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Abstract

A specification and verification methodology for Distributed
Shared Memory (DSM) consistency models specifically weak
consistency model is proposed. For this, we designed and
implemented abstract DSM System. In DSM system, sequential
consistency unnecessarily reduces the performance of the
system because it does not allow to reorder or pipeline
the memory operations. Relaxed memory consistency allows
reordering of memory events and buffering or pipelining of
memory accesses. So that relaxed consistency improves the
performance of the DSM system. For any critical system,
it is very important to develop methods that increase our
confidence in the correctness of such systems. One of such
methods for checking the correctness of critical system is for-
mal verification. For verification of weak consistency models
we specify the weak consistency properties and are verified on
Abstract DSM System using CADP Tool box.

1. INTRODUCTION

Today, hardware and software systems are widely used in
applications where failure is unacceptable. We frequently read
of incidents where some failure occurred due to error in a
hardware or software system. For reliable systems, it is very
important to develop methods for correctness of such systems.
The principal validation methods for complex systems are sim-
ulation, testing, deductive verification, and model checking [1].
Simulation is performed on an abstraction or a model of the
system, testing is performed on the actual product. In both
cases, we will give certain inputs and observe corresponding
outputs. Deductive verification consists of axioms and proof
rules to prove the correctness of systems. The importance
of deductive verification is widely recognized by computer
scientists. Deductive verification is a time consuming process
that can be performed only by experts who are educated in
logical reasoning and have considerable experience. Conse-
quently, use of deductive verification is rare. An advantage
of deductive verification is that it can be used for reasoning
about infinite state systems. Model checking is a technique for
verifying finite state concurrent systems. One benefit of this
restriction is that verification can be performed automatically.
The procedure normally uses an exhaustive search of the state
space of the system to determine if some specification is true or

not. The procedure will always terminate with yes/no answer.
Model checking consists of modeling, specification and verifi-
cation steps. An exciting new research direction [2] attempts to
integrate deductive verification and model checking, so that the
finite states of complex systems can be verified automatically.

As the need for more computing power demanded by new
applications constantly increases, systems with multiple pro-
cessors are becoming a necessity. The gap between processor
and memory speed is apparently widening, and that is why the
memory system organization becomes one of the most critical
design decisions to be made by computer architects. According
to the memory system organization, systems with multiple
processors can be classified into two large groups: shared
memory systems and distributed memory systems. In a shared
memory system (SMS) [3] (often called a tightly-coupled
multiprocessor), a single global physical memory is equally
accessible to all processors. The advantage of SMS is very
simple and easy to program. However, they typically suffer
from increased contention in accessing the shared memory,
especially in single bus topology, which limits their scalability.
In addition to that, the design of the memory system tends
to be more complex. A distributed memory system (often
called a multicomputer) consists of a collection of autonomous
processing nodes, having an independent flow of control and
local memory modules. Communication between processes
residing on different nodes is achieved through a message
passing model, via a general interconnection network. Such
a programming model imposes significant burden on the pro-
grammer, and induces considerable software overhead. On the
other hand, these systems are claimed to have better scalability
and cost-effectiveness.

A distributed shared memory (DSM) [4] tries to combine
the best of these two approaches. A DSM system logically
implements shared memory model on a physically distributed
memory system. This approach hides the mechanism of com-
munication between remote sites from the application writer,
so the ease of programming and the portability typical for
shared memory systems, as well as the scalability and cost-
effectiveness of distributed memory systems, can be achieved
with less engineering effort.

In this work, we formally verified some of the weak
consistency properties of distributed shared memory model.
We modeled an abstract distributed shared memory system
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Fig. 1: Structure and Organization of a DSM system

which captures the behavior of a distributed shared memory.
We specified the abstract DSM in LOTOS and verified some
of the properties related to weak consistency model of DSM
with the help of CADP tool box. During our experiment it
is observed that CADP tool box can handle a reasonably big
system for specification and verification.

The rest of the paper is organized as follows: We present
some work related to distributed shared memory, its con-
sistency models and verification of consistency model of
distributed shared memory in Section 2. Section 3 presents
a brief overview of CADP tool box. In Section 4, we present
the design and implementation issues of abstract DSM system.
The issues related to specification and verification of weak
consistency properties with the help of CADP tool box is
presented in Section 5. Finally Section 6 briefly explains the
conclusion of our work.

