
Using Dependency Relations to Improve Test Case Generation from UML
Statecharts

Valentin Chimisliu
Institute for Software Technology

University of Technology Graz
Graz, Austria

chimisliu@ist.tugraz.at

Franz Wotawa
Institute for Software Technology

University of Technology Graz
Graz, Austria

wotawa@ist.tugraz.at

Abstract—In model-based testing the size of the used model
has a great impact on the time for computing test cases.
In model checking, dependence relations have been used in
slicing of specifications in order to obtain reduced models
pertinent to criteria of interest. In specifications described
using state based formalisms slicing involves the removal of
transitions and merging of states thus obtaining a structural
modified specification. Using such a specification for model
based test case generation where sequences of transitions
represent test cases might provide traces that are not valid on
a correctly behaving implementation. In order to avoid such
trouble, we suggest the use of control, data and communication
dependences for identifying parts of the model that can be
excluded so that the remaining specification can be safely
employed for test case generation. This information is included
in test purposes which are then used in the test case generation
process. We present also first empirical results obtained by
using several models from industry and literature.

Keywords-Test Case Generation, UML Statecharts, Control
Dependence, Data dependence, Communication Dependence

I. INTRODUCTION

Model-based test-case generation assumes the availability
of a model describing the desired behavior of the system
under test (SUT). In our setting the model is constructed
by means of the modeling language UML [1]. The model
itself describes a distributed system that uses asynchronous
communication. Because the UML lacks a formal semantic
(it does have a formal syntax however), we automatically
extract [2] a formal description of the desired behavior of
the SUT in the form of a LOTOS [3] specification from
the available UML model. LOTOS is a formal description
technique developed within ISO for the formal specifica-
tion of open distributed systems. The advantage of this
transformation is that we are able to make use of already
existing tools in order to automatically perform verification
and validation tasks. In the current work, we are interested
in the generation of conformance test cases by using the
TGV [4] test-case generator from the CADP toolbox.

In order to synthesize test cases, TGV requires a formal
specification of the SUT (the LOTOS specification in our
case). It also requires test purposes in order to focus the
generation of test cases on particular aspects of the system. A
test purpose represents an abstraction of the original model
describing a scenario of interest, which should be tested. Test

purposes are represented as Input Output Labeled Transition
Systems (IOLTS) and make use of special predefined labels
in order to control the test case generation process. One of
these is the “REFUSE” label, which is used to mark parts
of the model that should not be explored during a particular
test-case generation process.

Because TGV makes use of enumerative techniques (an
IOLTS representing the semantic of the LOTOS specification
is generated on the fly) for test-case generation it is obvious
that the presence of more refuse transitions leads to a faster
computation of test cases. Hence, the chances of running
into the state space explosion problem are reduced.

In this paper, we aim at using different dependence
relations in order to automatically identify parts of the
models that have no influence on targeted transitions and
thus can be omitted during the generation process. This is
done by computing direct and indirect dependences for the
transitions we aim to cover with the generated test cases. The
dependence information is used to insert refuse transitions
in the test purposes, and thus reducing the searched state
space during the generation process.

The rest of this paper is organized as follows. In Section
II we describe the UML modeling assumptions and a run-
ning example, which is followed by Section III where we
define the used dependences and introduce the algorithms
for computing them. In Section IV we describe the test
purpose generation process, and in Section V we discuss
first empirical results obtained using several case studies.
Finally, we discuss related work in Section VI and conclude
this paper in Section VII.

II. SYSTEM UNDER TEST

The UML statechart [1] diagrams belong to the UML
behavioral diagrams. They are used to describe dynamic
aspects by defining different states of a system. The change
from one state to another is usually controlled by external
or internal events.

The behavior of the considered type of systems is de-
scribed by means of asynchronously communicating UML
statecharts.

Our running example depicted in Figure 1, which de-
scribes the diagnosis functionality of modern vehicles. Its

2013 IEEE 37th Annual Computer Software and Applications Conference Workshops

978-0-7695-4987-3/13 $26.00 © 2013 IEEE

DOI 10.1109/COMPSACW.2013.24

71

purpose is to store the type, occurrence, and origin of errors
during operation of the vehicle.

