are set to τ.

3) Rewriting Using a relation on labels of the lts, the la-

bels of ltssource and ltstarget that are different are rewrit-

ten. At this stage, the two ltssource and ltstarget have the

same labels.

4) Checking Check weak bi-simulation between the ob-

tained lts.

In other words, two interactive systems satisfy the plastic-

ity properties if they are linked by a relational bi-simulation

relationship according to a given relation on labels.

8 Validation on the case study

This section shows how our approach to check user interface

plasticity applies on two case studies. The first one addresses

the case of a web interface to send an SMS (short message

sending) and the second one deals with a mobile casual game

application. In both cases, the four-step methodology we de-

fined in the previous section (design, irrelevant action identi-

fication, rewriting, checking) is deployed.

8.1 Desktop web application UI adapted to smart phone

Our case study concerns an interface of a web application for

sending an SMS (short message sending). The user interface

is composed of a set of six (06) web forms to be filled in

order to send an SMS. First, the user opens a session to lo-

gin to his own space (first web form), then he composes his

message (second and third web forms) and sends the com-

posed SMS (forth and fifth web forms). Finally he exits his

own space (sixth web form). The CTT task model depicted

in Fig. 4 describes the different user actions involved by the

task consisting in sending an SMS. The following subtasks

are introduced.

1) Login (subtask TA) where a user introduces his/her lo-

gin identifier (T1) and his/her password (T2) in any or-

der and submit these two entered values (T3).

2) Compose is devoted to build the SMS (subtask TB). The

user launches a message editor (T4), edits his/her mes-

sage (T5) by typing the text of the message (T8), enters

the phone number of the recipient (T7) (in any order)

and then decides whether he/she sends the written mes-

sage (T9), saves it (T10) or cancels it (T11).

3) Send task is defined to model sending of the composed

message. The user requests a send action to the system

(T12) and confirms the transaction (T13) or not (T14). In

case the sending of the message is not confirmed, the

user chooses either to save the message (T15) or to can-

14 Front. Comput. Sci.

Fig. 4 Send SMS abstract task model

cel the whole operation (T16).

4) Finally, Logout (subtask TC) is the subtask allowing the

user to close the session (T17).

In the rest of this section, we focus on the subtask EditMsg

task corresponding to T5 in Fig. 4. Our objective is to com-

pare the interaction technique used to perform this task on a

personal computer (a platform with a mouse and a keyboard

only) on the one hand and two interaction techniques used to

carry out the same task on a smart phone (a platform with a

keyboard only) and on a Touch-Pad (a platform with touch

screen only) on the other hand. The four-step methodology

we have defined is set up.

8.1.1 Design

Let ltssource, ltstargetPh and ltstargetT p be the labelled state

transition systems modeling the subtask EditMsg on the

systsource, systtargetPh and systtargetT p systems corresponding

to a personal computer, a smartphone and a Touch-Pad, re-

spectively.

The CTT task model associated to the EditMsg on the

personal computer systsource is depicted in Fig. 5. This task

model is compared to the two identified target task models.

The first task model corresponds to the interaction task per-

formed on a smart phone systtargetPh. The subtask EditMsg

for a smartphone is described by the CTT task model of

Fig. 6.

Fig. 5 The EditMsg task model of the interaction on the PC platform

Fig. 6 The EditMsg task model of the interaction on a smart phone plat-
form

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 15

Last, the second target task model represents the interac-

tion performed on a Touch Pad. Figure 7 depicts the corre-

sponding CTT task model.

Fig. 7 The EditMsg task model of the interaction on a Touch Pad platform

In order to build the different labelled state transition sys-

tems corresponding to each platform, we associate a label for

each user action available in each of the CTT task models.

Table 1 describes all the correspondences between user ac-

tions of the CTT task models and the labels in the correspond-

ing lts.

Table 1 Mapping between user actions and corresponding labels

CTT’s actions Signification
lts’s

labels

KeyPress CHR Press the keyboard’s character key e1

Point CHR Point a character virtual key on a tactile screen e2

KeyPress NUM Press the keyboard’s digital key e3

Point NUM Point a digital virtual key on a tactile screen e4

Click LBTN Click the mouse’s left button e5

BtnPress DUDirBtn Press keypad’s Down/Up direction button e6

Move Mouse Move the mouse e7

BtnPress LRDirBtn Press keypad’s Left/Right direction button e8

Point Scrn Point the tactile screen e9

BtnPress CentBtn Press keypad’s central button e10

The following labelled state transition systems are ob-

tained for the EditMsg user task.

1) The lts ltssource representing the interaction on the per-

sonal computer platform is given by the labelled state-

transition system of Fig. 8.

Fig. 8 The EditMsg lts for a PC platform

2) The task model corresponding to the interaction on a

smartphone platform is represented by the labelled state

transition system ltstargetPh of Fig. 9.