2. RELATED WORK

A DSM system generally involves a set of nodes or clusters,
connected by an interconnection network is shown in Figure 1.
A cluster itself can be uniprocessor or a multiprocessor system,
usually organized around a shared bus [5]. Private caches
attached to processors are virtually inevitable for reducing
memory latency. Each system cluster contains a physical local
memory module, which maps partially or entirely to the
DSM globally address space. Regardless of topology - bus,
ring, mesh or local area network - a specific interconnection
controller in each cluster connect it into the system. In
order to reduce average access time to the shared data, we
replicate some data in multiple copies that reside in different
memory locations. When multiple copies of same data exist,
modification of one copy makes other copies stale. So we
have to invalidate or update the other copies. In order to
maintain consistent data we have to follow consistency model
and choosing consistency model is one of the key issue in
DSM systems.

The memory consistency model [6] defines the legal order-
ing of memory references issued by a processor, as observed
by other processor. The memory consistency models basically

divided into two types, i.e., Strong Consistency and Relaxed
Consistency. Different types of parallel applications inherently
require various consistency models. The modelÊs restrictive-
ness largely influences the system performance in executing
these applications. Stronger forms of the consistency model
typically increase memory access latency and bandwidth re-
quirements, but it simplifies programming. Looser constraints
in more relaxed models, which allow memory reordering,
pipelining, and overlapping, consequently improve perfor-
mance, at the expense of higher programmer involvement
in synchronizing shared data accesses. For optimal behavior,
systems with multiple consistency models adaptively applied
to appropriate data types have recently emerged. Stronger
memory consistency models that treat synchronization ac-
cesses as ordinary read and write operations are sequential
and processor consistency. More relaxed models that dis-
tinguish between ordinary and synchronization accesses are
weak, release, lazy release, and entry consistency. The Weak
Consistency (WC) model was proposed by Dubois et al. [7]. In
WC model, memory accesses are divided into ordinary shared
accesses and synchronization accesses. The performance of
WC models heavily depends on synchronization rate in the
user code [8]. If the synchronization rate is less in user code
then the performance of weak consistency is equivalent to
release consistency. The disadvantage in WC Model is all syn-
chronization accesses must be identified by the programmer or
the compiler.

We have mentioned closely related work, pertaining to
finite-state verification of protocols with respect to consistency.
Graf [9] introduced a verification approach for sequential
consistency. They gave a set of properties expressible as
temporal logic formulas such that any system satisfying them
is a sequential consistent memory. Then, they verified these
properties on a distributed cache memory by means of veri-
fication method. Our approach is similar to GrafÊs approach.
Rob Gerth [10] proposed a very similar approach to ours, using
a lazy caching algorithm and sequential consistency.

Henzinger et al. [11] proposed an approach for verifying
sequential consistency on shared-memory multiprocessor sys-
tems. They verified sequential consistency of memory systems
with an arbitrary number of processors, locations and data
values using a model checker. They have considered two
specific memory protocols, namely the lazy caching protocol
and a snoopy cache coherence protocol. Shaz Qadeer [12]
proposed an approach for verifying sequential consistency on
shared memory multiprocessor systems by model checking.
They presented a model checking algorithm to verify sequen-
tial consistency on systems for a finite number of processors,
memory locations and an arbitrary number of data values.
Condon et al. [13] proposed a verification approach based on
logical clocks for verification of sequential consistency.

Recently, P. Chatterjee et al. [14] proposed an approach for
specification and verification framework for developing weak
shared memory consistency protocols. They applied the pro-
posed method to four snoopy-bus protocols for implementing
aspects of the Alpha and Itanium memory models. Ghughal et
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al. [15] proposed an approach for verification of weak shared
memory consistency models. They constructed an architectural
testing programs similar to those constructed by Collier suited
for weaker memory models. Their work was mainly focused
on architectural tests for weaker memory models and the new
abstraction methods to construct test automata for weaker
memory models. P. Chatterjee et al. [16] proposed a formal
approach to verify protocol implementation models against
weak shared memory models through refinement checking
supported by a model checker. They verified four different
alpha and Itanium memory model implementation against
their respective specifications. They used it to check for the
existence of a refinement mapping between an implementation
model and an abstract model.

