
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

Automatic Verification of the IEEE-1394 Root Contention
Protocol with KRONOS and PRISM ?

Conrado Daws1, Marta Kwiatkowska2, Gethin Norman2

1 University of Twente, P.O. Box 217 7500 AE Enschede, The Netherlands e-mail: daws@cs.utwente.nl
2 University of Birmingham, Birmingham B15 2TT, United Kingdom e-mail: {M.Z.Kwiatkowska,G.Norman}@cs.bham.ac.uk

The date of receipt and acceptance will be inserted by the editor

Abstract. We report on the automatic verification of
timed probabilistic properties of the IEEE 1394 root
contention protocol combining two existing tools: the
real-time model-checker Kronos and the probabilistic
model-checker Prism. The system is modelled as a prob-
abilistic timed automaton. We first use Kronos to per-
form a symbolic forward reachability analysis to generate
the set of states that are reachable with non-zero prob-
ability from the initial state, and before the deadline
expires. We then encode this information as a Markov
decision process to be analyzed with Prism. We apply
this technique to compute the minimal probability of
a leader being elected before a deadline, for different
deadlines, and study how this minimal probability is in-
fluenced by using a biased coin and considering different
wire lengths.

1 Introduction

The design and analysis of many hardware and soft-
ware systems, such as embedded systems and monitor-
ing equipment, requires detailed knowledge of their real-
time aspects, in addition to the functional requirements.
Typically, this is expressed in terms of hard real-time
constraints, e.g. “after a fatal error, the system will be
shut down in 45 seconds”. In the case of safety-critical
systems, it is essential to ensure that such constraints
are never invalidated.

However, in other cases, for example multimedia pro-
tocols that perform in the presence of lossy media, such
hard deadlines can be too restrictive. Soft deadlines are
then a viable alternative in these cases. For example, a
soft deadline of a multimedia system could be that “with

? Supported in part by the EPSRC grant GR/N22960 and by
the European Community Project IST-2001-35304 AMETIST

probability at least 0.96, video frames arrive within 80 to
100 ms after being sent”. Soft deadlines can also specify
fault-tolerance and reliability properties such as “dead-
lock will not occur with probability 1”, or “the message
may be lost with probability at most 0.01”.

Recent research [28] has set a theoretical framework
for the specification and verification of timed probabilis-
tic systems. Inspired by the success of real-time model-
checkers such as Kronos [14] and Uppaal [30], the di-
rection taken is that of automatic verification through
model checking , adapting the formalisms and algorithms
for model-checking of classical (non-probabilistic) timed
systems [2] to the case of timed probabilistic systems.
Within this approach1, timed probabilistic systems are
modelled as probabilistic timed automata [1,28], i.e. timed
automata with discrete probability distributions associ-
ated with the edges, and properties are specified in the
logic PTCTL, which extends the quantitative branch-
ing temporal logic TCTL with a probabilistic operator.
Due to the denseness of time, model checking algorithms
rely on the construction of a finite quotient of the state
space of the system, namely the region graph or the
forward reachability graph [28]. By adding the corre-
sponding probability distributions to the transitions of
the graph we obtain a Markov decision process (MDP).
The probability with which a state of this MDP satisfies
a property can then be calculated by solving an appro-
priate linear programming problem [9,7].

In this work we show how, based on these ideas, the
real-time model-checker Kronos [14,25] and the prob-
abilistic model-checker Prism [26,32] can be combined
for the automatic verification of the root contention pro-
tocol of IEEE 1394, a timed and probabilistic protocol
to resolve conflicts between two nodes competing in a
leader election process. The property of interest is the
minimal probability for electing a leader before a dead-

1 We consider in this work systems where only discrete proba-
bilities arise.



2 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

line. We first use Kronos2 to perform a symbolic for-
ward reachability analysis to generate the set of states
that are reachable with non-zero probability from the
initial state, and before the deadline expires. We then
encode this information as a Markov decision process
in the Prism input language. Finally, we compute with
Prism the minimal probability of a leader being elected
before a deadline, for different deadlines. Moreover, we
investigate the influence of using a biased coin, and wires
of different length, on this minimal probability.

