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Abstract—A well-founded testing theory encourages the
practical application of test case generation techniques. This
aims at overcoming the ever increasing complexity of software-
enabled systems in the automotive industry. In this article
we report on transforming UML Statecharts to the formal
language LOTOS. The successful usage of UML Statecharts in
our industrial setting and the availability of mature research
prototypes for test case generation supporting LOTOS suggest
this transformation. Our transformation manages to preserve
the semantics of the UML Statechart, allows for treatment of
UML-like events, addresses the communication between vari-
ous models and likewise preserves the atomicity of transitions
in the UML Statechart. Moreover, we present first results on
the test case generation for our industrial application.
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I. INTRODUCTION

This article reports on an applied research project address-

ing the introduction of test case generation techniques in the

automotive industry. One of the project goals is to establish

a scalable test generation technique that allows various

test strategies (coverage-based, scenario-based, random, and

fault-based). Another goal is to integrate the test generation

technique with the existing test automation environment and

with the test engineer’s domain experience. Thus it is of

uttermost importance to rely on familiar and industry-proven

diagrammatic notations - in our specific setting this refers to

modeling the system behavior by means of UML statcharts.
We have decided to harness the well-founded testing the-

ory behind IOLTS (input-output labeled transition systems)

and rely on the mature research prototype TGV [1]. The

primary input language of TGV is LOTOS [2] (Language

of Temporal Ordering Specification).
In this article we report on the challenges in providing a

semantics-preserving model transformation obtained on an

industry example. Section II presents our industry example.

Section III gives an introduction to the LOTOS language

while in section IV we introduce the transformation rules

used to derive the LOTOS specification from the UML

statechart. Section V addresses model transformation and its

challenges. Section VI contains first experimental results ob-

tained by applying a coverage-based test generation strategy

on the stated industry example. In section VII we discuss

related research and section VIII concludes our paper.

Figure 1. Model Communication Structure

II. MODEL DESCRIPTION

Statechart diagrams are used to visualize state machines

and belong to the category of UML behavioral diagrams.

As the statechart formalism is well known, we will not go

into details on this topic. Detailed descriptions of this type

of diagrams can be found in the many books written about

UML or in the UML standard [3].

The behavior of the considered system is described by

means of UML models [3] representing the diagnosis func-

tionality in modern vehicles. Its purpose is to store the type,

occurrence and origin of errors.

Since the diagnosis functionality is distributed over many

ECUs, the description of its behavior is also modeled by

communicating UML models. The model communication is

based on message passing with the possibility to transfer

data as message parameters. The models can be grouped

(compare figure 1) by the functionality they provide:

1) Environment Models: Environment models describe

the state of the environment by gathering data from

the bus communication or sensors.

2) Functional Models: A functional model describes

the behavior of an ECU. It comprises the formal

specification of the Input/Output communication and

error detection routines.

3) Error Handling Models: This model defines how a

detected error is treated. It specifies which conditions

have to be fulfilled to create an entry in the error

memory.

Figure 1 illustrates the connections and dependencies

between the models. The functionality, which is to be tested

in this setting, is given by the Diagnosis model.
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Figure 2. Diagnosis model

In figure 2 the model of the diagnosis functionality

is shown. It consists of five states and accepts four

messages namely evErrorActive, evErrorNotActive, evRe-
questErrorMemoryClear and evSetGwUnlearnCounterCopy.

The state S NotActive NotStored corresponds to nor-

mal functioning when no error has been detected. Af-

ter an error is detected, the system moves to the state

S Active NotStored which means that an error has been

detected but is not yet stored. The error is stored after

receiving five evErrorActive events and the system moves

to the S ActiveStored state. This means that the real ECU

has now stored an error in its buffer which can be read out

with dedicated diagnosis hardware. The diagnosis module

shall leave this state and move to the S NotActive Stored
state only after receiving an evErrorNotActive event.