3. CADP TOOLS OVERVIEW
CADP [17] (Construction and Analysis of Distributed Pro-
cesses) is a popular toolbox for the design of communication
protocols and distributed systems. CADP is developed by
the VASY team at INRIA, France. LOTOS (Language Of
Temporal Order Specification) is a specification language that
has been specifically developed for the formal description of
the OSI (Open Systems Interconnection) architecture, although
it is applicable to distributed, concurrent systems in general.
We will write high level protocol description in LOTOS. The
CADP tool box contains various closely interconnected tools:
CAESAR is a compiler that translates the behavioral part of a
LOTOS specification into Labelled Transition System (LTS).
CAESAR.ADT compiler translates the data part of LOTOS
specifications into libraries of C types and functions. ALDE-
BARAN is a tool to convert LOTOS program to LTS in aut
format. XTL (eXecutable Temporal Language), a Functional-
like programming language designed to allow an easy, com-
pact implementation of various temporal logic operators. EU-
CALYPTUS is a graphical user interface written in Tcl/Tk
that integrates CADP. SVL (Script Verification Language), is a
scripting language that targets at simplifying and automating
the verification of LOTOS programs. EVALUATOR is an on-
the-fly model checker for regular alternation-free mu-calculus
formulas on Labeled Transition Systems.

4. DESIGN AND IMPLEMENTATION OF ABSTRACT DSM
SYSTEM

The architecture of Abstract DSM System Mdsm is depicted
in Figure 2. Mdsm consists of a DSM address space and n

processors, each processor associated with local DSM portion.
Each local Memory Mi contains a part of DSM memory and
has two queues associated with it: out-queue Outi in which
PiÊs write requests are buffered and in-queue Ini in which
pending local DSM updates are stored. The arrows indicate
the information flow from out-queue to in-queue and DSM.

The data structures include DSM Address Space and n pairs
of unbounded FIFO queues, Ini and Outi. The entries in these
queues are either (data, address) or (data, address, ∗), where
∗ stands for either 0 or 1. Here 0 indicates that the entry is
written by some other processor and the updation done by

Fig. 2: Architecture of Abstract DSM System Mdsm

the processor itself is denoted by 1. We define the following
operations to be performed on these queues:

• append(queue, item) adds item as the last entry in queue.
• first(queue) returns the first entry in queue.
• tail( queue) returns the result of removing first(queue)

from queue.
• { } denotes the empty queue.
• queue[i] denotes the ith element of queue where

queue[0]=first(queue).

The initial state of Mdsm are those states in which all queues
are empty.

In our program formalism, the abstract DSM system can
be described as a set of processes of the form P1 ||| P2

||| P3 |||·····||| Pn where each process Pi is defined as follows.

Process Name: Pi

Variables:
Input: a: address, d: datum
Local: Mi: memory of address × datum

(local memory)
Outi: buffer of address × datum, i: index
Shared: Ini: buffer of address × datum × boolean,

i: index
DSM: memory of address × datum

(Distributed Shared Memory)
Transitions:

init: ∀a ∈ address ∧ empty(Outi) ∧ empty(Ini)
∧holds(Mi, (a, null)) ∧ holds(DSM, (a, null))

writei(a, d): append(Outi, (a, d), Out
′

i)
readi(a, d): empty(Outi) ∧ notBoolOne(Ini) ∧

holds(Mi, (a, d))
mwi(a, d): first(Outi,(a, d)) ∧ tail(Outi ,(a, d), Out

′

i) ∧
update(DSM, (a, d), DSM

′

) ∧
∀k∈index · append(Ini, ((a, d), i=k), In

′

i)
mri(a, d): holds(Mi, (a, null)) ∧ holds(DSM, (a , d)) ∧

¬isin( Ini, ( a, d)) ∧ append( Ini,((a,d),0), In
′

i)
dui(a, d): first(Ini,(a,d)) ∧ tail(Ini,(a ,d),In

′

i) ∧
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update(Mi,(a,d),M
′

i )
dli(a): clear(Mi,a,M

′

i )
sync: empty(Outi) ∧ empty(Ini)

Explanation for the functions used above is given here:

• update(Mi,(a,d),M
′

i ): updates at address location a in
local memory Mi with datum d. We indicate the local
memory after update as M

′

i .
• notBoolOne(Ini): if Ini queue contains an entry of the

form (∗, ∗, 1) then it returns false, otherwise it returns
true.