Fig. 9 The EditMsg lts for a smartphone platform

3) Finally, the labelled state transition system ltstargetT p

representing the interaction on the Touch Pad platform

is represented in Fig. 10.

Fig. 10 The EditMsg lts for a Touch Pad platform

At this stage we obtain two pairs (ltssource, ltstargetPh) to

compare the interaction used on a personal computer with

the one on a smartphone and (ltssource, ltstargetT p) to compare

personal computer interaction with the interaction on a Touch

Pad.

In the remaining steps, we will address the case of

(ltssource, ltstargetPh) only to compare the interaction used on

a personal computer with the one on a smartphone.

8.1.2 Irrelevant actions identification

The next step identifies the possible internal actions con-

sidered as non relevant to perform the suited interaction.

The labels corresponding to these actions in both ltssource or

ltstargetPh are set to τ.

The set of actions {MoveMouse, BTNPress DUDirBtn, BT-

NPress LRDirBtn} iterated on the defined labelled state tran-

sition system is not relevant for the interaction. Indeed, the

presence of these iterated actions in the CTT task model ex-

presses a cursor movement to reach a target field in a given

form. Moving a cursor can be done repeatedly without any

relevant effect from interaction point of view. So, only one

move of the cursor is considered and the occurrences of la-

bels of the set {e7, e6, e8} are set to τ. Another pair of labelled

state transition systems (ltsPct, ltsPht) is obtained after irrele-

16 Front. Comput. Sci.

vant actions removal.

The labelled state transition system ltsPct depicted in

Fig. 11 corresponds to the ltssource (Fig. 8) where the iter-

ated occurrences of the label e7 (transitions on states 2, 5, 8

and 11) are set to τ.

Fig. 11 Irrelevant actions set to τ for the PC platform

The labelled state transition system ltsPht of Fig. 12 cor-

responds to the labelled state transition system ltstargetPh

(Fig. 9) where the iterated occurrences of labels e6 and e8

are set to τ.

Fig. 12 Irrelevant actions set to τ for the smartphone platform

8.1.3 Rewriting

The set of labels of the labelled state transition systems ltsPct

and ltsPht obtained after removing irrelevant actions are still

different sets. A rewriting step, exploiting relations on labels

borrowed from the ontology is required to obtain two labelled

state transition systems with a single set of labels.

Let E and E′ be the two sets of labels of ltsPct and ltsPht

respectively.

Let LabDi f f be the set of different labels of ltsPct and

ltsPht . It is defined by

LabDi f f = (E ∪ E′) − (E ∩ E′) = {e5, e6, e7, e8, e9, e10}.
Let Ep be the set of labels of ltsPct to be rewritten.

Ep = E ∩ LabDi f f = {e5, e7}.
Let E′h be the set of labels of ltsPht to be rewritten.

E′h = E′ ∩ LabDi f f = {e6, e8, e10}.
The relation Γ (see Definition 11) provided by our ontology

is the equivalence and/or subsumption relationships. These

relations mean that user actions and/or user interactions with

the same effect (equivalent or subsumed effect) can be re-

placed by the interactive task corresponding to this effect.

The result of this substitution operation is a set A = {g,m}
containing two labels neither in E nor in E′. These two la-

bels must be rewritten according to the identified ontological

relation in order to get a same set of labels. Figure 13 shows

instances of the ontology we have used to define such rela-

tions. When applied, the rewriting function φ (Definition 12)

produces the labels defined in Table 2.

Table 2 Label rewriting table

User actions lts’s labels Substitution action φ Application

(Click LBTN,

BtnPress CentBtn)
(e5 , e10) GO φ(e5, e10) = g

(Move Mouse,

BtnPress DUDirBtn)
(e7 , e6) MoveCursor φ(e7, e6) = m

(Move Mouse,

BtnPress LRDirBtn)
(e7 , e8) MoveCursor φ(e7, e8) = m

In Table 2,

• the label g corresponding to the interactive task “GO”

is a substitute for the ones corresponding to the user ac-

tions Click LBTN and BtnPress CentBtn. Indeed, this

label represents the effect of the two actions,

• the label m corresponding to the interactive task “Move-

Cursor” is a substitute for the labels corresponding to

the user actions Move Mouse, BtnPress DUDirBtn and

BtnPress LRDirBtn.

After rewriting the labels of ltsPct and ltsPht , the new la-

belled state transition systems ltsPctr are obtained. They are

respectively depicted in Figs. 14 and 15.

This rewriting step produces two lts with the same set of

labels {e1, e3,m, g, τ}.