Figure 3 specifies the required pre-conditions for recog-

nizing an error in the system behavior: The first condi-

tion, which can be identified, states that the ignition has

to be switched on for at least three seconds before an

error will be detected. When the MainUnit model is in

the S Communication Observation On state, the message

evBAPHeartBeatStatus has to be received before the timeout

transition is fired and the evErrorActive event is sent.

III. LOTOS INTRODUCTION

LOTOS [2] is a formal description technique developed

within ISO for the formal specification of open distributed

systems. LOTOS is composed of an process algebraic part

based on Milner’s Calculus of Communicating Systems and

on Hoare’s Communicating Sequential Processes [4], and a

data algebraic part based on the abstract data type language

ACT ONE.

Figure 3. Main unit model

A LOTOS specification is composed of processes that

represent the abstraction of an activity in an implementation.

These processes communicate with other processes through

a communication mechanism that in LOTOS is termed an

event gate (or just gate). This is an abstraction of an interface

in an implementation. Below, the structure of a process is

presented:

process name proc [gate list] (parameter list) :

functionality

behavior
behavior expression

where
type definitions

process definitions

endproc

Processes are specified through behavior expressions,

which represent the state of a process. A predefined set

of operators is used to combine behavior expressions to

form other behavior expressions. Below some of the most

important LOTOS operators are presented:

• The sequentiality operator “;”, called action prefix
composes an action g with a behavior expression B

to describe a system that will initially accept action g

behaving afterwards as B.

• Choice “[ ]” composes two alternative behaviors

describing a system that offers to the environment

two alternatives. An example would be: (Car started;

DRIVE) [ ] (Car broken; WALK)

• The full synchronization: “||” operator denotes the

fact that the events which occur in either of the be-

havior expressions have to synchronize. The expression

(a;b;X)||(a;b;Y) may engage in the sequence of events
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a;b... .

• The interleaving operator “|||” allows behaviors

to unfold completely independently in parallel. The

behavior expression (a;b;c;P) ||| (x;y;T) includes the

behaviors: a;x;y;b;c... and a;b;x;c;y... etc.

• Partial synchronization: “|[< gates >]|” means that

concurrent behaviors synchronize on the gates listed in

the operator. Thus, events occurring at gates in the list

will synchronize while the ones occurring at gates not

in the list will interleave. The behavioral expression

(a;b;c;P) |[b]| (b;y;T) offers the behaviors a;b;y;c... and

a;b;c;y... .

• Inaction: “stop” represents a system that can not show

any action.

IV. MODEL TRANSFORMATION

This section describes the transformation rules used to

derive a LOTOS specification from an UML statechart

description of a system.

A first step of the transformation is that the variables used

inside the statechart which are actually the attributes of the

class representing the ECU are mapped to LOTOS process

parameters while the triggering events are mapped to gates.

A. Transforming Composite States

For each composite state [3] a new LOTOS process is cre-

ated. For every composite state that does not have a nested

history node, the resulting process definition is presented

below. The description uses the Extended BackusNaur Form.

process “STATE ID”“[”< gate list >“]”

“(”< param list >“):”“noexit” “:=”

< substate id >“[”< gate list >“]”

“(”{< param name >}“)”

endproc

Here < gate list > is the list of gates corresponding

to the events in the statechart, < param list > are the

parameters to which the variables in the statechart were

mapped to and < substate id > is the name of the process

generated for the substate targeted by the default transition

[3] in the composite state.

For every History pseudostate in the statechart, a new

process parameter is inserted in the LOTOS specification.