• holds(Mi,(a,d)): determines at address location a contains
datum d in local memory Mi, if an entry available then
it returns true, otherwise it returns false.

• isin(Ini,(a,d)): returns true value if an entry (a,d) is
available somewhere in queue Ini.

• clear(Mi,a,M
′

i ): sets datum to null at address a in local
memory Mi.

Process Pi wants to perform a write operation then add
an entry (a, d) to Outi queue. Process Pi wants to perform a
read operation then Outi queue must be empty and Ini queue
doesnÊt have an entry of the form (∗, ∗, 1) and local memory
Mi contains an entry (a, d), and then read operation proceeds
further. For memory write operation of process Pi, removes an
entry from Outi queue and updates its value in DSM global
address space and then add an entry in all remaining processes
In queues with an entry (a, d, 0) and add an entry (a, d, 1)
to In queue of process Pi. Process Pi wants to perform a
memory read operation, DSM global memory has an entry (a,
d) and local memory Mi doesnÊt have value at address location
a and process Pi In queue doesnÊt have an entry (a, d) then
add an entry (a, d, 0) to In queue of process Pi. To perform
process PiÊs local memory update operation, removes an entry
from In queue of Process Pi and update its local memory Mi.
For local memory invalidate operation, we just clear the entry
(a, d) in local memory Mi. For synchronization operation
we have to complete all operations that are there in both
Ini and Outi queues. If we want to perform sync operation
Ini and Outi queues must be empty. LOTOS also provides
built in synchronization operation to perform synchronization
between processes. Just, we have to mention where we want
synchronization between processes. For example, we want
synchronization between Process Pi and process Pj at write

operation, then we mention this as Pi |[write]| Pj .

5. SPECIFICATION AND VERIFICATION OF WEAK
CONSISTENCY PROPERTIES

To verify weak consistency properties of DSM system, we
need to specify weak consistency properties in temporal logic.
This is one way of verification of properties. Another way of
verification of properties is to identify the states involved in the
properties that we want to verify, and then hide all the states in
abstract DSM LTS except those states required in that property.
After that, apply strong reduction on abstract DSM system.
Then, we describe that property in states and transitions.

Compare Observational Equivalence of abstract DSM system
and property written in aldebaran format. SVL provides these
features, i.e., comparison of observational equivalence and
strong reduction. If these two systems are observationally
equivalent then it terminates with TRUE, otherwise property
is not satisfied some where in the system and terminates with
FALSE. Third way of verifying the properties is to write
property in temporal logic either in XTL or mu-calculus form.
Then, SVL provides facility to verify that property written in
temporal logic directly in LOTOS program. We verified weak
consistency properties in several ways.

For weak consistency model of distributed shared memory,
we have specified the following properties and verified for the
abstract model of our distributed shared memory model:

Property P1: Whenever process Pi writes some
value then process Pj wants to read the same
value then Process Pj has to get the latest value
written by process Pi. We will say this as in every
process writei(a, d) has occurred, then readj (a,
d) has to wait until (a, d) available, where index
i indicate the process Pi performing the event,
where a is address of the memory element and d is
data element. Formal specification of this property is:

(P1) ∀(a,d) ∈ address × data, ∀i ∈ index
init⇒AG[after(write(a,d)) ⇒

(¬enable(read(a,d)) U avail(a,d))]

Property P2: Whenever process Pi has been
written some value then local memory has to
update it. We will say this property as whenever
process Pi performed writei(a, d) operation then
local memory updates dui(a, d) has to occur in the
future states. Formal specification of this property is:

(P2) ∀(a,d) ∈ address × data, ∀i ∈ index
init⇒AG[after(write(a,d)) ⇒ AF(du(a,d))]