8.1.4 Checking

The final step checks behavior equivalence on the obtained

labelled state transition systems. Observational equivalence

between the two obtained labelled state transition systems

is checked. This checking supports the behavior compari-

son of interactive systems that do not have the same inter-

action modes and/or devices. To do so we use the weak bi-

simulation relationship defined in Section 5. The final result

showed that ltsPct and ltsPht are weakly bi-similar. Thus we

can formally assert that the interactions described by the task

models of Figs. 5 and 6 perform the same task, and thus the

devices and the interactions may be substituted. The equiva-

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 17

Fig. 13 Instances of our ontology concepts used to rewrite labels

Fig. 14 The EditMsg lts for a PC platform after rewriting labels

Fig. 15 The EditMsg lts for a smartphone platform after rewriting labels

lence of the corresponding rewritten labelled state transition

systems modulo the relational weak bi-simulation relation-

ship means that these two interaction techniques can substi-

tute each other.

The previous case study has been checked within the

CADP (construction and analysis of distributed processes)

model checker [60]. It offers a set of tools for compiling, ver-

ifying and validating Lotos [29] process models. One of its

important features is the capability to compare labelled state

transition systems modulo an equivalence or preorder rela-

tion. The comparison is supported by the CADP Aldebaran

bi-simulator library. If the submitted labelled state transition

systems are not equivalent, a diagnostic file is generated to

show the failed transition.

The labelled state transition systems of our case study are

first described in LotosNt [60] (Fig. 16), a simplified version

of the Lotos language, then they are transformed to full Lotos

programs. Labelled sate-transitions systems in BCG (binary

coded graphs) format are generated for each Lotos descrip-

tion. Finally the two BCG automata are compared with the

bi-simulator modulo observational equivalence relation.

8.2 Smartphone game application UI adapted to PC plat-

form

The second case study concerns an interface of a mobile ca-

sual game application called “Marble Legend”. It is a single

player game where a user scores when he/she eliminates se-

ries of marbles of the same color. In this game, the user must

create three or more consecutive marbles of a given color.

Marbles of the same color are thrown by a shooting source (a

frog). The ultimate goal of the game is to eliminate all mar-

bles before they reach a central hole where they are sucked by

a monster. The user interface of this application is composed

of seven screens displayed according to the evolution of the

game. First, the user selects, from the main menu, either to

18 Front. Comput. Sci.

Fig. 16 A section of LotosNt code corresponding to ltsPct

tune the game or to play in one of the two proposed game

modes: adventure or challenge modes (first screen). Once the

game mode is selected (second and third screens), the user

eliminates series of marbles before the time limit associated

to the current game level is reached (fourth screen). When the

user completes the game actions of the current level, score

rates are displayed. Then, the user selects either to replay the

current level (for example to increase his/her score), to move

to the next level or to return back to the main menu (fifth

screen). In case the user fails in this level (i.e., the marbles are

sucked by the monster), he/she is forced either to retry again

or to leave the current level and return to the main menu (sixth

screen). At any time, for a given level, the user can pause

the game. He/she can also select either to continue, restart

the current level or return back to the main menu (seventh

screen). The CTT task model depicted in Fig. 17 describes

the different user actions involved by the task consisting in

playing the marble game. The following subtasks are detailed

below.

1) Tune (subtask TA) allows a user to parameterize the

game environment: tune of sound mode (T1), ambient

music (T2) or colors for scenes (T3) independently.

2) Play is dedicated to the description of the game playing

(subtask TB). The user selects one game mode (T4) and

then tries to complete the game for the corresponding

level before the allowed time limit (T5). Therefore, T5

is decomposed as follows. The user starts the current

level (launches T9). He/she shoots colored marbles, is-

sued from the outlet of the source (the frog), in the di-

rection of the lines of marbles before they are sucked

into the central hole representing the mouth of the mon-

ster (T10). At any time, for a given level, the user may

change marble color or reverse the emission order of

marbles at the shooting source (T11). The user can also

turn the game temporary to pause (T12). He/she may

decide to continue, stop the game at the current level or

return back to the main menu.

3) Finally, the Interrupt (subtask TC) is triggered when

the game is interrupted either if the game level is com-

pleted, failed or stopped by the user. The user may move

to the next level in case of success (T7), retry again the

current game level in case of failure (T6) or exit the

game (T8).

Fig. 17 “Marble Legend” game abstract task model

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 19

The remainder of this section, focuses on the TryStage sub-

task (T5 in Fig. 17). Our objective is to study the plasticity of

the interaction technique used to perform this task. We ad-

dress the cases of a smart phone (with only a touch screen)

and a personal computer (with a mouse). We show how the

plasticity property of the TryStage task (T5 in Fig. 17) can

be modeled for both two platforms: the source platform is a

smartphone and the target one is a personal computer. The

four-step methodology we have defined is deployed for this

case.

8.2.1 Design

Let ltssource and ltstargetPc be two labelled state transition sys-

tems modeling the subtask TryStage (T5 in Fig. 17).

