
Improving Test Case Generation from UML Statecharts by using Control, Data and
Communication Dependences

Valentin Chimisliu
Institute for Software Technology

University of Technology Graz
Graz, Austria

chimisliu@ist.tugraz.at

Franz Wotawa
Institute for Software Technology

University of Technology Graz
Graz, Austria

wotawa@ist.tugraz.at

Abstract—Dependence relations have been used in slicing of
programs in order to remove statements that do not influence
certain criteria of interest. More recently, slicing has also been
applied at the specification level in order to obtain a reduced
model pertinent to the selected criteria. Such models have been
used for different verification and validation activities. In this
article we present an approach that uses control, data and
communication dependences in order to enhance test purposes
with refuse transitions. A test purpose represents an abstraction
of the original model describing a scenario of interest, which
should be tested. The refuse transitions are used during the test
case generation process in order to limit the state space being
searched. As automating test case generation activities is of
great importance the generation of the test purposes and of the
test cases consequently is fully automatic. We have evaluated
the proposed approach on three models from industry and
several others from literature. The obtained results indicate
an improvement regarding computation time compared to test
case generation using unmodified test purposes.

Keywords-Model-based Test Case Generation, UML State-
charts, Control Dependence, Data dependence, Communication
Dependence

I. INTRODUCTION

Due to the amount of resources consumed by testing
activities in software development processes the automation
of such tasks is very important. Automation of test case
creation activities has received a lot of attention from the
research community. Model based test case generation is
a promising technique to help in the test case generation
process. Model based test case generation assumes the
availability of a model describing the desired behavior of
the system under test (SUT).

The research in this area led to the creation of promising
approaches and tools. In order to generate test cases, such
a tool requires as input a formal description of the desired
behavior of the SUT and some criteria to steer the test case
generation. Such a criterium might be input from the user
in the case of scenario based test case generation or some
coverage metric the generated test cases need to achieve.

In our setting we model the desired behavior of the SUT
by means of the modeling language UML [1]. The model
itself describes a distributed system that uses asynchronous
communication. Because UML lacks a formal semantic (it
has however a formal syntax), we automatically extract

a formal representation [2] in the form of a LOTOS [3]
specification from the available model. LOTOS is a formal
description technique developed within ISO for the formal
specification of open distributed systems.

Once we obtain such a formal specification we are able
to make use of already existing and mature tools (i.e.,
the CADP toolset [4]) in order to automatically perform
verification and validation steps. In the current work, we
are interested in the generation of conformance test cases
by using the TGV [5] test-case generator from the CADP
toolbox.

In order to generate test cases, besides the LOTOS spec-
ification TGV also needs a test purpose. A test purpose
represents an abstraction of the original model describing a
scenario of interest, which should be tested. These are used
in order to focus the generation of test cases on particular
aspects of the system. Test purposes are represented as la-
beled transition systems (LTS). They make use of predefined
labels in order to control the test case generation process.
One of these is the “REFUSE” label, which is used to
mark parts of the model that should not be explored in a
particular test-case generation process.

In our earlier work [6] we have introduced a method
for automatically generating test cases aiming at structural
coverage (state and transition coverage) of the model. We
also showed how to semi-automatically generate test cases
by making use of user provided annotations on the UML
model. In that work the coverage generated test cases did
not contain any refuse transitions. Therefore, the generation
process was not as efficient as in the case when the user
provides annotations that can be used as refuse transitions
in the test purpose.

In the current article, we aim at using different de-
pendence relations (control, data, and communication) in
order to automatically identify parts of the models that
can be safely omitted during the generation process. The
dependence information is used to insert refuse transitions
in the test purposes in order to focus test case generation
and thus indirectly cut out transitions and states that are
not of interest. Thus the specification is sliced during the
generation process by not exploring its excluded parts. This
is different to slicing approaches which eliminate transitions

2013 13th International Conference on Quality Software

978-0-7695-5039-8/13 $26.00 © 2013 IEEE

DOI 10.1109/QSIC.2013.48

125

(by merging their source and target states) on which the
slicing criteria (transitions and/or variables) do not depend.

The rest of this paper is organized as follows. In Section
II we shortly present the UML statecharts, LOTOS and
the TGV testing approach. In Section III we describe the
UML modeling assumptions and a running example, which
is followed by Section IV where we define the used depen-
dences. We furthermore introduce and discuss the algorithms
for computing the dependences. In Section V we describe
the test purpose generation process, and in Section VI we
discuss first empirical results. Finally, we discuss related
work in Section VII and conclude this paper in Section VIII.

II. PRELIMINARIES

A. UML statecharts

The UML statechart [1] diagrams belong to the UML
behavioral diagrams. They are used to describe dynamic
aspects by defining different states of a system. The change
from one state to another is usually controlled by external
or internal events. Formally, we describe an UML statechart
as a tuple SC = (S, T, V, ips0), where:

• S �= ∅ is the set of states and pseudostates.
• T ⊆ S×L×S is the set of transitions in the statechart.

L ⊆ E × G × A is the label of the transition. All
components of a label are optional. E represents the
set of triggers (events) that can fire the transitions, G
the guards (conditions) that have to be true in order for
the transitions to be fired and A - the actions that are
to be performed when the transition is fired.

• V - the set of variables used in the statechart. These
can be integer or boolean variables.

• ips0 - the initial pseudostate that is the origin of the
transition pointing to the initial state of the statechart.

More details regarding the syntax and semantics of stat-
echarts can be found in the many books written about the
language as well as in the UML standard [1].

B. LOTOS Introduction

LOTOS is a formal description technique developed
within ISO for the formal specification of open distributed
systems. It is composed of a process algebraic part and a data
part based on the abstract data type language ACT ONE [7].