This article proceeds as follows. Section 2 introduces
probabilistic timed automata and defines probabilistic
reachability of a set of states. In section 3 we describe
the features of Kronos and Prism used in our verifi-
cation approach. The encoding of the reachability graph
in Prism input language is explained in section 4. Sec-
tion 5 illustrates this approach with the verification of
the root contention protocol of the IEEE 1394 standard.
We conclude with Section 6.

2 Probabilistic Timed Automata

A timed automaton [3] is an automaton extended with
clocks, variables with positive real values which increase
uniformly with time. Clocks may be compared to posi-
tive integer time bounds to form clock constraints such
as (x ≥ 2) ∧ (x ≤ 5). There are two types of clock con-
straints: invariants labelling nodes, and guards labelling
edges. The automaton may only stay in a node, letting
time pass, if the clocks satisfy the invariant. When a
guard is satisfied, the corresponding edge can be taken.
Transitions are instantaneous, and can be labelled with
clock resets of the form x := 0 meaning that upon enter-
ing the target node the value of clock x is set to 0. Prob-
abilistic automata have probability distributions added
to the edges, which model the likelihood of the action
happening.

Example 1. The probabilistic timed automaton PTA1 of
Figure 1 models a process which repeatedly tries to send
a packet after waiting between 4 and 5 ms, and if success-
ful waits for 3 ms before trying to send another packet.
The packet is sent with probability 0.99 and lost with
probability 0.01 because of an error. Notice that edges
belonging to a same distribution must be labelled with
the same guard.

2.1 Syntax

Clocks and valuations. Let X be a finite set of vari-
ables called clocks which take values from the time do-
main R+. A clock valuation is a point v ∈ R|X |

+ . The

2 We have used an experimental version, not distributed yet,
that has been adapted to deal with probability distributions and
generates the corresponding output.

x:=0 x=3
wait

x≤3
x:=00.99

send

x≤5

0.01
x≥4

x:=0

error

Fig. 1. An example of a probabilistic timed automaton PTA1.

clock valuation 0 ∈ R|X |
+ assigns 0 to all clocks in X .

Let v ∈ R|X |
+ be a clock valuation, t ∈ R+ be a time du-

ration, and X ⊆ X a subset of clocks. Then v+t denotes
the time increment for v and t, and v[X := 0] denotes
the clock valuation obtained from v by resetting all of
the clocks in X to 0 and leaving the values of all other
clocks unchanged.

Zones. Let Z be the set of zones over X , which are
conjunctions of atomic constraints of the form x ∼ c and
x− y ∼ c, with x, y ∈ X , ∼ ∈ {<,≤,≥, >}, and c ∈ N.
A clock valuation v satisfies the zone ζ, written v |= ζ,
if and only if ζ resolves to true after substituting each
clock x ∈ X with the corresponding clock value v(x).
Let ζ be a zone and X ⊆ X be a subset of clocks. Then
↗ζ is the zone representing the set of clock valuations
v + t such that v |= ζ and t ≥ 0, and ζ[X := 0] is the
zone representing the set of clock valuations v[X := 0]
such that v |= ζ.

Probability distributions. A discrete probability dis-
tribution (subdistribution) over a finite set Q is a function
µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1 (

∑
q∈Q µ(q) ≤

1). Let Dist(Q) (SDist(Q)) be the set of distributions
(subdistributions) over subsets of Q.

Definition 1. A probabilistic timed automaton is a tu-
ple PTA = (L, l̄,X , Σ, I ,P) where:

– L is a finite set of locations;
– l̄ ∈ L is the initial location;
– Σ is a finite set of labels;
– the function I : L → Z is the invariant condition;

and the finite set P ⊆ L × Z × Σ × Dist(2X × L) is
the probabilistic edge relation.

An edge takes the form of a tuple (l, g, X, l′), where l is
its source location, g is its enabling condition, X is the
set of resetting clocks and l′ is the destination location,
such that (l, g, σ, p) ∈ P and p(X, l′) > 0.