• ltssource is the labelled state transition systems asso-

ciated to the source system systsource (i.e., a smart-

phone platform). It models the interaction task T5 on

the smartphone platform. The CTT task model associ-

ated to the TryStage task T5 on the smartphone systsource

is depicted in Fig. 18.

• ltstargetPc is the one associated to the target system

systtargetPc (i.e., a personal computer). It models the in-

teraction task T5 on the PC platform. The target CTT

task model for this task is depicted in Fig. 19.

In order to build the different labelled state transition sys-

tems corresponding to each CTT task model of both plat-

forms, a label is associated to each user action of these CTT

task models. Table 3 describes all these correspondences.

Table 3 Mapping between user actions and corresponding labels

CTT’s actions Signification lts’s labels

Move Mouse Move the mouse e1

Click LBTN Click the mouse’s left button e2

Click RBTN Click the mouse’s right button e3

Point Scrn Point the tactile screen e4

From the CTT models of Figs. 18 and 19, the following la-

belled state transition systems are obtained for the TryStage

user task T5.

1) The lts ltssource representing the interaction on the smart

phone platform is given by the labelled state-transition

system of Fig. 20.

2) The lts ltstargetPc representing the interaction on the per-

sonal computer platform is represented in Fig. 21.

Fig. 18 The TryStage task model for a smartphone platform

Fig. 19 The TryStage task model for a PC platform

20 Front. Comput. Sci.

Fig. 20 The TryStage lts for a smartphone platform

Fig. 21 The TryStage lts for a PC platform

At this stage we obtain a pair of (ltssource, ltstargetPc). We

need to compare these lts in order to be able to check the

plasticity property of the interaction task T5 when using a

smartphone or a PC platform.

8.2.2 Irrelevant actions identification

The next step identifies the possible internal actions con-

sidered as not relevant to perform the suited interaction.

The labels corresponding to these actions in both ltssource or

ltstargetPc are set to τ. The action Move Mouse on the defined

labelled state transition system is not relevant for the inter-

action. Indeed, the presence of this action in the CTT task

model expresses a cursor movement to reach a target field in

a given form. Moving a cursor can be done repeatedly with-

out any relevant effect from interaction point of view. There-

fore, the occurrences of the label e1 are set to τ. Another pair

of lts (ltsspt , ltsPct) is obtained after irrelevant action removal.

Note that the lts ltsspt , corresponding to the ltssource (Fig. 20)

remains unchanged since it does not contain any occurrence

of the label e1. The lts ltsPct of Fig. 22 corresponds to the lts

ltstargetPc (Fig. 21) obtained after the occurrences of labels e1

have been set to τ.

8.2.3 Rewriting

The set of labels of the two lts ltsspt and ltsPct obtained after

Fig. 22 Irrelevant actions set to τ in lts for a PC platform

removing irrelevant actions are still different sets. A rewriting

step, exploiting relations on labels borrowed from the ontol-

ogy is required to obtain two labelled state transition systems

with a single set of labels. Let E and E′ be the two sets of

labels of ltsspt and ltsPct respectively. Let LabDi f f be the set

of different labels of ltsspt and ltsPct . It is defined by

LabDi f f = (E ∪ E′) − (E ∩ E′) = {e2, e3, e4}.
Let Es be the set of labels of ltsspt to be rewritten.

Es = E ∩ LabDi f f = {e4}.
Let E′p be the set of labels of ltsPct to be rewritten.

E′p = E′ ∩ LabDi f f = {e2, e3}.
The relation Γ (see Definition 11) provided by our ontology

is the equivalence and/or subsumption relationships. These

relations mean that user actions and/or user interactions with

the same effect (equivalent or subsumed effect) can be re-

placed by the interactive task corresponding to this effect.

The result of this substitution operation is a singleton A =

{g} containing a label neither in E nor in E′. This label must

be rewritten according to the identified ontological relation in

order to get a same set of labels. Figure 23 shows instances

of the ontology we have used to define such relations. When

applied, the rewriting function φ (see Definition 12) produces

the labels defined in Table 4.

Table 4 Label rewriting table

User actions lts’s labels Substitution action φ Application

(Click LBTN, Point Scrn) (e2 , e4) GO φ(e2, e4) = g

(Click RBTN, Point Scrn) (e3 , e4) GO φ(e2, e4) = g

The label g, introduced in Table 4, corresponds to the in-

teractive task GO. It defines a substitute for the labels corre-

sponding to the user actions Click and Point (see Table 3).

Indeed, this label factorizes and represents the effect of the

two actions.

After rewriting the labels of ltsspt and ltsPct, the new la-

belled state transition systems ltssptr and ltsPctr are obtained.