A LOTOS specification describes a system as a hierarchy
of processes. Thus, a system can be modeled as a process
that may contain several subprocesses. The LOTOS model
of a system is viewed as a black box with a number of
gates (interaction points) used for communication with its
environment.

The behavior of a process is specified through behavior
expressions composed of gate offerings and LOTOS opera-
tors. The operators are used to combine behavior expressions
in order to form more complex expressions. As detailed
information about the language can be found in [3], below
we present only some of the LOTOS operators relevant to
the used transformation:

• The sequentiality operator “;”, called action prefix
composes an action g with a behavior expression B.
The expression describes a system that will initially
accept action g behaving afterwards as B.

• Choice “[]” composes two alternative behaviors de-
scribing a system that offers these alternatives to the
environment.

• The full Synchronization: “||” operator denotes the
fact that the events which occur in either of the be-
havior expressions have to synchronize. The expression
(a,b,X)||(a,b,Y) may engage in the sequence of events
a,b... .

• The interleaving operator “|||” allows behaviors to
unfold completely independently in parallel; the events
from each behavior expression are interleaved. The
behavior expression (a;b;c;P) ||| (x;y;T) includes the
behaviors: a;x;y;b;c... and a;b;x;c;y... etc.

• Partial Synchronization: “|[< gates >]|” means that
concurrent behaviors synchronize on the gates listed in
the operator. The behavioral expression (a;b;c;P) |[b]|
(b;y;T) offers the behaviors a;b;y;c... , a;b;c;y... etc.

C. IOCO Relation and TGV

The Input Output Conformance theory (IOCO) introduced
by Tretman [8] formalizes what it means that an implementa-
tion conforms to its specification. In IOCO the observations
of a system during testing (also called traces) represent the
visible behavior of a system. Informally, the IOCO relation
states that an implementation I conforms to its specification
S if after every trace, I exhibits the same outputs as S.

The IOCO relation represents the basis of the testing
theory used by the test case generation tool TGV. For a
formal and thorough description of this theory we refer the
interested reader to [9]. TGV allows for the automatic gen-
eration of conformance test cases from formal specifications
of reactive systems. By reactive we understand a software
system which reacts to stimuli coming from its environment.
Conformance testing aims at checking whether the visible
behavior of a SUT is correct with respect to its specification.

In order to synthesize test cases, TGV (see Figure 1)
requires the specification of the SUT that is usually given
in a formal language like LOTOS, whose behavior can be
expressed in terms of LTS. It also requires a test purpose
defining the test scenario of interest, which is also repre-
sented as an LTS. A generated test case will aim at testing
the functionality abstractly described by the test purpose.
Another required input is the definition of the input/output
alphabets of the specification representing the input and
output actions of the system.

TGV makes use of enumerative techniques. An LTS repre-
senting the behavior described by the LOTOS specification is
generated on the fly during the test case generation process.

The generated test cases are often described at some
abstraction level (they can not be run directly against the
SUT) so they must be translated into executable test cases

126

TGV

Specification Test Purpose

Tuning
Options

Abstract
Test Case

Figure 1. Functional View of TGV

e.g. TTCN [10] or any other format that can be executed
against the SUT.

III. SYSTEM UNDER TEST

The behavior of the type of systems we consider is
described by means of asynchronously communicating UML
statecharts. By asynchronous we understand the fact that the
events the statecharts use to communicate with each other
are enqueued in a FIFO queue and consumed by the targeted
statechart after it reaches a stable state. The events used in
the communication with and within the system can also carry
data values as event parameters.

The structure of the system is given in the form of a class
diagram where each component of the system is represented
by means of a class. The behavior of such a class is described
by a statechart nested inside it.

S_Diagnose_Model_Message

c

S_NotActive_NotStored S_Active_NotStored

evErrorActive[EventCounter < TimeDisQual
&& Timer == ON]/

 Timer = OFF;EventCounter = 1;

S_NotActive_Stored S_Active_Stored

evErrorActive / EventCounter = 1; Timer = ON;

evErrorNotActive / Timer = Off;

H

[EventCounter >= TimeQual]/
Timer = OFF;

Vz = GW_copy;
EventCounter = 0;

OccurenceCounter ++;
[(Timer == OFF)&&
(GW_copy > Vz)]/

OccurenceCounter = 0;
EventCounter = 0;

evErrorNotActive
[Timer == ON]/

EventCounter++;

evRequestErrorMemoryClear/
Timer = OFF;

OccurenceCounter = 0;

evErrorActive/
EventCounter++

evErrorNotActive/
 EventCounter = 1; Timer = ON;

[(Event_Counter >= TimeDisQual)
&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy + 40;

evSetGwUnlearnCounterCopy/
GW_copy++;

evErrorActive
[Timer == ON]/

EventCounter++;

[(EventCounter >= TimeQual)
&& (Timer == ON)]/

Timer = OFF; Vz = GW_copy;
EventCounter = 0;

OccurenceCounter ++;

evErrorActive[Timer == OFF]/
Timer = ON;EventCounter = 1;

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/

/*T10*/

/*T11*/

/*T12*/

/*T13*/

/*T14*/

/*T0*/

Figure 2. Statechart of Diagnosis Functionality

Our running example depicted in Figure 2, describes the
diagnosis functionality of modern vehicles. Its purpose is
to store the type, occurrence, and origin of errors during
operation of the vehicle.

Besides the diagnosis functionality our system also con-
tains a model describing the behavior of the ignition switch
of the vehicle and two other models defining the conditions
needed for errors to be detected. When such an error has
been detected it is communicated to the diagnosis model.