To aid higher-level modelling, systems can be defined
as the parallel composition of a number of interacting
components. For example, in the case of the IEEE 1394
root contention protocol, it suffices to construct models



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 3

for each of the two contending nodes, and the two wires
along which they communicate. Based on the theory of
(untimed) probabilistic systems [33] and classical timed
automata [3], the parallel composition of two probabilis-
tic timed automata, which interact by synchronizing on
common events, is defined in the following way.

Definition 2. The parallel composition of two proba-
bilistic timed automata PTA1 = (L1, l̄1,X1, Σ1, I1,P1)
and PTA2 = (L2, l̄2,X2, Σ2, I2,P2) such that X1∩X2 = ∅,
is the probabilistic timed automaton

PTA1‖PTA2 = (L1 × L2, (l̄2, l̄2),X1 ∪ X2, Σ1 ∪Σ2, I ,P)

where I (l, l′) = I1(l) ∧ I2(l′) for all (l, l′) ∈ L1 × L2 and
((l1, l2), g, σ, p) ∈ P if and only if one of the following
conditions holds:

– σ ∈ Σ1 \ Σ2 and there exists (l1, g, σ, p1) ∈ P1 such
that p = p1⊗µ(∅,l2);

– σ ∈ Σ2 \ Σ1 and there exists (l2, g, σ, p2) ∈ P2 such
that p = µ(∅,l1)⊗p2;

– σ ∈ Σ1 ∩ Σ2 and there exists (l1, g1, σ, p1) ∈ P1 and
(l2, g2, σ, p2) ∈ P2 such that g = g1 ∧ g2 and p =
p1⊗p2

where for any l1 ∈ L1, l2 ∈ L2, X1 ⊆ X1 and X2 ⊆ X2,
we let p1⊗p2(X1 ∪X2, (l1, l2)) = p1(X1, l1) · p2(X2, l2).

Furthermore, it is often convenient to designate certain
locations as being urgent; once an urgent location is en-
tered, it must be left immediately, without time pass-
ing. The notion of urgency for locations is closely re-
lated to the concept of urgent transitions [22,16] (an
urgent location is a location for which all outgoing dis-
crete transitions are urgent). Urgent locations can be
represented syntactically using the framework given in
Definition 1 using an additional clock, combined with
additional clock resets and invariant conditions.

2.2 Semantics

A state of a probabilistic timed automaton PTA is a pair
(l, v) where l ∈ L and v ∈ R|X |

+ such that v |= I (l), and
the automaton starts in the state (l̄,0), that is, in the
initial location l̄ with all clocks set to 0. If the current
state is (l, v), there is a nondeterministic choice of either
letting time pass while satisfying the invariant condition
I (l), or making a discrete transition according to any
probabilistic edge in P with source location l and whose
enabling condition g is satisfied. If the probabilistic edge
(l, g, σ, p) is chosen, then the probability of moving to
the location l′ and resetting to 0 all clocks in X is given
by p(X, l′).

The semantics of probabilistic timed automata is de-
fined in terms of transition systems exhibiting both non-
deterministic and probabilistic choice, called probabilis-
tic systems, which are essentially equivalent to Markov
decision processes.

2.2.1 Probabilistic systems.

A probabilistic system PS = (S, s̄,Act ,Steps) consists of
a set S of states, an initial state s̄ ∈ S, a set Act of
actions, and a probabilistic transition relation Steps ⊆
S × Act × SDist(S). A probabilistic transition s

a,µ−−→ s′

is made from a state s ∈ S by first nondeterminis-
tically selecting an action-distribution pair (a, µ) such
that (s, a, µ) ∈ Steps, and then by making a probabilis-
tic choice of target state s′ according to µ, such that
µ(s′) > 0.

Definition 3. Given a probabilistic timed automaton
PTA = (L, l̄,X , Σ, I ,P), the semantics of PTA is the
probabilistic system [[PTA]] = (S, s̄,Act ,Steps) defined
by the following.