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 21

Fig. 23 Instances of our ontology concepts used to rewrite labels

Figure 24 shows the obtained lts after rewriting for a smart-

phone platform.

Fig. 24 The TryStage lts for a smartphone platform after rewriting labels

Figure 25 shows the obtained lts after rewriting for a per-

sonal computer platform.

Fig. 25 The TryStage lts for a PC platform after rewriting labels

After this rewriting step, the two lts have the same set of

labels which is {g, τ}.

8.2.4 Checking

As for the previous case study, the final step concerns check-

ing the behavior equivalence on the obtained labelled state

transition systems. In the same manner, observational equiv-

alence between the two obtained labelled state transition sys-

tems is checked. The final result shows that ltsspctr and ltsPctr

are weakly bi-similar. Therefore, we can formally assert that

the interactions described by the task models of Figs. 18 and

19 perform the same task, and thus the devices and the inter-

actions may be substituted. In other words, the equivalence

of the corresponding rewritten labelled state transition sys-

tems modulo the relational weak bi-simulation relationship

means that these two interaction techniques can substitute

each other.

Like in the previous case study, the CADP model checker

[60] is used to compare labelled state transition systems.

Thus, the labelled state transition systems of our second

case study are first described within in LotosNt [60] (see

Fig. 26), then they are transformed to full Lotos programs.

Labelled sate-transitions systems in BCG format are gener-

ated for each Lotos description. Finally the two BCG au-

tomata are compared with the bi-simulator modulo observa-

tional equivalence relation.

9 Conclusion

This paper presents a formal approach to check the plasticity

property of user interfaces. Our work helps user interface de-

signers to find a suitable alternative when interaction devices,

of a user interface running platform, change.

9.1 Obtained results

We have proposed an approach supporting the verification of

the equivalence of task models designed to describe two in-

teraction techniques to achieve the same task with different

interaction devices. The abstract part (representing the ab-

22 Front. Comput. Sci.

stract task independently from any platform, and any envi-

ronment) remains the same but several implementations are

possible depending on the interaction devices (input/output)

within the platform where the system or its interface (case

of distributed systems) is running (concrete task). We started

from a task model [21] representing the user task to carry

out within the system and then we extracted the underlying

labelled state transition system.

Fig. 26 A section of LotosNt code corresponding to ltsspt

We have exploited checking of the equivalence of hetero-

geneous labelled state transition systems or lts with different

sets of labels defined in [61]. Classical weak bi-simulation is

extended by the use of an explicit relation to link labels of lts

so that these lts can be rewritten to lts with the same set of la-

bels and compared modulo weak bi-simulation. The defined

approach has been applied to compare task models represent-

ing several interaction techniques in the field of plastic user

interfaces. A domain ontology of interaction techniques and

devices has been proposed to provide the relation which links

labels of the lts representing task models at interaction level.

The application of our approach has been illustrated on two

case studies through which we have shown how to check with

formal tools if a task model designed for an application on a

personal computer platform is equivalent to the task model

designed for the same application but for another platform, a

smartphone, a Touch Pad or a PC. This approach is particu-

larly useful, for instance, to compare design strategies to face

input/output hardware failure in critical interactive systems.

9.2 Discussion

The approach we have proposed relies on two pillars. The

first one is the use of an ontology to model domain proper-

ties. These properties are made explicit in the formalized task

models. The second one relates to the use of formal methods

to check behavior equivalence. Weak bi-simulation is used

for this purpose. The interest of the developed approach is

the separation of concerns. Indeed, the ontology of interac-

tion may evolve independently of the task models definition

without altering the defined approach for checking user in-

terfaces plasticity. The proposed approach is modular, it uses

the ontology to define relations on labels. The ontology may

evolve independently of any application in order to integrate

new devices and/or interaction modes.

However, the work we have presented still require some

methodological improvements out of the scope of this paper.

• The first one consists requiring the existence of an

agreed, shared and consensual ontology for the human-

computer interface domain which plays the role of a

shared standard. This ontology, if available, shall de-

scribe unambiguously, interaction devices, interaction

modes, and basic tasks, etc. Standardization bodies or

UI designers communities can define and manage such

ontologies.

• Then, like for the devices and interaction modes, the

rewriting of labels obeys to domain-specific rules that

shall be expressed in this ontology. A designer may be

able to identify equivalences or subsumptions between

the concepts of the human computer interaction devices

so that he/she can select which label may replace a

given one.

• The use of model checking and exhaustive state explo-

ration for the verification of weak bi-simulation may

lead to the explosion of the number of explored states.

The complexity of the approach relies on the com-

plexity of the weak bi-simulation checking and ontol-

ogy reasoning algorithms. One may observe that the

approach we have developed does not require model

checking as unique verification procedure. Scalable

techniques, like proof based methods, can be set up to

handle this verification.