The inserted parameter is used to keep track of the last active

state in the statechart. Thus the resulting process definition

of a composite state containing a History pseudostate is:

process “STATE ID”“[”< gate list >“]”

“(”< param list >“):”“noexit” “:=”

< behavior expression >
endproc
< behavior expression > :=

“[”< hst >“=” < sid >“] ->”

”< substate id >“[”< gate list >“]”

“(”{< param name > }“)”

{ “[ ]” < behavior expression > }
< gate list >:= {< gate name >

{“,” < gate name >}}
< param list >:=< param name >“:”

< param type >
{< param name >“:”< param type >}

< substate id >:=
“SUBSTATE ID1”| ... | “SUBSTATE IDn”

< param type >:=”NAT ” | ”BOOLEAN” |...
< gate name >:=“GATE1” | ... | “GATEg”

< param name >:=“PARAM1” |...| “PARAMp”

< sid >:=“1” | “2” |...| “n”

< hst >:=“HST1” | “HST2” | ... | “HSTm”

In the definition of < sid >, n denotes the number

of states nested inside the composite state. For simplicity

reasons it is assumed that the name of the gate GATEi

also contains the possible parameters of the events in the

statechart mapped as gate events.

In figure 2, the state S Diagnose Model Message is a

composite state that contains a History node.

Example 1: process S Diagnose Model Message

[gates](parameters list): noexit:=

[HST1 = 1] − > DM S NotActive NotStored

[gates](parameters)

[ ]

[HST1 = 2] − > DM S NotActive NotStored

[gates](parameters)

.....

endproc

In the above example gates is used to represent the

gates (events in the original model), parameters list is

the placeholder for the list containing the names and the

data type of the variables used in the statechart, while

parameters represent the list containing just the names of

the variables (without the data type).

B. Transforming Simple States
Simple states are also mapped to LOTOS processes.

Completion transitions [3] shall be fired as soon as their

guards evaluate to true.

In order to model this kind of behavior, a conjunction of

the negated guards of the completion transitions is added as a

guard that restricts the behavior in the resulting LOTOS pro-

cess. The obtained behavior is that the gates corresponding

to non completion transitions are offered to the environment

only if the added guard evaluates to true (no completion

transition can be fired).

Conflicts between transitions that are fired by the same

event and are at different nested levels in the statechart are

resolved in a manner similar to the completion transition

issue presented above. The structure of the resulting process

is presented below:
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process “STATE ID”“[”< gate list >“]”

“(”< param list >“):”“noexit”“:=”

{
“[not”< compl guard >

{“and” “not”< compl guard > }“] -> ”

“(”

< gate name >“[”< ev guard >
{“and”“not”< ev guard > }“];”

< state id >
“[”< gate list >“]” “(”{< param name > }“)”

{“[ ]”

< gate name >{“[”< ev guard >
{“and”“not”< ev guard > }“];”}

< state id >“[”< gate list >“]”

“(”{< param name > }“)”}
“)”}
}
{“[ ]”

“[”< compl guard > “] -> ”

< gate name >“;”

< state id >“[”< gate list >“]”

“(”{< param name > }“)” }
endproc

The “COMPL GUARGi” and “EV GUARDi” in the

< compl guard > and < ev guard > defined below

represent the guards of the completion transitions and the

ones on the other transitions, respectively.

< compl guard >:= “COMPL GUARG1” |...|
“COMPL GUARDo”

< ev guard >:= “EV GUARD1”|...|“EV GUARDs”

C. Transforming Transitions

When transforming transitions, every direct path between

connected states is first constructed. This is done by con-

verting all compound transitions [3] originating from states

into transitions that target other states (as opposed to pseu-

dostates).

For every transition originating from a junction pseu-

dostate, a new transition is created containing the triggering

event of the transition targeting the junction and the con-

junction of the guards of both transition segments (targeting

and originating from the junction pseudostate).

In the case of choice nodes [3], the same process applies.

The only difference is that the added guard needs to take into

account the changes (to the variables) made in the current

run to completion step.

The behavioral expression corresponding to a transition

has the following form:

< trans behexp > := {< gate name >}
{“[”< guard >“] ; ”} {< gate name > “;”}
< state id >“[”< gate list >“]”

“(”{< param name > }“)”

In the expression above the first < gate name > rep-

resents the triggering event of a transition and < guard >
is the mapping of the guard of the transformed transition.