The diagnosis statechart consists of five states and accepts
four messages namely evErrorActive, evErrorNotActive,

S_NotActive_NotStored S_Active_NotStored

S_NotActive_Stored S_Active_Stored

/*T1*/

/*T2*/

/*T3*/

/*T4*/

/*T5*/

/*T6*/

/*T7*/

/*T8*/

/*T9*/
/*T10*/

/*T11*/

/*T12*/

/*T14_c1*/

/*T13_c1*/

/*T13_c4*/

/*T14_c2*/

/*T14_c3*/

/*T14_c4*/

/*T13_c3*/

/*T13_c2*/

/*T0*/

Figure 3. Flattened Representation of Diagnosis

evRequestErrorMemoryClear and evSetGwUnlearnCounter-
Copy .

The state S NotActive NotStored corresponds to normal
functioning when no error is detected. After an error is
detected, the system moves to the state S Active NotStored,
which means that an error has been detected but is not yet
stored. The error is stored after receiving five evErrorActive
events, and the system moves to the S ActiveStored state.
The diagnosis module shall leave this state and move to the
S NotActive Stored state only after receiving an evErrorNo-
tActive event.

A. LOTOS Transformation
As already mentioned in Section I we use this model in

order to automatically derive a LOTOS specification. The
execution semantics of the UML model considered in the
transformation are the ones defined by Harel [11].

Due to space considerations we are going to present only
shortly the main points of the transformation of the UML
model into LOTOS. For more details, the interested reader
is referred to [2].

The first step of the transformation is represented by the
flattening of the statechart in which the hierarchical struc-
tures and the pseudostates are removed. This step delivers a
behavioral equivalent statechart described only in terms of
simple states and transitions SC = (Ss, T, V, ips0). This is
important for the current approach since the computation of
the dependences is carried out on the flattened representation
of the statechart. A detailed description of the flattening
process can be found in [12].

Figure 3 presents the flattened representation of the diag-
nosis statechart from Figure 2. Due to readability reasons
the labels of the transitions in Figure 3 have been omitted,
however they remain the same as in the original model.
During the flattening process transition copies are created for
the transitions originating from composite states. Each such
transition generates a copy of itself for each state contained
by the composite state. In our running example (Figures 2
and 3) transition T14 generates the copies T14 c1, T14 c2,
T14 c3 and T14 c4.

127

Each statechart in the system will be mapped to a LOTOS
process while the variables used in the statecharts become
LOTOS process parameters. These processes are then com-
posed using the interleaving operator (“|||”). Each process
will contain several sub processes used to represent the states
in the statechart. Every subprocess offers choices between
several behavioral expressions generated from the transitions
of the state. Such an expression preserves the id, triggering
event, guard and action of the transition. Once such a
behavior expression has been triggered, all the components
of the transition (event, guard, action - value assignments
and/or generation of events to other models) are executed.

During the transformation process, LOTOS abstract data
types are used in order to preserve the traceability between
the components of the UML model and the generated
LOTOS constructs. Thus in the generated specification we
can still identify the statecharts, states, transitions, triggering
events and variables used. This information is required in
order to map the generated test cases back to the original
UML model.

IV. DEPENDENCES

A. Control Dependence

Informally, in classical definitions of control dependence
of sequential programs a statement sj is control dependent
on a statement si if statement si causes the execution of
statement sj .

State based formalisms differ form sequential programs
so control definitions have also been adapted for such
formalisms. In [13] two such definitions are given. The one
closest to our setting is called Non-termination Sensitive
Control Dependence (NTSCD) (Definition 2) and is given
in terms of maximal paths (Definition 1).

Definition 1: (Maximal Path). A path π is maximal if it
terminates in an end state (state with no outgoing transitions)
or is infinite.

The usage of maximal paths (especially infinite ones)
is supported by the observation that a potentially infinite
execution of a loop might impede the execution of other
transitions. Another important observation of [13] (also
acknowledged in [14]) is that reaching a start node in a
reactive system is analogous to reaching an end node in a
program, i.e., the behavior will start over again. Thus in such
cases the start node can also be used as an end state when
computing maximal paths.

Definition 2: (Non-termination Sensitive Control De-
pendence (NTSCD)). ti NTSCD−−−−−→ tj means that tj is non
termination sensitive control dependent on a transition ti iff
ti has at least one sibling tk such that:

1) for all paths π ∈ MaximalPahts(target(ti)), the
source(tj) belongs to π;

2) there exists π ∈MaximalPahts(source(tk)) a path
such that source(tj) does not belong to π.

Informally a transition tj is control dependent on transi-
tion ti if the execution of ti will always lead to source(tj)

and the execution of a sibling tk of ti (a maximal path)
might not lead to source(tj) (tj might not be executed).
A transition tk is a sibling of transition ti if source(tk) =
source(ti). Considering the flattened representation (Figure
3) of the diagnosis model the set of NTSCD relations
contains the dependence: T1 NTSCD−−−−−→ T2. Thus T1 will
always cause the source state of T2 - S Active NotStored
to be entered and there exists the maximal path formed by
the loop T13c2 that does not contain S Active NotStored.

1) Computing Control dependence: For computing the
NTSCD relations we apply the algorithm in Figure 4 for
every flattened statechart SC = (Ss, T, V, sti) in our model.
Where Ss is the set of simple states , T the set of transitions,
V the set of variables used in the statechart and sti is the
initial state of the statechart.

Because we consider maximal paths (which include
also infinite paths) we need to identify cycles in our
model SC. Thus this information is contained in the set
CY CLES(SC) whose elements are sets of states repre-
senting the cycles in the model SC.

For transitions that are not part of a cycle, all nodes of the
cycle that are targeted by transitions whose source does not
belong to the cycle can be considered end states. Thus we
define SINKS(t) (Equation 1) as the set containing all such
states, end states and also the initial state sti (according to
the observation in Section IV-A). In the algorithm we also
make use of the function maxPaths(t) (Equation 2) which
provides all maximal paths starting with transition t.