Besides the diagnosis functionality our system also con-
tains a model describing the behavior of the ignition switch
of the vehicle and two other models defining the conditions
needed for errors to be detected.

The diagnosis statechart consists of five states and accepts
four messages namely evErrorActive, evErrorNotActive,
evRequestErrorMemoryClear and evSetGwUnlearnCounter-
Copy.

S_Diagnose_Model_Message

c

S_NotActive_NotStored S_Active_NotStored

evErrorActive[EventCounter < TimeDisQual
&& Timer == ON]/

 Timer = OFF;EventCounter = 1;

S_NotActive_Stored S_Active_Stored

evErrorActive / EventCounter = 1; Timer = ON;

evErrorNotActive / Timer = Off;

H

[EventCounter >= TimeQual]/
Timer = OFF;

Vz = GW_copy;
EventCounter = 0;

OccurenceCounter ++;
[(Timer == OFF)&&
(GW_copy > Vz)]/

OccurenceCounter = 0;
EventCounter = 0;

evErrorNotActive
[Timer == ON]/

EventCounter++;

evRequestErrorMemoryClear/
Timer = OFF;

OccurenceCounter = 0;

evErrorActive/
EventCounter++

evErrorNotActive/
 EventCounter = 1; Timer = ON;

[(Event_Counter >= TimeDisQual)
&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy + 40;

evSetGwUnlearnCounterCopy/
GW_copy++;

evErrorActive
[Timer == ON]/

EventCounter++;

[(EventCounter >= TimeQual)
&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy;
EventCounter = 0;

OccurenceCounter ++;

evErrorActive[Timer == OFF]/
Timer = ON;EventCounter = 1;

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/

/*T10*/

/*T11*/

/*T12*/

/*T13*/

/*T14*/

/*T0*/

Figure 1. Statechart of Diagnosis Functionality

The state S NotActive NotStored corresponds to normal
functioning when no error is detected. After an error is
detected, the system moves to the state S Active NotStored,
which means that an error has been detected but is not yet
stored. The error is stored after receiving five evErrorAc-
tive events, and the system moves to the S ActiveStored
state. This means that the error has been stored. The
diagnosis module shall leave this state and move to the
S NotActive Stored state only after receiving an evErrorNo-
tActive event.

As already mentioned in Section I we use this model
in order to automatically derive a LOTOS specification.
Since the transformation has already been presented in [2],
here we only mention the first step of the transformation,
which consists of the flattening of the statecharts. This is
important for the current approach since the computation of
the dependences is carried out on the flattened representation
of the statechart.

The flattening process removes the hierarchical struc-
tures and the pseudostates.Figure 2 presents the flattened
representation of the diagnosis statechart from Figure 1.
Due to readability reasons the labels of the transitions in
Figure 2 have been omitted, however they remain the same
as in the original model. During the flattening process
transition copies are created for the transitions originating
from composite states. Each such transition generates a copy
of itself for each state contained by the composite state.

S_NotActive_NotStored S_Active_NotStored

S_NotActive_Stored S_Active_Stored

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/
/*T10*/

/*T11*/

/*T12*/

/*T14_c1*/

/*T13_c1*/

/*T13_c4*/

/*T14_c2*/

/*T14_c3*/

/*T14_c4*/

/*T13_c3*/

/*T13_c2*/

/*T0*/

Figure 2. Flattened Representation of Diagnosis

In our running example (Figures 1 and 2) transition T14
generates the copies T14 c1, T14 c2, T14 c3 and T14 c4.
A detailed description of the flattening process can be found
in [5].

III. DEPENDENCES

A. Control Dependence
Informally, in classical definitions of control dependence

of sequential programs a statement sj is control dependent
on a statement si if statement si causes the execution of
statement sj .

State based formalisms differ from sequential programs
so control definitions have also been adapted for such
formalisms. In [6] two such definitions are given. The one
closest to our setting is called Non-termination Sensitive
Control Dependence (NTSCD) (Definition 2) and is given
in terms of maximal paths (Definition 1).