The effect part of a transition is represented as follows:

if the transition generates an event, this is mapped to the

second < gate name > in the above expression, while the

operations on the variables in the statechart are mapped to

the parameters of the process < state id >.

The state DM S NotActive NotStored from the Diagnose

model is transformed into the process:

Example 2: process DM S NotActive NotStored

[gates](parameters): noexit :=

evErorActive ?id:Nat [id = mdl];

DM S Active NotStored [gates](parameters)

[ ]

evReqErrorMemoryClear ?id:Nat[id = mdl];

DM S NotActive NotStored [gates](parameters)

......

endproc

In the proposed transformation the events in the state

chart are mapped to gates in the LOTOS specification. The

atomic nature of firing transitions is preserved through the

fact that once the first action of a transitions is offered to

the environment, the only allowed sequence of actions is the

one representing the rest of the actions on that transition.

V. INTEGRATING THE ENVIRONMENT MODEL

The presented model architecture assumes a communica-

tion between the different ECUs in the vehicle. Even though

LOTOS is very well suited to represent communication be-

tween processes, there are several aspects that need attention

when doing this for the presented example.

A. Preserving the Atomic Nature of Transitions

The actions of a transition are considered as being exe-

cuted as an atomic unit.

The system is described by communicating processes

being synchronized at gates representing the events that are

interchanged between the models. In order to preserve the

atomic nature of firing a transition, another process that

synchronizes on all gates with the already existing processes

is added. This process defines the allowed sequence of gate

offerings thus restricting the behavior of of the system. An

example of such a restriction in the Synchronize process is

presented below:

Example 3: process Synchronize

[gates](parameters): noexit :=

ev BAPHeartBeatStatus ;

EvErrorNotActive !mdl ;

Synchronize [gates](parameters)

[ ]

.....

endproc
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In the example above the sequence of gates represents

the restriction for a transition from the Main Unit model

specifying that once the processes have synchronized on

gate “ev BAPHeartBeatStatus” they will synchronize next

on gate “EvErrorNotActive”.

B. Treatment of Events
Events that are received but are not handled in the current

active state are simply ignored. In the specification this is

addressed by making the processes corresponding to simple

states input complete. This assumes the insertion in the

current process of gates corresponding to the untreated

events. When the process synchronizes on such a gate it

will simply have no reaction and then call itself.

In the DM S NotActive NotStored process, the choice

“evErrorNotActive !DM trans 0 ?mdl:Nat;” represents such

a gate. The gate event “!DM trans 0” is used to mark a

situation when a received event is ignored.

Example 4: process DM S NotActive NotStored

[gates](parameters): noexit :=

......

EvErrorNotActive !DM trans 0 ?mdl:Nat;

DM S NotActive NotStored [gates](parameters)

endproc

C. Run to Completion Step
The run to completion step refers to the fact that upon

receiving an event, a statechart shall execute until it reaches

a stable state; i.e. until it reaches a state where no completion

transition can fire.

In the presented example, the number of situations where

completion transitions need to be fired is limited. This

allows such sequences to be explicitly defined in the syn-

chronization process. A more general solution that allows

an automatic treatment of such situations will require the

insertion of a queue data structure in order to store the events

fired during the current run to completion step. The events

stored in the queue can be consumed after the system has

reached a stable state.

VI. EXPERIMENTAL RESULTS

One of the goals behind this transformation is to allow for

the usage of already existing test generation tools to automat-

ically extract test cases from UML models. One of the most

mature tools of this kind is TGV [1] , which is integrated into

the CADP toolbox (see http://www.inrialpes.fr/vasy/cadp for

details).

TGV uses the concept of test purposes to focus the test

case generation and to avoid the state space explosion. The

quality of the resulting test cases strongly depends on the

skills of the tester - in terms of specifying appropriate test

purposes.