9.3 Some perspectives

This work opens several research perspectives. First, as for

classical ontology engineering, the ontology used in this pa-

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 23

per shall be consensual and agreed by the UI developers’

community. Second, the definition of the rewriting function

should be automated. We are currently investigating how this

function can be encoded within rewriting systems like Maude

[62] or within logic reasoners like Racer [63] or Pellet [64].

Third, more complex applications should be addressed in or-

der to show how this approach scales up to other interac-

tive systems. Finally, we believe that the provided relational

bi-simulation relationship opens research paths for studying

adaptive systems in general.
Moreover, we also plan to study the case of degradation of

an interactive system and use this approach for process adap-

tation of plastic user interfaces. Furthermore, the application

of this approach in software adaptation and the comparison

of web services composition or orchestration strategies can

be envisaged.

References

1. Thevenin D, Coutaz J. Plasticity of user interfaces: framework and re-

search agenda. In: Proceedings of INTERACT. 1999, 110–117

2. Coutaz J, Calvary G. HCI and software engineering for user interface

plasticity. In: Jacko J A, ed. HCI Handbook: Fundamentals, Evolving

Technologies, and Emerging Applications, 3rd ed. Boca Raton, FL:

CRC Press, 2012, 1195–1220

3. Navarre D, Palanque P, Basnyat S. A formal approach for user interac-

tion reconfiguration of safety critical interactive systems. In: Proceed-

ings of International Conference on Computer Safety, Reliability, and

Security. 2008, 373–386

4. Calvary G, Coutaz J, Bouillon L, Florins M, Limbourg Q, Marucci

L, Paternò F, Santoro C, Souchon N, Thevenin D, Vanderdonckt J.

The cameleon reference framework. Deliverable D1 of the Cameleon

project, 2002

5. Mori G, Paternò F, Santoro C. Tool support for designing nomadic ap-

plications. In: Proceedings of the 8th International Conference on In-

telligent User Interfaces. 2003, 141–148

6. Samaan K. Prise en Compte du Modèle d’Interaction dans le Processus

de Construction et d’Adaptation d’Applications Interactives. Disserta-

tion for the Doctoral Degree. Lyon: Ecole Centrale de Lyon, 2006

7. Limbourg Q, Vanderdonckt J, Michotte B, Bouillon L, López-Jaquero

V. Usixml: a language supporting multi-path development of user in-

terfaces. Engineering HCI and Interactive Systems, 2005, 134–135

8. Palanque P, Paternò F. Formal Methods in Human-Computer Interac-

tion. New York: Springer-Verlag, 1997

9. Hartson H R, Siochi A C, Hix D. The UAN: a user-oriented represen-

tation for direct manipulation interface designs. ACM Transactions on

Information Systems (TOIS), 1990, 8(3): 181–203

10. Rix D, Hartson H. Developping User Interfaces: ensuring Usability

Through Product & Process. New York: John Wiley & Sons, inc., 1993

11. Dix A, Finlay J, Abowd G, Beale R. Human-Computer Interaction.

Upper Saddle River: Prentice Hall, 1993

12. Paternò F, Mancini C, Meniconi S. Concurtasktrees: a diagrammatic

notation for specifying task models. In: Proceedings of the IFIP TC13

Interantional Conference on Human-Computer Interaction. 1997, 362–

369

13. Paternò F, Santoro C. Integrating model checking and HCI tools to help

designers verify user interface properties. In: Palanque P, Paternò F,

eds. Interactive Systems Design, Specification, and Verification. Lec-

ture Notes in Computer Science, Vol 1946. Berlin: Springer, 2001,

135–150

14. Scapin D, Pierret-Golbreich C. Towards a method for task description:

MAD. Work with Display Units, 1989, 89: 371–380

15. Scapin D, Bastien J. Analyse des tâches et aide ergonomique à la con-

ception: l’approche mad*. Analyse et conception de l’IHM, 2001, 85–

116

16. Sybille C, Dominique S, Patrick G, Mickael B, Francis J. Increasing the

expressive power of task analysis: systematic comparison and empir-

ical assessment of tool-supported task models. Interacting with Com-

puters, 2010

17. Chebieb K, Mansour D, Ait-Ameur Y. Analyse et evaluation de pro-

priétés dans les ihm. In: Proceedings of the 7th International Sympo-

sium on Programming and Systems. 2001, 241–252

18. Ait Ameur Y, Kamel N. A generic formal specification of fusion of

modalities in a multimodal HCI. Building the Information Society,

2004, 415–420

19. Palanque P, Bastide R. Petri net based design of user-driven interfaces

using the interactive cooperative objects formalism. In: Paternó F, eds.