SINKS(t) = {s|s ∈ Ss(SC) ∧ |outTr(s)| = 0} ∪ {sti}∪
{s|s ∈ Ss(SC) ∧ ∃C ∈ CY CLES(SC) :

(s ∈ C ∧ source(t) /∈ C)}
(1)

maxPaths(t) = {(t1, t2, ...tn)|
t1 = t ∧ target(tn) ∈ SINKS(t)} (2)

The algorithm for computing the NTSCD (Figure 4)
requires as input a flattened statechart SC = (Ss, T, V, sti)
and provides as output two key value maps:

1) CD(T) - key value map containing as key a transition
t and as value a set of transitions on which t is control
dependent on;

2) PI(T) - key value map containing as key a transition
t and as value transitions that potentially do not
influence t (from the NTSCD point of view).

The transitions with at least one sibling (statement 1)
might NTSCD control other transitions. Only transitions
originating from the states that appear in all maximal paths
(statement 2) of transition t might be control dependent on
t.

If there exists at least a sibling tst of transition t that
has at least one maximal path, which does not contain the
considered state sc, all the outgoing transitions to of sc

128

Input: SC = (Ss, T, V, sti)
Output: CD(T), PI(T)

1: for all t ∈ {t|t ∈ T (SC) ∧ ∃ts ∈ sibling(t) : target(ts) �= target(t)} do
2: for all sc ∈ {sc|∃ti ∈

⋂
maxPaths(t) : source(ti) = sc} do // for common nodes on all paths

3: if ∀tst ∈ sibling(t)∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc)→ ti /∈ π then
4: for all to ∈ {to|to ∈ T (SC) ∧ source(to) = sc} do
5: CD (to)← CD (to) ∪ t
6: for all tst ∈ {tst|tst ∈ sibling(t) ∧ ∃π ∈ maxPaths(tst) : ∀ti ∈ outgTr(sc) : ti /∈ π} do
7: PI (to)← PI (to) ∪ tst
8: end for
9: end for// added NTSCD controlling and potential independent transitions

10: end if
11: end for
12: end for

Figure 4. NTSCD Computation Algorithm

(outgTr(sc)) are NTSCD control dependent on transition t
(statements 4 - 5). Since we need as test cases sequences of
transitions that are valid on the specification, the transitions
on maximal paths starting at t and containing sc are also
added to the list of transitions outgTr(sc). For simplicity
reasons this is not explicitly depicted in the algorithm. Also
all the siblings of t that possess at least one maximal path
bypassing sc are added as potential independent transitions
for to (statements 6 - 7).

B. Data Dependence
Classical data dependence definitions are given in terms

of variable definitions and uses. Thus in terms of EFSM
a variable is used on a transition if its value appears in
the guard of the transition or appears on the right side of
an assignment in the action of the transition. A variable is
defined if it is assigned a value when the respective transition
is fired.

We adopt the data dependence definition of [15] since the
used formalism of EFSM is very similar to the representation
we obtain after the flattening of the statecharts.

Definition 3: (Data Dependence(DD)). ti
DD−−→v tk

means that transition ti and tk are data dependent with
respect to variable v if:

1) v ∈ D(ti), where D(ti) is a set of variables defined
by actions of transition ti;

2) and v ∈ U(tk), where U(tk) is a set of variables used
in the guard and actions of transition tk;

3) and there exists a path in the EFSM from (ti) to the
target(tk) whereby v is not modified.

Due to the fact that we do not modify the structure of
the specification, besides the data dependence between a
transition ti and tk with respect to a variable v we are also
interested in the definition free paths, i.e., paths from ti to
tk along which v is not redefined. We compute these paths
by using depth first search to explore the model backwards
starting from tk and following the incoming transitions of
source(tk). Each time a variable v used by tk is defined we
save the respective path and add its transitions to the set of

transitions tk is dependent on. The considered paths are all
simple paths. Thus after the execution of the algorithm the
map DD(tk) will contain the transitions that tk depends on.

Since we are only interested in the execution of certain
transitions, we reduce the set of variables of interest to the
ones used in the guards of the transitions (including the
variables that directly or indirectly influence them). The
rationale behind this is the fact that the truth value of
the guards is the one that allows for the execution of the
transitions. Thus we reduce the set DD(tk) to the set of
transitions that directly or indirectly might influence the truth
value of the guard of tk.

C. Communication Dependence
Depending on the state based formalism used, there are

several definitions for communication dependence under
different names: synchronization [16], communication de-
pendence [14].

The one closest to what we need in our setting is the one
given by [16] also called synchronization dependence. This
definition is more general and is given in terms of states and
transitions in concurrent models. Informally it states that if
the trigger event of some transition in an element x (x can
be a state or transition) is generated by the action of an
element y, and the automatons of x and y are concurrent,
then x is synchronization-dependent on y.

In our particular case the communication dependence only
relates to transitions within concurrent models. Thus we
adapt the definition of [16] to Definition 4.

Definition 4: (Communication Dependence(COMD)).
Given two transitions ti ∈ T (SC1) and tk ∈ T (SC2),
ti

COMD−−−−→ tk means that transition tk is communication
dependent on ti iff:

1) SC1 and SC2 are two concurrent statecharts;
2) trigger(tk) - the triggering event of tk is generated

by the actions of ti.

The direct communication dependences are computed
by iterating through the transitions whose actions generate
events and adding these transitions to the key value map

129

Input: T (M), CD, DD, COMD, TI
Output: TIND(t) - set of transition t does not depend on

1: for all t ∈ T (M) do
2: TCTRL(t)← TCTRL(t) ∪ t
3: TIND(t)← PI(t)
4: finished← true
5: repeat
6: finished = true
7: for all ti ∈ {T (M) \ TCTRL(t)} do
8: if controls(ti, TCTRL(t)) = true then
9: finished← false

10: TCTRL(t)← TCTRL(t) ∪ ti
11: TIND(t)← TIND(D) ∪ PI(t : i)
12: end if
13: end for
14: until finished
15: TIND(t)← TIND(t) \ TCTRL(t)
16: end for

Figure 5. Independent Transitions Computation Algorithm

COMD(t) where t is the transition triggered by the gener-
ated event.