Definition 1: (Maximal Path). A path π is maximal if it
terminates in an end state (state with no outgoing transitions)
or is infinite.

1) Computing Control dependence: The usage of max-
imal paths (especially infinite ones) is supported by the
observation that a potentially infinite execution of a loop
might impede the execution of other transitions. Another
important observation of [6] (also acknowledged in [7]) is
that reaching a start node in a reactive system is analogous
to reaching an end node in a program, i.e., the behavior will
start over again. Thus in such cases the start node can also
be used as an end state when computing maximal paths.

Definition 2: (Non-termination Sensitive Control De-
pendence (NTSCD)). ti NTSCD−−−−−→ tj means that tj is non
termination sensitive control dependent on a transition ti iff
ti has at least one sibling tk such that:

1) for all paths π ∈ MaximalPahts(target(ti)), the
source(tj) belongs to π;

2) there exists π ∈MaximalPahts(source(tk)) a path
such that source(tj) does not belong to π.

Informally a transition tj is control dependent on transi-
tion ti if the execution of ti will always lead to source(tj)
and the execution of a sibling transition tk of ti (a max-
imal path) might not lead to source(tj) (tj might not be
executed). Considering the flattened representation of the

72

Input: SC = (Ss, T, V, sti)
Output: CD(T), PI(T)

1: for all t ∈ {t|t ∈ T (SC) ∧ ∃ts ∈ sibling(t) : target(ts) �= target(t)} do
2: for all sc ∈ {sc|∃ti ∈

⋂
maxPaths(t) : source(ti) = sc ∨ target(ti) = sc} do // for common nodes on all paths

3: if ∀tst ∈ sibling(t)∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc)→ ti /∈ π then
4: for all to ∈ {to|to ∈ T (SC) ∧ source(to) = sc} do
5: CD (to)← CD (to) ∪ t
6: for all tst ∈ {tst|tst ∈ sibling(t) ∧ ∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc) : ti /∈ π} do
7: PI (to)← PI (to) ∪ tst
8: end for
9: end for// added NTSCD controlling and potential independent transitions

10: end if
11: end for
12: end for

Figure 3. NTSCD Computation Algorithm

diagnosis model (Figure 1) the set of NTSCD relations
contains the dependence: T1 NTSCD−−−−−→ T2. Thus T1 will
always cause the source state of T2 - S Active NotStored
to be entered and there exists the maximal path formed by
the loop T13 c2 that does not contain S Active NotStored.

For computing the NTSCD relations we apply the al-
gorithm in Figure 3 for every flattened statechart SC =
(Ss, T, V, sti) in our model. Where Ss is the set of simple
states , T the set of transitions, V the set of variables used
in the statechart and sti is the initial state of the statechart.

Because we consider maximal paths (which include
also infinite paths) we need to identify cycles in our
model SC. Thus this information is contained in the set
CY CLES(SC) whose elements are sets of states repre-
senting the cycles in the model SC.

For transitions that are not part of a cycle, all nodes of
the cycle that are targeted by transitions whose source does
not belong to the cycle can be considered end states. Thus
we define SINKS(t) (equation 1) as the set containing all
such states, end states and also the initial state sti (according
to the observation in Section III-A). In the algorithm we
also make use of the function maxPaths(t) (equation 2)
which provides all maximal paths starting with transition t.

SINKS(t) = {s|s ∈ Ss(SC) ∧ |outTr(s)| = 0} ∪ {sti}∪
{s|s ∈ Ss(SC) ∧ ∃C ∈ CY CLES(SC) :

(s ∈ C ∧ source(t) /∈ C)}
(1)

maxPaths(t) = {(t1, t2, ...tn)|
t1 = t ∧ target(tn) ∈ SINKS(t)} (2)

The algorithm for computing the NTSCD (Figure 3)
requires as input a flattened statechart SC = (Ss, T, V, sti)
and provides as output two key value maps:

1) CD(T) - key value map containing as key a transition
and as value a set of transitions on which t is control
dependent on;

2) PI(T) - key value map containing as key a transition
and as value transitions that potentially do not influ-
ence t (from the NTSCD point of view).