Design, Specification and Verification of Interactive Systems. Focus on

Computer Graphics. Berlin: Springer, 1994, 383–400

20. Navarre D, Palanque P, Ladry J F, Barboni E. ICOs: a model-based

user interface description technique dedicated to interactive systems

addressing usability, reliability and scalability. ACM Transactions on

Computer-Human Interaction, 2009, 16(4): 18

21. Paternò F, Mori G, Galiberti R. CTTE: an environment for analysis and

development of task models of cooperative applications. In: Proceed-

ings of CHI ’01 Extended Abstracts on Human Factors in Computing

Systems. 2001, 21–22

22. Ait Ameur Y, Baron M, Kamel N, Mota J M. Encoding a process

algebra using the event B method: application to the validation of

human-computer interactions. International Journal on Software Tools

for Technology Transfer, 2009, 11(3): 239–253

23. Mohand-Oussaïd L, Aït-Sadoune I, Aït-Ameur Y. Modelling informa-

tion fission in output multi-modal interactive systems using event-B.

In: Proceedings of the 1st International Conference on Model and Data

Engineering. 2011, 200–213

24. Duke D, Harrison M D. Event model of human-system interaction.

IEEE Software Engineering Journal, 1995, 10(1): 3–10

25. Brun P. XTL: a temporal logic for the formal development of interac-

tive systems. Formal Methods for Human-Computer Interaction, 1997,

121–139

26. D’Ausbourg B. Using model checking for the automatic validation of

user interface systems. In: Proceedings of Eurographics Workshop on

Design, Specification, and Verification of Interactive Systems. 1998,

242–260

27. Ait Ameur Y, Kamel N. A generic formal specification of fusion of

modalities in a multimodal HCI. In: Jacquart R, eds. IFIP World Com-

puter Science. 2004, 415–420

24 Front. Comput. Sci.

28. Milner R. A Calculus of Communicating Systems. Secaucus, NJ:

Springer-Verlag New York, Inc., 1982

29. Lotos I S O. A formal description technique based on the tempo-

ral ordering of observational behaviour. International Organisation for

Standardization-Information Processing Systems — Open Systems In-

terconnection, Geneva, 1988

30. Dictionary C. Cambridge Dictionaries Online, 2002

31. Vanderdonckt J, Grolaux D, Van Roy P, Limbourg Q, Macq B, Michel

B. A design space for context-sensitive user interfaces. In: Proceedings

of IASSE, 2005, 207–214

32. Johnson J A, Nardi B A, Zarmer C L, Miller J R. ACE: building in-

teractive graphical applications. Communications of the ACM, 1993,

36(4): 40–55

33. Kawai S, Aida H, Saito T. Designing interface toolkit with dynamic se-

lectable modality. In: Proceedings of the 2nd Annual ACM Conference

on Assistive Technologies. 1996, 72–79

34. Crease M. A toolkit of resource-sensitive, multimodal widgets. Univer-

sity of Glasgow, 2001

35. Bier E A, Stone M C, Pier K, Buxton W, DeRose T D. Toolglass and

magic lenses: the see-through interface. In: Proceedings of the 20th

Annual Conference on CGIT. 1993, 73–80

36. Stuerzlinger W, Chapuis O, Phillips D, Roussel N. User interface

façades: towards fully adaptable user interfaces. In: Proceedings of the

19th Annual ACM Symposium on User Interface Software and Tech-

nology. 2006, 309–318

37. Demeure A, Calvary G, Coninx K. Comet(s), a software architecture

style and an interactors toolkit for plastic user interfaces. In: Graham T,

Palanque P, eds. Interactive Systems. Design, Specification, and Verifi-

cation. Lecture Notes in Computer Sciences, Vol 5136. 2008, 225–237

38. Jabarin B, Graham T C M. Architectures for widget-level plasticity. In:

Proceedings of International Workshop on Interactive Systems. Design,

Specification, and Verification of Interactive Systems. 2003, 451–460

39. Stanciulescu A. Methodology for Developing Multimodal User Inter-

faces of Information Systems. Leuven: Presses univ. de Louvain, 2008

40. Samaan K, Tarpin-Bernard F. The AMF architecture in a multiple user

interface generation process. In: Proceedings of Developing User In-

terfaces with XML. 2004

41. Dery-Pinna A M, Fierstone J, Picard E. Component model and pro-

gramming: a first step to manage human computer interaction adapta-

tion. In: Proceedings of International Conference on Human-Computer

Interaction with Mobile Devices and Services. 2003, 456–460

42. De Oliveira K M, Bacha F, Mnasser H, Abed M. Transportation ontol-

ogy definition and application for the content personalization of user

interfaces. Expert Systems with Applications, 2013, 40(8): 3145–3159

43. Sonnenberg J. Service and user interface transfer from nomadic devices

to car infotainment systems. In: Proceedings of the 2nd International

Conference on Automotive User Interfaces and Interactive Vehicular

Applications. 2010, 162–165

44. Dees W. Usability of nomadic user interfaces. In: Jacko J, eds. Human-

Computer Interaction. Towards Mobile and Intelligent Interaction En-

vironments Lecture Notes in Computer Science, Vol 6763. Berlin:

Springer, 2011, 195–204

45. Masson D, Demeure A, Calvary G. Examples galleries generated by

interactive genetic algorithms. In: Procedings of the 2nd Conference

on Creativity and Innovation in Design. 2011, 61–71

46. Pierre D, Marc D, Philippe R. Ubiquitous widgets: Designing interac-

tions architecture for adaptive mobile applications. In: Proceedings of

International Conference on Distributed Computing in Sensor Systems.