States. Let S ⊆ L × R|X |
+ such that (l, v) ∈ S if and

only if v |= I (l) and s̄ = (l̄,0).
Actions. Let Act = R+ ∪Σ.
Transitions. Let Steps be the least set of probabilistic

transitions containing, for each (l, v) ∈ S:
– for each t ∈ R+, let ((l, v), t, µ) ∈ Steps if and

only if µ(l, v + t) = 1 and v + t′ |= I (l) for all
0 ≤ t′ ≤ t.

– for each (l, g, σ, p) ∈ P, let ((l, v), σ, µ) ∈ Steps if
and only if v |= g and for each (l′, v′) ∈ S:

µ(l′, v′) =
∑

X⊆X & v′=v[X:=0]

p(X, l′) .

2.3 Probabilistic Reachability

The behaviour of a probabilistic timed automaton PTA
is described in terms of the behaviour of its semantics,
that is, the behaviour of the probabilistic system [[PTA]].

Paths. A path of a probabilistic system PS is a non-
empty finite or infinite sequence of transitions

ω = s̄
a0,µ0−−−→ s1

a1,µ1−−−→ s2
a2,µ2−−−→ · · · .

For a path ω and i ∈ N, we denote by ω(i) the (i + 1)th
state of ω, and by last(ω) the last state of ω if ω is finite.

Adversaries. An adversary is a function A mapping
every finite path ω to a pair (a, µ) ∈ Act ×Dist(S) such
that (last(ω), a, µ) ∈ Steps [36]. Let AdvPS be the set
of adversaries of PS. For any A ∈ AdvPS, let PathA

fin

and PathA
ful denote the set of finite and infinite paths

associated with A. A probability measure ProbA over
PathA

fin can then be defined following [24].

Definition 4. Let PS = (S, s̄,Act ,Steps) be a prob-
abilistic system. Then the reachability probability with
which a set F ⊆ S of target states can be reached from
the initial state s̄, for an adversary A ∈ AdvPS, is:

ProbReachA(F ) def=
ProbA{ω ∈ PathA

ful | ∃i ∈ N . ω(i) ∈ F} .



4 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

Furthermore, the maximal and minimal reachability prob-
abilities are defined respectively as

MaxProbReachPS(F ) def= sup
A∈AdvPS

ProbReachA(F )

MinProbReachPS(F ) def= inf
A∈AdvPS

ProbReachA(F )

2.4 Probabilistic Bisimulation

Definition 5 ([31]). A probabilistic bisimulation on a
probabilistic system (S, s̄,Act ,Steps) is an equivalence
relation R on S such that, for all sRs′, if s

a→ µ then
there exists a transition s′

a→ µ′ such that for all equiv-
alence classes C ∈ [S]R:∑

t∈C

µ(t) =
∑
t∈C

µ′(t).

Two states s1 and s2 are called probabilistically bisim-
ilar, denoted by s1 ∼ s2, if and only if there exists a
probabilistic bisimulation which contains (s1, s2).

A probabilistic system P = (S, s̄,Act ,Steps) can be re-
duced, by quotienting with respect to probabilistic bisim-
ulation, giving an equivalent probabilistic system P∼ =
([S]∼, [s̄],Act ,Steps ′), where

Steps ′ ⊆ [S]∼ ×Act × Dist([S]∼)

is such that ([s], a, µ′) ∈ Steps ′ if for some r ∈ [s],
(r, a, µ) ∈ Steps and for all C ∈ [S]∼ we have µ′(C) =∑

t∈C µ(t).
Probabilistic bisimulation preserves the behaviour of

the systems, that is, bisimilar probabilistic systems ex-
hibit the same behaviour. For instance, in the case of fi-
nite state probabilistic systems, PCTL formulas are pre-
served by probabilistic bisimulation [33]. Here we are
interested, in particular, in the preservation of maximal
and minimal probabilities for reaching an equivalence
class [11]. That is, for any finite state probabilistic sys-
tem P and F ∈ [S]∼:

MaxProbReachP (F ) = MaxProbReachP∼(F )
MinProbReachP (F ) = MinProbReachP∼(F )

3 Verification with KRONOS and PRISM

Due to the denseness of time, the underlying semantic
model of a (probabilistic) timed automaton is infinite,
and hence effective decision procedures rely on build-
ing a finite quotient of the state space, e.g. the region
graph or the forward reachability graph. This section
describes the verification technique based on the gener-
ation of the forward reachability graph with Kronos,
and model checking the obtained graph encoded as a
Markov decision process with Prism.