The transitions with at least one sibling (statement 1)
might NTSCD control other transitions. Only transitions
originating from the states that appear in all maximal paths
(statement 2) of transition t might be control dependent on
t.

If there exists at least a sibling tst of transition t that
has at least one maximal path, which does not contain the
considered state sc, all the outgoing transitions to of sc
(outgTr(sc)) are NTSCD control dependent on transition t
(statements 4 - 5). Since we need as test cases sequences of
transitions that are valid on the specification, the transitions
on maximal paths starting at t and containing sc are also
added to the list of transitions outgTr(sc). For simplicity
reasons this is not explicitly depicted in the algorithm. Also
all the sibling of t that possess at least one maximal path
bypassing sc are added as potential independent transitions
for to (statements 6 - 7).

B. Data Dependence

Classical data dependence definitions are given in terms
of variable definitions and uses. Thus in terms of EFSM
a variable is used on a transition if its value appears in
the guard of the transition or appears on the right side of
an assignment in the action of the transition. A variable is
defined if it is assigned a value when the respective transition
is fired.

We adopt the data dependence definition of [8] since the
used formalism of EFSM is very similar to the representation
we obtain after the flattening of the statecharts.

Definition 3: (Data Dependence(DD)). ti
DD−−→v tk

means that transition ti and tk are data dependent with
respect to variable v if:

1) v ∈ D(ti), where D(ti) is a set of variables defined
by actions of transition ti;

2) and v ∈ U(tk), where U(tk) is a set of variables used
in the guard and actions of transition tk;

73

3) and there exists a path in the EFSM from (ti) to the
target(tk) whereby v is not modified.

Since we do not modify the structure of the specification,
besides the data dependence between a transition ti and tk
with respect to a variable v we are also interested in the
definition free paths, i.e., paths from ti to tk along which v
is not redefined. We compute these paths by using depth first
search to explore the model backwards starting from tk and
following the incoming transitions of source(tk). Each time
a variable v used by tk is defined we save the respective path
and add its transitions to the set of transitions tk is dependent
on. The considered paths are all simple paths. Thus after the
execution of the algorithm the map DD(tk) will contain the
transitions that tk depends on.

Since we are only interested in the execution of certain
transitions, we reduce the set of variables of interest to the
ones used in the guards of the transitions (including the
variables that directly or indirectly influence them). The
rationale behind this is the fact that the truth value of
the guards is the one that allows for the execution of the
transitions. Thus we reduce the set DD(tk) to the set of
transitions that directly or indirectly might influence the truth
value of the guard of tk.

C. Communication Dependence

Depending on the state based formalism used, there are
several definitions for communication dependence under
different names. Out of these, the one closest to what we
need in our setting is the one given by [9] also called
synchronization dependence. This definition is more general
and is given in terms of states and transitions in concurrent
models. Informally it states that if the trigger event of some
transition in an element x (x can be a state or transition) is
generated by the action of an element y, and the automata of
x and y are concurrent, then x is synchronization-dependent
on y.

In our particular case the communication dependence only
relates to transitions within concurrent models. Thus we
adapt the definition of [9] to Definition 4.

Definition 4: (Communication Dependence(COMD)).
Given two transitions ti ∈ T (SC1) and tk ∈ T (SC2),
ti

COMD−−−−→ tk means that transition tk is communication
dependent on ti iff:

1) SC1 and SC2 are two concurrent statecharts;
2) trigger(tk) - the triggering event of tk is generated

by the actions of ti.

The direct communication dependences are computed
by iterating through the transitions whose actions generate
events and adding these transitions to the key value map
COMD(t) where t is the transition triggered by the gener-
ated event.

D. Computing Independent Transitions

After computing the direct dependences for each model
in our specification we compute the indirect dependences
given a set of transitions of interest. Informally transition

20 1

.*T
14

_c
1.*

 .*OUTGATE.*

ACCEPT

3
REFUSE

.*T
14

_c
2.*

.*T
12

.*

.*T
14

_c
4.*

.*T
14

_c
3.*

 .*T7.*

Figure 4. Test Purpose for T7

tj is indirectly dependent on transition ti if there exists a
sequence of dependences leading from ti to tj (Definition
5 adapted from [7]). This represents the transitive closure
between ti and tj considering the ID relation.