D. Computing Independent Transitions

After computing the direct dependences for each model
in our specification we compute the indirect dependences
given a set of transitions of interest. Informally transition
tj is indirectly dependent on transition ti if there exists a
sequence of dependences leading from ti to tj (Definition
5 adapted from [14]). This represents the transitive closure
between ti and tj considering the ID relation.

Definition 5: (Indirect Dependence (ID)). ti
ID−−→ tj

means that tj is indirectly dependent on ti iff there exists
a sequence (t1, ..., tk) where t1 = ti and tk = tj such that

for all 1 ≤ n < k: tn
NTSCD−−−−−→ tn+1 or tn

DD−−→ tn+1 or
tn

COMD−−−−→ tn+1.

In Figure 5 we present the algorithm for computing
the independent transitions (TIND) as well as the indirect
dependences (TCTRL) for each transition t in the model M
(containing the communicating statecharts). The inputs for
the algorithm are the set of transitions in the model T (M)
for which the dependence relations (CD, DD, COMD) and
potential independents (TI) have been previously computed.
The algorithm computes TIND(t) - the set of transitions that
do not influence t for every transition in the model.

The function controls(ti, TCTRL(t)) (statement 8) re-
turns true if at least a transition in TCTRL is control, data
or communication dependent on ti. The algorithm iterates
through the transitions of M and when it finds a transition
ti for which controls(ti, TCTRL(t)) returns true it updates
the sets TCTRL and TIND accordingly. The algorithm is
repeated until no more transitions are found such that
controls(ti, TCTRL(t)) = true. The set difference between
TIND and TCTRL represents the transitions that do not
influence (directly or indirectly) the transition t.

20 1

.*T
14

_c
1.*

 .*OUTGATE.*

ACCEPT

3
REFUSE

.*T
14

_c
2.*

.*T
12

.*

.*T
14

_c
4.*

.*T
14

_c
3.*

 .*T7.*

Figure 6. Test Purpose for T7

75

0

1

INGATE !DIAGNOSIS_T0

2

3

INGATE !ACC_T20

4

36

INGATE !MAIN_UNIT_T1

37

38

OUTGATE !IGN_ON

39
74OUTGATE !IGNITION_ON

OUTGATE !S_NOT_ACTIVE_NOTSTORED !0 !FALSE !0

OUTGATE !S_IDLE !TRUE

5

INGATE !IGNITION_T25 !IGNSTATUS (IGNITION, 1)

INGATE MAIN_UNIT_T19 !EVIGN_ON (MAIN_UNIT)

40

41

INGATE !MAIN_UNIT_T20 !TM (MAIN_UNIT, 1000)

42

43

INGATE !DIAGNOSIS_T1_X !EVERRORACTIVE (DIAGNOSIS)

44

70

71

72

INGATE !MAIN_UNIT_T5 !EVBAPHBSTATUS (MAIN_UNIT)

73

INGATE !DIAGNOSIS_T7 !EVERRORNOTACTIVE (DIAGNOSIS)

OUTGATE !ERROR_DETECT

OUTGATE !S_NOT_ACTIVE_NOTSTORED !1 !TRUE !0

OUTGATE !HB_DETECTED

OUTGATE !NOERROR

69

INGATE !ACC_T38_X !EXTTOGGLEHB (ACC)

OUTGATE !S_NOTACTIVE_STORED !1 !TRUE !1

Figure 7. Test Case Covering Transition T7

V. TEST PURPOSE GENERATION

A. Structural Coverage Aimed Test Case Generation

Since during the transformation we preserve the traceabil-
ity between the UML model and the LOTOS specification
we are able to generate test purposes aimed at covering the
original UML model. By traceability we mean that in the
LOTOS specification we are still able to identify the UML
statechart elements such as transitions, states, variables and
events. Thus, Figure 6 contains the LTS representation of a
test purpose generated for covering transition T7 in Figure
3.

The transitions leading to state 3 in Figure 6 are the
independent transitions identified by applying the algorithm
presented in Figure 5. Figure 7 contains the test case
generated by using the afore mentioned test purpose.

In the test purpose definition, labels of transitions are
denoted by strings that can also be stated using regular
expressions (e.g. “.*” or “.*T7.*”). The label “.*T7.*”
contains the id of the searched transition whereas “.*OUT-
GATE.*” represents the action needed to get the values
of the variables used in the statechart after triggering the
transition T7.

The edges leading to state 3 are labeled with the IDs
of the transitions T7 does not depend on. The edge with
the label “REFUSE” is used to mark parts of the model
that will not be explored during the test generation process.

130

Basically edges in the specification whose labels fit the
(regular expression of) the labels of edges in the test purpose
leading to the source of the REFUSE edge will not
be explored (and thus neither the behavior that they lead
to). The generation process will stop as soon as an action
matching the expression “.*T7.*” followed by one matching
“.*OUTGATE.*” is encountered.

B. User Defined Test Purposes
Due to the fact that a test suite providing high coverage of

the model does not guarantee that the system is well tested
further mechanisms for the specification of test purposes are
needed.

In [6] we also presented an approach for test case gen-
eration where test purposes were derived from annotations
made on the model by the user. These annotations provided
the order in which certain UML elements (states and/or
transitions) needed to be visited. The amount of information
in such a test purpose was always dependent on the user
while the test generation tool had the task to compute the
corresponding test case. The effort required to make such
annotations also depends on the complexity of the model
and that of the described test scenario.