Property P3: Third property of weak consistency
is before an ordinary READ or WRITE access
is allowed to perform with respect to any other
processor; all previous synchronization accesses
must be performed. Whenever we want to access
ordinary READ or WRITE access all previous
synchronization accesses must be completed.
Synchronization accesses must be identified by the
programmer or compiler in weak consistency. We
need to ensure that data must be consistent at those
synchronization accesses. Formal specification of
this property is:

(P3) ∀(a,d) ∈ address × data, ∀i ∈ index
init⇒AG[before(read(a,d) ∨ write(a,d)) ⇒
A(avail( prev( sync )))]
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Property P4: Before synchronization access is
allowed to perform with respect to any other
processor; all previous ordinary READ and
WRITE accesses must be performed. Formal
specification of this property is:

(P4) ∀(a,d) ∈ address × data, ∀i ∈ index
init⇒AG[before(sync) ⇒
avail(prev(read(a,d) ∧ write(a,d)))]

We verified these properties in three ways. In first method,
Properties are written in mu-calculus form. Caesar compiler
convert LOTOS program of abstract DSM system into LTS
System. Evaluator is an on-the-fly model checker for regular
alternation-free mu-calculas formulas on LTS. With the help of
Evaluator model checker, we verified the properties in LTS. In
second method, Caesar compiler translates the abstract DSM
system described in LOTOS to LTS in BCG format. Then, hide
all the states except those states which involve the operations
required for that property in the LTS of the DSM. After that,
we applied strong reduction on LTS System. We describe the
properties in Aldebaran format (.aut). Aldebaran form involves
states and transitions, and then we compare the observational
equivalence of these two systems. In third method, properties
are specified in mu-calculus and verified on DSM in LOTOS
format. SVL provides the facility to verify property written
in mu-calculus directly on LOTOS program. We wrote script
file for entire process of verification for weak consistency
properties of abstract DSM system in .svl form.

We have modeled the abstract DSM system in LOTOS and
used the CADP tool set to verify some of the properties
on the abstract model of DSM. During our experiment we
have modeled the DSM with different number of processors
involved in the system. We look for the handling capabilities
of the CADP tool set. We have gone up to 40 number
of processors in the DSM system, which is a reasonably
good number in distributed environment. The outcome of the
experiment is tabulated in the Table 1. The first column of the
table shows the number of processors in the distributed system.
The second and third columns indicate the number of states
involve in the system. We have performed the experiment in
two different ways. First one is related to the number of states
in the system which is given in column two and the other one
is performed with strong reduction on the system. the number
of states in the system after application of strong reduction is
presented in column three. There is a considerable reduction of
states after application of strong reduction. Similarly columns
four and five show the number of transitions in the system
before and after application of strong reduction respectively.
Column six and seven indicate the memory requirement to
store the abstract model of DSM before and after application
of strong reduction respectively. It is observed that CADP tool
set can handle DSM system with reasonably good number of
processors involved in the distributed system.

TABLE 1: RESULTS WITH INCREASED NO. OF PROCESSORS

No. of States Transitions Size(in KB)
Processors Before After Before After Before After

3 25 12 110 24 3.1 2.5
4 41 22 212 53 4.0 2.7
5 76 44 403 228 4.8 3.1

10 236 159 1366 828 11.2 8.4
20 662 493 4281 3314 21.3 14.8
30 1142 865 7549 6094 31.4 22.1
40 2086 1704 13867 11981 40.8 29.7

6. CONCLUSION

We have designed and implemented abstract Distributed
Shared Memory (DSM) system. In DSM system, data con-
sistency is one of the key issues. We have to maintain con-
sistent data when multiple processors are accessing the shared
memory. Consistency models ensure that data are consistent
and for correctness of consistency models, verification is
important. We have modeled an abstract DSM system in
CADP tool set and verified some of the properties related to
weak consistency model of distributed share memory. In our
experiment we have observed that CADP tool set is a powerful
modeling environment for specification and verification of
distributed and concurrent system. It can handle reasonably
large system. Our model can be extended to verify the release
consistency model of distributed shared memory. Programmer
has to identify the all synchronization operations in weak
consistency. These synchronization operations further divided
to ACQUIRE and RELEASE operations in release con-
sistency. In release consistency, it gives some more relaxation
of memory reordering and pipelining such that it will perform
much better than weak consistency.
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