Definition 5: (Indirect Dependence (ID)). ti
ID−−→ tj

means that tj is indirectly dependent on ti iff there exists
a sequence (t1, ..., tk) where t1 = ti and tk = tj such that

for all 1 ≤ n ≤ k: tn
NTSCD−−−−−→ tn+1 or tn

DD−−→ tn+1 or
tn

COMD−−−−→ tn+1.

After computing the transitive closure for a transition t
we obtain the set TCTRL containing all transitions ti such
that ti

ID−−→ t. Thus TIND(t) = PI(t) \ TCTRL(t) is the
set containing the transitions that do not influence (directly
or indirectly) transition t. PI(t) contains the transitions
potentially not controlling t (computed with the algorithm
in Figure 3).

IV. TEST PURPOSE GENERATION

Due to the fact that during the transformation we preserve
the traceability between the UML model and the LOTOS
specification we are able to generate test purposes aimed at
covering the original UML model. Thus, Figure 4 contains
the IOLTS representation of a test purpose generated for
covering transition T7 of the Diagnosis model. Figure 5
shows the test case generated for the above mentioned test
purpose.

75

0

1

INGATE !DIAGNOSIS_T0

2

3

INGATE !ACC_T20

4

36

INGATE !MAIN_UNIT_T1

37

38

OUTGATE !IGN_ON

39
74OUTGATE !IGNITION_ON

OUTGATE !S_NOT_ACTIVE_NOTSTORED !0 !FALSE !0

OUTGATE !S_IDLE !TRUE

5

INGATE !IGNITION_T25 !IGNSTATUS (IGNITION, 1)

INGATE MAIN_UNIT_T19 !EVIGN_ON (MAIN_UNIT)

40

41

INGATE !MAIN_UNIT_T20 !TM (MAIN_UNIT, 1000)

42

43

INGATE !DIAGNOSIS_T1_X !EVERRORACTIVE (DIAGNOSIS)

44

70

71

72

INGATE !MAIN_UNIT_T5 !EVBAPHBSTATUS (MAIN_UNIT)

73

INGATE !DIAGNOSIS_T7 !EVERRORNOTACTIVE (DIAGNOSIS)

OUTGATE !ERROR_DETECT

OUTGATE !S_NOT_ACTIVE_NOTSTORED !1 !TRUE !0

OUTGATE !HB_DETECTED

OUTGATE !NOERROR

69

INGATE !ACC_T38_X !EXTTOGGLEHB (ACC)

OUTGATE !S_NOTACTIVE_STORED !1 !TRUE !1

Figure 5. Test Case Covering Transition T7

74

Table I
COVERAGE AIMED TEST CASE GENERATION RESULTS

Model Approach TPs V alidTPs TCs DepCmpt CompTime TCovflat TCov

Flasher
Dep. 72 70 70 8s 14m30s 97% 100%
Apr1 72 70 70 - 58m10s 97% 100%

Diagnosis
Dep. 44 42 39 2s 1h20m 95% 97%
Apr1 44 42 38 - 1h43m50s 95% 97%

KeylessEntry
Dep. 43 39 39 2s 2m42s 91% 100%
Apr1 43 39 39 - 2m38s 91% 100%

MicrowaveOven
Dep. 37 37 37 1s 2m10s 100% 100%
Apr1 37 37 36 - 27m20s 97% 97%

LoanApprovalWS
Dep. 22 22 22 1s 1m9s 100% 100%
Apr1 22 22 22 - 1m20s 100% 100%

The refuse transitions in Figure 4 are identified by com-
puting the independent transitions for each transition in the
model.

In the test purpose definition, labels of transitions are
denoted by strings that can also be specified by using regular
expressions (e.g. “.*” or “.*T7.*”). The label “.*T7.*”
contains the ID of the searched transition whereas “.*OUT-
GATE.*” represents the action needed to get the values
of the variables used in the statechart after triggering the
transition T7.