Contrary to [6], the current approach tries to enrich the
annotated test purposes with refuse transitions in order to
reduce the state exploration of the input model

Technically the annotations are done using UML tags.
Tags are pairs consisting of two elements - a name and
a value. The name of the tag will represent the id of the
scenario to cover with the generated test case. In order
to specify a test scenario there are provided two types
of annotations: inclusion and exclusion of UML statechart
elements.

The semantic intended for the included elements is that
they need to be part of the test case in the order provided
by the annotation.

The excluded items are used to mark UML elements not
pertinent to the current test scenario. We used these elements
as refuse transitions in the derived test purposes.

Test purposes are automatically generated by using these
annotations. The first step is moving the annotations on the
states to all the transitions targeting them. Thus we obtain
a specification of the test scenario only in terms of desired
and excluded transitions.

We define a test purpose tp (Definition 7) as an ordered
sequence of test purpose items tpij (Definition 6)

Definition 6: (Test Purpose Item). A test purpose item
tpi is a tuple (IN,EX) where IN ⊂ TR and EX ⊂ TR
are the included and excluded transitions of tpi. TR is the
set of transitions in the model (from all statecharts).

Definition 7: (Test Purpose). A test purpose tp is a
sequence TPI = (tpi0, tpi1...tpin) of test purpose items
where ∀tpij , 0 <= j <= n : order(tpij) < order(tpij+1).

We are going to use the Definitions 6 and 7 in order to
describe the algorithm for generating test purposes from the
user defined annotations. The basic idea for the algorithm

Input: M , UDTP
Output: UDTPimpr

1: for all tp ∈ UDTP (M) do
2: excludedT (tp)← ⋂{EX(tpik) : tpik ∈ TPI(tp)}
3: remove(excludedT,M)
4: TIND ← computeIndeps(M)
5: communIndeps(tp)←⋂{TIND(tr) |tr ∈ IN(tpik)∧ tpik ∈ TPI(tp)}
6: for all tpik ∈ TPI(tp) do
7: EX(tpik)← EX(tpik) ∪ communIndeps(tp)
8: end for
9: generateTestPurpose(tp)

10: UDTPimpr ← UDTPimpr ∪ tp
11: add(excludedT,M)
12: end for

Figure 8. Refuse Transitions Computation Algorithm

in Figure 8 is to identify the transitions that can be safely
removed from the model and do not influence the included
items of the user defined test purposes.

The inputs for the algorithm are the model M containing
the different statecharts and a set of user defined test
purposes UDTP . The output is the set of test purposes
UDTPimpr with potentially more excluded items. There is
also the possibility that no further excluded transitions are
added to the test purposes.

Making use of the user provided annotations we eliminate
from the model (line 3) the transitions that have been marked
as excluded for all the test purpose items tpik (line 2) of the
current test purpose tp. At this point we have a new model
on which we compute (line 4) the dependence relations
described in the previous sections.

Since in a test purpose there are more than one included
transitions only transitions that do not influence any of them
(line 5) can be added as refuse transitions in the test purpose
(line 7). At this point we go ahead and generate the test
purpose (line 9).

Before moving on to the next test purpose we need to
restore the model to its previous state (line 11).

VI. EXPERIMENTAL RESULTS

We evaluated the proposed approach using three real-
world examples (Flasher, Diagnosis and KeylessEntry) orig-
inating from the automotive domain and four more from
literature. We used the identified refuse transitions in order
to improve a previously presented test case generation tech-
nique [6]. That technique was aimed at generating test cases
for structural coverage of statecharts. The automatically
generated test purposes did not contain any refuse states.
Thus the present approach complements the test purposes
with the refuse transitions identified by using the dependence
relations.

Table I contains some statistical data regarding the models
we used in our experiments. Thus the first column contains
the name of the model while column SCNo presents the

131

Table I
MODEL STATISTICS

Model SCNo TrNo StNo TrNoflat StNoflat ProcLOTOS LoCLOTOS

Flasher 6 34 14 72 19 30 2800
Diagnosis 4 38 17 44 14 21 1800
KeylessEntry 3 35 22 43 13 19 1470
MicrowaveOven 2 34 12 37 10 15 1170
LoanApprovalWS 2 22 15 22 15 20 1210
ConferenceProtocol 3 41 18 41 18 24 1660
TelCtrlProtocol 2 55 26 70 21 26 2100

number of communicating statecharts of the model. Columns
TrNo and StNo contain the number of transitions and
states of the non flattened models. The number of transitions
and states of the flattened version of the models can be found
in columns TrNoflat and StNoflat respectively. Column
ProcLOTOS contains the number of LOTOS processes de-
rived from the model. The last column LoCLOTOS contains
an approximation of the number of lines of code in the
LOTOS specification.

Transition coverage on the flattened model has the ad-
vantage that it subsumes transition coverage on the original
model. This comes from the fact that it tries to cover all
copies of a transition T generated during the flattening
process. On the original model this is equivalent to firing
T from every state contained by its source state.

However, a drawback in trying to cover the flattened
model is the fact that some transition copies are not reach-
able in the flattened model. This originates from the fact that
certain combinations between simple states and transition
copies are not possible even if the flattened model contains
them. Unfortunately, for now such situations are identified
manually. Researching techniques to automatically find such
situations is part of future work.

In Table II we present the results obtained when using the
current test purpose generation technique aimed at transition
coverage.

The first column of the table contains the name of the
model for which the test purposes were generated. Column
Approach contains the test case generation approach where
Dep. stands for the current approach and Apr1 for the previ-
ous one [6]. The next column TPs contains the total number
of generated test purposes. Column V alidTPs presents the
number of valid test purposes. By valid test purpose we
mean test purposes not targeting transitions copies that are
not reachable on the flattened model.

In column TCs we give the number of generated test
cases. We imposed a limit of 25 minutes per test purpose.
If no test case was generated within this time, the gener-
ation process is stopped. Column DepCmpt contains the
time needed for computing the dependence relations while
column CompTime contains the time TGV was allowed to
run for the generation process.