2013, 331–336

47. Demeure A. Modèles et outils pour la conception et l’exécution

d’Interfaces Homme-Machine Plastiques. Dissertation for the Doctoral

Degree. Grenoble: Université Joseph Fourier, 2007

48. Gruber T R. A translation approach to portable ontology specifications.

Knowledge Acquisition, 1993, 5(2): 199–220

49. Jean S, Pierra G, Ait Ameur Y. Domain ontologies: a database-oriented

analysis. In: Filipe J, Cordeiro J, Pedrosa V, eds. Web Information Sys-

tems and Technologies. Lecture Notes in Business Information Pro-

cessing, Vol 1. Berlin: Springer, 2007, 238–254

50. Demeure A, Calvary G. Le modèle d’évolution en plasticité des in-

terfaces: apport des graphes conceptuels. In: Actes de la 15ème

conférence francophone IHM 2003. 2003, 80–87

51. Rekimoto J. Pick-and-drop: a direct manipulation technique for multi-

ple computer environments. In: Proceedings of the 10th Annual ACM

Symposium on User Interface Software and Technology. 1997, 31–39

52. Constantine L L. Canonical abstract prototypes for abstract visual and

interaction design. In: Proceedings of International Workshop on De-

sign, Specification, and Verification of Interactive Systems. 2003, 1–15

53. Milner R. Communication and Concurrency. Upper Saddle River, NJ:

Prentice-Hall, Inc., 1989

54. Chebieb A, Ait-Ameur Y. Formal verification of plastic user interfaces

exploiting domain ontologies. In: Proceedings of the 9th International

Symposium on Theoretical Aspects of Software Engineering. 2015,

79–86

55. Ait Ameur Y, Ait Sadoune I, Mota J M, Baron M. Validation et

vérification formelles de systèmes interactifs multi-modaux fondées

sur la preuve. In: Proceedings of the 18th International Conference

of the Association Francophone d’Interaction Homme-Machine. 2006,

123–130

56. Buxton W. A three-state model of graphical input. In: Proceeding of

Human-Computer Interaction-INTERACT. 1990, 449–456

57. Card S, Mackinlay J D, Robertson G. The design space of input de-

vices. In: Proceedings of the ACM Conference on Human Factors in

Computing Systems, Multi-Media. 1990, 117–124

58. Frohlich D. The design space of interfaces. In: Proceeding of the 1st

Eurographics Workshop on Multimedia Systems, Interaction and Ap-

plications. 1991

59. Dragicevic P, Fekete J D. Support for input adaptability in the icon

toolkit. In: Proceedings of the 6th International Conference on Multi-

modal Interfaces. 2004, 212–219

60. CADP-Team. http://cadp.inria.fr, 2013

61. Ait-Ameur Y, Chebieb A. A formal model to check systems substi-

tutability: an application to interactive systems. Technical Report. 2013

62. Clavel M, Duràn F, Eker S, Lincoln P, Martì-Oliet N, Meseguer J, Que-

sada J. Maude: specification and programming in rewriting logic. The-

oretical Computer Science, 2002, 285(2): 187–243

63. Haarslev V, Möller R. Description of the RACER system and its appli-

cations. Description Logics, 2001, 49

64. Bijan S E P. Pellet: an owl DL reasoner. In: Proceedings of Interna-

tional Workshop on Description Logics. 2004, 6–8

Abdelkrim CHEBIEB et al. A formal model for plastic human computer interfaces 25

Abdelkrim Chebieb is an assistant profes-

sor and PhD candidate at Computer Sci-

ence School for Engineers (ES), Algeria.

He got his MS and BS in computer sci-

ence (Hardware and Software systems) at

the Mouloud Mammeri University of Tizi-

Ouzou, Algeria.

Yamine Ait Ameur is a professor at

the Polytechnique National Institute in

Toulouse (INPT-ENSEEIHT), France. He

is a member of the ACADIE research team

at IRIT Computer Science Research Insti-

tute in Toulouse, France. Formal modeling

is in the heart of his research activities. For-

mal methods in particular refinement and

proof based methods and ontology based modeling are his main top-

ics of interest.