The edges leading to state 3 are labeled with the IDs
of the transitions T7 does not depend on. The edge with
the label “REFUSE” is used to mark parts of the model
that will not be explored during the test generation process.
Basically edges in the specification whose labels fit (the
regular expression of) labels on edges in the test purpose
leading to the source of the REFUSE edge will not
be explored (and thus neither the behavior that they lead
to). The generation process will stop as soon as an action
matching the expression “.*T7.*” followed by one matching
“.*OUTGATE.*” is encountered.

V. EXPERIMENTAL RESULTS

We evaluated the proposed approach using three real-
world examples (Flasher, Diagnosis and KeylessEntry) orig-
inating from the automotive domain and four more from
literature.

Transition coverage on the flattened model has the ad-
vantage that it subsumes transition coverage on the original
model. This comes from the fact that it tries to cover all
copies of a transition T generated during the flattening
process. On the original model this is equivalent to firing
T from every state contained by its source state.

However, a drawback in trying to cover the flattened
model is the fact that some transition copies are not reach-
able in the flattened model. This originates from the fact that
certain combinations between simple states and transition
copies are not possible.

In Table I we present the results obtained when using the
current test purpose generation technique aimed at transition
coverage.

The first column of the table contains the name of the
model for which the test purposes were generated. Column

Approach contains the test case generation approach where
Dep. stands for the current approach and Apr1 for the
previous one [10]. The next column TPs contains the
total number of generated test purposes. Column V alidTPs
presents the number of valid test purposes. By valid test
purpose we mean test purposes not targeting transitions
copies that are not reachable on the flattened model.

In column TCs we give the number of generated test
cases. We imposed a limit of 25 minutes per test purpose.
If no test case was generated within this time, the gener-
ation process is stopped. Column DepCmpt contains the
time needed for computing the dependence relations while
column CompTime contains the time TGV was allowed to
run for the generation process.

The last two columns (TCovflat and TCov) contain the
transition coverage on the flattened and non flattened model
respectively.

For most of the models, the current approach delivered
better results than the previous one. This was to be expected
because one eliminated transition might translate to a (more
or less) large part of the behavior (at IOLTS level - the enu-
merated behavior of the specification) that is not considered
during the test case generation process.

In some cases (Diagnosis and MicrowaveOven) the de-
pendences helped in finding transitions that the old approach
was not able to find.

Even equipped with refused transitions the current ap-
proach failed in finding test cases to cover three transitions in
the Diagnosis model. However the previous approach failed
in finding four such test cases. Also in this case the current
approach outperforms the old one.

VI. RELATED WORK

Slicing has been used in [11] for the purpose of test case
generation from UML activity diagrams. They generate test
cases aimed at path coverage by computing dynamic slices
corresponding to each conditional predicate on the edges of
the diagram. In their work no static control dependences are
used and only data dependences are employed so that only
the nodes that affect the truth value of the predicate on the
edge at run time are kept in the slices.

The approach from [12] is the closest to the one we
present in this article. There test purposes are generated

75

and extended with refuse states. In that work the refused
states are computed using data flow graphs that are extracted
from LOTOS specifications. The dependence relations (data
flow graphs), type and behavioral semantic (synchronously
communicating processes) of the systems are some of the
differences to the current approach.

An approach using slicing for test case generation is [13],
where the authors compute slices from specifications given
in the formal language IF. The slices are calculated with
respect to sets of signals (inputs or outputs) and also require
external data in the form of test purposes or feeds. Our
approach uses different formalisms and there is no need for
external user provided data. We also do not generate a new
specification for each criterion.

In [14] an approach to derive test purposes from temporal
logic properties specifications is proposed. The approach
uses modified model checking algorithms to extract exam-
ples and counterexamples from the state space of the speci-
fication. Test purposes are then constructed by analyzing the
extracted behaviors.