The last two columns (TCovflat and TCov) contain the
transition coverage on the flattened and non flattened model
respectively.

For most of the models, the current approach delivered
better results than the previous one. This was to be expected
because one eliminated transition might translate to a (more
or less) large part of the behavior (at LTS level - the enu-
merated behavior of the specification) that is not considered
during the test case generation process.

In some cases (Diagnosis, MicrowaveOven and Confer-
enceProtocol) the dependences helped in finding transitions
that the old approach was not able to find.

Even equipped with refused transitions the current ap-
proach failed in finding test cases to cover three transitions in
the Diagnosis model. However the previous approach failed
in finding four such test cases. Also in this case the current
approach outperforms the old one.

We present the results of using the current technique
with user defined test purposes in Table III. Here columns
DepT and T ime contain the time needed for the dependence
computation and for generating the test cases in column
TCs. The times in column T ime do not contain the ones
for the computation of the dependence relations (column
DepT).

For every model we defined a number of 15 test pur-
poses and applied the algorithm in Figure 8 to try to
complement them with refuse transitions. For most of the
models (KeylessEntry, MicrowaveOven, TelCtrlProtocol and
LoanApprovalWS) the generation time did not significantly
improve compared with the old approach. This was to
be expected since in one test purpose there are several
transitions that have to be found and thus the chance of
finding refuse transitions is also smaller.

In the case of the Flasher model, the current approach
delivered better results. There were a number of four test
purposes that account for the time difference between the
two approaches. The size of the state space excluded through
the added refuse transitions is one factor responsible for
this time variation. Another influencing factor might be
the algorithm TGV uses during the generation process and
the order in which it visits transitions of the underlaying
labeled transition system. The rest of the test purposes had
comparable generation times.

Of course, when making use of dependence relations the
test case generation results depend on the structure and
size of the specification. However, in the worst case no
refuse state might be introduced. The current approach is
also influenced by the overhead imposed by computing the

132

Table II
COVERAGE AIMED TEST CASE GENERATION RESULTS

Model Approach TPs V alidTPs TCs DepCmpt CompTime TCovflat TCov

Flasher
Dep. 72 70 70 8s 14m30s 97% 100%
Apr1 72 70 70 - 58m10s 97% 100%

Diagnosis
Dep. 44 42 39 2s 1h20m 95% 97%
Apr1 44 42 38 - 1h43m50s 95% 97%

KeylessEntry
Dep. 43 39 39 2s 2m42s 91% 100%
Apr1 43 39 39 - 2m38s 91% 100%

MicrowaveOven
Dep. 37 37 37 1s 2m10s 100% 100%
Apr1 37 37 36 - 27m20s 97% 97%

LoanApprovalWS
Dep. 22 22 22 1s 1m9s 100% 100%
Apr1 22 22 22 - 1m20s 100% 100%

ConferenceProtocol
Dep. 41 41 41 3s 6m7s 100% 100%
Apr1 41 41 39 - 1h42m27s 95% 95%

TelCtrlProtocol
Dep. 65 65 65 2s 3m52s 100% 100%
Apr1 65 65 65 - 4m6s 100% 100%

Table III
USER DEFINED TEST PURPOSES RESULTS

Model Appr TPs TCs DepT T ime

Flasher
Dep. 15 15 1m52s 2m18s
Apr1 15 15 - 13m50s

Diagnosis
Dep. 15 15 9s 1m1s
Apr1 15 15 - 1m32s

KeylessEntry
Dep. 15 15 4s 52s
Apr1 15 15 - 52s

MicrowaveOven
Dep. 15 15 6s 55s
Apr1 15 15 - 57s

LoanApprovalWS
Dep. 15 15 5s 55s
Apr1 15 15 - 56s

ConferenceProtocol
Dep. 15 15 6s 12m21s
Apr1 15 15 - 15m5s

TelCtrlProtocol
Dep. 15 15 8s 51s
Apr1 15 15 - 55s

dependence relations. This overhead depends on the size
and structure of the used model. For the used models this
overhead was quite low.

VII. RELATED WORK

Slicing has been used in [17] for the purpose of test case
generation from UML activity diagrams. They generate test
cases aimed at path coverage by computing dynamic slices
corresponding to each conditional predicate on the edges of
the diagram. In their work no static control dependences are
used and only data dependences are employed so that only
the nodes that affect the truth value of the predicate on the
edge at run time are kept in the slices.

Another approach [18] where test purposes are generated
and extended with refuse states has also been proposed.
There, the refused states are computed using data flow
graphs that are extracted from LOTOS specifications. The
dependence relations (data flow graphs), type and behavioral
semantic (synchronously communicating processes) of the
systems are some of the differences to the current approach.

A short version [19] of this paper will also appear.
Additions in the current work are the user defined test

purpose generation approach and the fact that more models
have been used for the experimental results.

An approach using slicing for test case generation is [20],
where the authors compute slices from specifications given
in the formal language IF. The slices are calculated with
respect to sets of signals (inputs or outputs) and also require
external data in the form of test purposes or feeds. Our
approach uses different formalisms and there is no need for
external user provided data. We also do not generate a new
specification for each criterium.

In [21] an approach to derive test purposes from temporal
logic properties specifications is proposed. The approach
uses modified model checking algorithms to extract exam-
ples and counterexamples from the state space of the speci-
fication. Test purposes are then constructed by analyzing the
extracted behaviors.

VIII. CONCLUSIONS AND FUTURE WORK

In this article we presented the usage of different depen-
dence relations in order to enhance test purposes with refuse
states. These states are used by the TGV test-case generation
tool in order to limit the searched state space during the
generation process. We use these refuse states in order to
improve a previously presented test case generation tech-
nique [6] aimed at structural coverage (state and transition
coverage) of a specification given in terms of asynchronously
communicating statecharts.