Significant effort has been put into the development of

techniques to automate the test purpose generation process.

Such a technique [5] was used on the Diagnosis model

to automatically derive test purposes and subsequently test

cases. The results are presented in Table I.

Table I

Coverage Criteria TestPurpose Time Test Cases

Process 5 4,35 sec 5

Action 16 42,07 sec 16

The first column of Table I contains the coverage criterion

for which the test cases were generated. The second column

presents the number of generated test purposes. In the next

column, the total time in seconds needed to process these

test purposes is shown. The last column lists the number of

generated test cases.

Table II lists the statistics regarding the test cases obtained

for process coverage. The first column contains the number

of the test case and the second one the number of covered

processes (corresponding to the states of the statechart). The

next two columns list the number of states and transitions of

the IOLTS describing the test case. The last column contains

the time needed to compute the test cases.

Table II

No. Covered processes States Transitions Time

1 2 2 1 0,70 sec

2 3 2 1 0,70 sec

3 3 2 1 0,71 sec

4 4 101 100 0,77 sec

5 5 1120 1119 1,47 sec

When using this method, some of the obtained test cases

were very lengthy. For example test case number 5 covering

five states of the Diagnosis model ended up having 1120

states and 1119 transitions. One reason for this is the high

branching factor of the IOLTS generated from the LOTOS

specification and the fact that TGV uses a depth first search

algorithm to search the IOLTS.

A proposed solution to reduce the length of the generated

test cases is to use a breadth first search algorithm to search

the IOLTS. The applied method [5] is based on the insertion

of probes into the LOTOS specification. We have used

the model checker Evaluator from the CADP toolbox to

search the IOLTS using a breadth first search algorithm this

way guaranteeing the shortest path to the inserted probe.

The results obtained with this approach are summarized in

table III while table IV lists the statistics of the test cases

generated for process coverage. Thus the IOLTS describing

test case no. 5 covering five states ended up having 7 states

and 6 transitions.

There are still issues to be resolved regarding the fact

that part of the generated test cases contain redundancies

(considering the coverage criteria). However, the obtained
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Table III

Coverage Criteria TestPurpose Time Test Cases

Process 5 10,13 sec 5

Action 16 30,99 sec 16

Table IV

No. Covered processes States Transitions Time

1 1 2 1 2,06 sec

2 2 2 1 2,04 sec

3 3 3 2 2,03 sec

4 4 6 5 1,98 sec

5 5 7 6 2,02 sec

results indicate that the proposed model transformation could

work in an industrial setting.

VII. RELATED WORK

There have been several approaches to provide a formal

semantic to both structural as well as behavioral aspects of

the UML [6]. Approaches of how UML statecharts can be

verified using the model checker SPIN [7] can be found in

[8].

Closer to the technique presented in this paper is the one

described in [9], which defines mapping rules for some of the

structural and behavioral aspects of UML. Concerning the

behavioral aspects, in [9] the focus is on the transformation

of activity diagrams to LOTOS. In [10] and [11] transforma-

tion rules from a UML statechart to LOTOS are presented.

However, the transformation rules do not address issues

regarding communicating models. Further limitations [10]

are: not allowing the use of data variables in the statechart,

considering only normal states and not allowing the crossing

of the borders of composite states.

VIII. CONCLUSIONS

In this article we report on an applied research project

dealing with the introduction of test case generation tech-

niques in the automotive industry. We propose a semantics-

preserving model transformation from UML Statecharts to

the specification language LOTOS - the primary input lan-

guage of mature research prototypes for test case generation.

The obtained results indicate that the derived models

allow for deducing meaningful test cases with a reasonable

computational effort in an automated way. As states in the

UML model map to LOTOS processes our transformation

allows for coverage-based test case generation.

Future work includes improvements to the transformation

algorithm regarding the number of treated components of

the statechart formalism.Further research is needed to im-

prove the quality of the generated test purposes in order to

eliminate redundancies in the obtained test cases.
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