VII. CONCLUSIONS AND FUTURE WORK

In this article we present the usage of different dependence
relations in order to enhance test purposes with refuse states.
These states are used by the TGV test-case generation tool in
order to limit the searched state space during the generation
process. We use these refuse states in order to improve
a previously presented test case generation technique [10]
aimed at structural coverage (state and transition coverage)
of a specification given in terms of asynchronously commu-
nicating statecharts.

We evaluated the proposed approach using a case study
comprising three real world examples from the automotive
domain. The obtained results show an improvement from
the initial version of the test case generation technique.
However, the approach still needs further evaluation by
using it on a larger class of specifications and identifying
properties indicating its usefulness.

Another direction of interest for future work is the inves-
tigation of the happens-before relation in case of commu-
nication dependence.The happens-before relation [15] helps
by ensuring that dependences exist only between transitions
where the source transition can happen before the target
transition. In our case this means a possible increase of the
number of identified refuse transitions.

ACKNOWLEDGEMENT

The research herein is partially conducted within the
competence network Softnet II Austria (www.soft-net.at)
and funded by the Austrian Federal Ministry of Economics
(bm:wa), the province of Styria, the Steirische Wirtschafts-
förderungsgesellschaft mbH. (SFG), and the city of Vienna
in terms of the center for innovation and technology (ZIT).

REFERENCES

[1] “Unified modeling language UML 2.0,” Object
Management Group OMG. [Online]. Available:
http://www.omg.org/spec/UML/2.0/

[2] V. Chimisliu and F. Wotawa, “Abstracting timing information
in UML statecharts via temporal ordering and LOTOS,” in
Proc. of the 6th International Workshop on Automation of
Software Test, ser. AST ’11. ACM, 2011, pp. 8–14.

[3] ISO, “ISO 8807: Information processing systems – open
systems interconnection – LOTOS – a formal description
technique based on the temporal ordering of observational
behaviour,” 1989.

[4] C. Jard and T. Jéron, “TGV: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transf., vol. 7, no. 4, pp. 297–315, 2005.

[5] C. Schwarzl and B. Peischl, “Test sequence generation from
communicating UML state charts: An industrial application of
symbolic transition systems,” Quality Software, International
Conference on, pp. 122–131, 2010.

[6] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B.
Dwyer, “A new foundation for control dependence and slicing
for modern program structures,” ACM Trans. Program. Lang.
Syst., vol. 29, no. 5, 2007.

[7] S. Labbé and J.-P. Gallois, “Slicing communicating automata
specifications: polynomial algorithms for model reduction,”
Form. Asp. Comput., vol. 20, no. 6, pp. 563–595, Dec. 2008.

[8] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and
L. Tratt, “Control dependence for extended finite state ma-
chines,” in Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering, ser.
FASE ’09, 2009, pp. 216–230.

[9] J. Wang, W. Dong, and Z.-C. Qi, “Slicing hierarchical au-
tomata for model checking uml statecharts,” in Proceedings
of the 4th International Conference on Formal Engineering
Methods, 2002, pp. 435–446.

[10] V. Chimisliu and F. Wotawa, “Model based test case genera-
tion for distributed embedded systems,” in Industrial Technol-
ogy (ICIT), 2012 IEEE International Conference on, march
2012, pp. 656 –661.

[11] P. Samuel and R. Mall, “Slicing-based test case generation
from uml activity diagrams,” SIGSOFT Softw. Eng. Notes,
vol. 34, no. 6, pp. 1–14, Dec. 2009.

[12] M. Weiglhofer and F. Wotawa, “Improving coverage based
test purposes,” in Quality Software, 2009. QSIC ’09. 9th
International Conference on, aug. 2009, pp. 219 –228.

[13] M. Bozga, J.-C. Fernandez, and L. Ghirvu, “Using static
analysis to improve automatic test generation,” International
Journal on Software Tools for Technology Transfer (STTT),
vol. 4, pp. 142–152, 2003.

[14] D. A. da Silva and P. D. Machado, “Towards test purpose gen-
eration from ctl properties for reactive systems,” Electronic
Notes in Theoretical Computer Science, vol. 164, no. 4, pp.
29 – 40, 2006.

[15] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, Jul. 1978.

76