We evaluated the proposed approach using a case study
comprising three real world examples from the automotive
domain and four from literature. The obtained results show
an improvement from the initial version of the test case gen-
eration technique. However, the approach still needs further
evaluation by using it on a larger class of specifications
and identifying properties indicating its usefulness. Such
properties would help in deciding in which cases it makes
sense to use the presented approach and in which to use
other approaches.

Another direction of interest for future work is the in-
vestigation of the happens-before relation in case of com-

133

munication dependence. As also mentioned in [15] the
communication dependence is not transitive thus reducing
the precision of the obtained slices. The happens-before
relation [22] helps by ensuring that dependences exist only
between transitions where the source transition can happen
before the target transition. In our case this means a possible
increase of the number of identified refuse transitions.

Investigating techniques to automatically identify the un-
reachable transitions copies of the flattened model is also of
interest for future work.

ACKNOWLEDGEMENT

The research herein is partially conducted within the
competence network Softnet II Austria (www.soft-net.at)
and funded by the Austrian Federal Ministry of Economics
(bm:wa), the province of Styria, the Steirische Wirtschafts-
förderungsgesellschaft mbH. (SFG), and the city of Vienna
in terms of the center for innovation and technology (ZIT).

REFERENCES

[1] “Unified modeling language UML 2.0,” Object
Management Group OMG. [Online]. Available:
http://www.omg.org/spec/UML/2.0/

[2] V. Chimisliu and F. Wotawa, “Abstracting timing information
in UML statecharts via temporal ordering and LOTOS,” in
Proc. of the 6th International Workshop on Automation of
Software Test, ser. AST ’11. ACM, 2011, pp. 8–14.

[3] ISO, “ISO 8807: Information processing systems – open
systems interconnection – LOTOS – a formal description
technique based on the temporal ordering of observational
behaviour,” 1989.

[4] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “Cadp 2006:
A toolbox for the construction and analysis of distributed
processes,” in CAV, 2007, pp. 158–163.

[5] C. Jard and T. Jéron, “TGV: theory, principles and algorithms:
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” Int. J. Softw. Tools
Technol. Transf., vol. 7, no. 4, pp. 297–315, 2005.

[6] V. Chimisliu and F. Wotawa, “Model based test case genera-
tion for distributed embedded systems,” in Industrial Technol-
ogy (ICIT), 2012 IEEE International Conference on, march
2012, pp. 656 –661.

[7] J. de Meer, R. Roth, and S. Vuong, “Introduction to algebraic
specifications based on the language ACT ONE,” Comput.
Netw. ISDN Syst., vol. 23, pp. 363–392, 1992.

[8] J. Tretmans, “Test generation with inputs, outputs and repet-
itive quiescence,” Software - Concepts and Tools, vol. 17,
no. 3, pp. 103–120, 1996.

[9] J. R. Calamé, “Specification-based test generation with tgv,”
Centrum voor Wiskunde en Informatica, Technical Report
SEN-R0508, May 2005.

[10] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker,
A. Wiles, and C. Willcock, “An introduction to the testing and
test control notation (ttcn-3),” Computer Networks, vol. 42,
no. 3, pp. 375 – 403, 2003.

[11] D. Harel and H. Kugler, “The Rhapsody semantics of state-
charts (or, on the executable core of the UML) - preliminary
version,” in SoftSpez Final Report, 2004, pp. 325–354.

[12] C. Schwarzl and B. Peischl, “Test sequence generation from
communicating UML state charts: An industrial application of
symbolic transition systems,” Quality Software, International
Conference on, pp. 122–131, 2010.

[13] V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B.
Dwyer, “A new foundation for control dependence and slicing
for modern program structures,” ACM Trans. Program. Lang.
Syst., vol. 29, no. 5, 2007.

[14] S. Labbé and J.-P. Gallois, “Slicing communicating automata
specifications: polynomial algorithms for model reduction,”
Form. Asp. Comput., vol. 20, no. 6, pp. 563–595, Dec. 2008.

[15] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, and
L. Tratt, “Control dependence for extended finite state ma-
chines,” in Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering, ser.
FASE ’09, 2009, pp. 216–230.

[16] J. Wang, W. Dong, and Z.-C. Qi, “Slicing hierarchical au-
tomata for model checking uml statecharts,” in Proceedings
of the 4th International Conference on Formal Engineering
Methods, 2002, pp. 435–446.

[17] P. Samuel and R. Mall, “Slicing-based test case generation
from uml activity diagrams,” SIGSOFT Softw. Eng. Notes,
vol. 34, no. 6, pp. 1–14, Dec. 2009.

[18] M. Weiglhofer and F. Wotawa, “Improving coverage based
test purposes,” in Quality Software, 2009. QSIC ’09. 9th
International Conference on, aug. 2009, pp. 219 –228.

[19] V. Chimisliu and F. Wotawa, “Using dependency relations to
improve test case generation from UML statecharts,” in 5th
IEEE Int. Workshop on Software Test Automation. IEEE
Computer Society, 2013, p. to appear.

[20] M. Bozga, J.-C. Fernandez, and L. Ghirvu, “Using static
analysis to improve automatic test generation,” International
Journal on Software Tools for Technology Transfer (STTT),
vol. 4, pp. 142–152, 2003.

[21] D. A. da Silva and P. D. Machado, “Towards test purpose gen-
eration from ctl properties for reactive systems,” Electronic
Notes in Theoretical Computer Science, vol. 164, no. 4, pp.
29 – 40, 2006.

[22] L. Lamport, “Time, clocks, and the ordering of events in a
distributed system,” Commun. ACM, vol. 21, no. 7, pp. 558–
565, Jul. 1978.

134