3.1 Forward Reachability with KRONOS

The forward reachability algorithm of Kronos proceeds
by a graph-theoretic traversal of the reachable state space
using a symbolic representation of sets of states, called
symbolic states [15]. A symbolic state is a pair of the
form 〈l, ζ〉, with l ∈ L and ζ ∈ Z, such that ζ ⊆ I (l); it
represents all states (l, v) such that v |= ζ. The traver-
sal is based on the iteration of a successor operator
in two alternating steps: first the computation of the
edge-successors and then the computation of the time-
successors of a symbolic state.

Edge Successors. The edge-successor of 〈l, ζ〉 with re-
spect to an edge e = (l, g, X, l′), such that (l, g, α, µ) ∈ P
with α ∈ Σ and µ(X, l′) > 0 is 3

edge succ(〈l, ζ〉, e) = 〈l′, (ζ ∧ g)[X := 0] ∧ I (l′)〉 .

Time Successors. The time-successor of 〈l, ζ〉 is de-
fined as

time succ(〈l, ζ〉) = 〈l,↗ζ ∧ I (l)〉 .

Figure 2 shows the reachability graph obtained for the
probabilistic timed automaton PTA1 for a deadline of
15 ms, measured with an extra clock y. Since y is never
reset, its value would increase indefinitely. To obtain a
finite reachability graph, we need to apply the extrapola-
tion abstraction of [15], which abstracts away the exact
value of y when y > 15. Notice that this abstraction is
exact with respect to reachability properties.

3.2 Model Checking Reachability Properties with
PRISM

Prism [26,32] is a model checker designed to verify dif-
ferent types of probabilistic models: discrete-time Markov
chains (DTMCs), Markov decision processes (MDPs) and
continuous-time Markov chains (CTMCs). Properties to
be checked are specified in probabilistic temporal log-
ics, namely PCTL [9,7] if the model is a DTMC or
an MDP, and CSL [6] in the case of a CTMC. We fo-
cus on the model checking of reachability properties on
MDPs, since a (nondeterministic) probabilistic reacha-
bility graph belongs to this class of model, and dead-
line properties are specified as time bounded reachability
properties.

3.2.1 Model Checking MDPs.

Model checking of Markov decision processes is based on
the computation of the minimal probability p(s,♦φ), or

3 Notice the use of the same non probabilistic edge-successor
operator than for timed automata. The probabilistic information
is however kept in the transitions between symbolic states and
used later to generate the MDP.



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 5

2

4

6

7

8

9

10

11

5

0

3

1

send
x≤5
y−x>15

0.99 0.99

wait

error
x=0
y≤15

x=0
y>15

0.99

0.01 0.01 0.01

0.99

0.01

error after

wait
x≤3
y−x ∈ [11, 13]

wait
x≤3
y−x ∈ [4, 5]

error
x=0
y ∈ [4, 5]

error before
x=y

send
x≤5
y−x≥14

x≤5
y−x ∈ [7, 8]

send
x≤5
y−x=0

send

error

x≤3
y−x>15

x=y

Fig. 2. Reachability graph of PTA1

the maximal probability P(s,♦φ), with which a state s
satisfies a reachability formula ♦φ. Then, a state s satis-
fies the PTCL formula P≤λ(♦φ) if and only if P(s,♦φ) ≤
λ. Maximal and minimal probabilities are computed by
solving a linear programming problem [9,17]. The it-
erative algorithms implemented in Prism to solve this
problem can combine different numerical computation
methods with different data structures [18,27].

3.2.2 Model Checking PTAs.

We verify a PTA by model checking its probabilistic
reachability graph using the following result [28]: the
maximal probability computed on the reachability graph
is an upper bound to the maximal probability defined on
the semantic model of the probabilistic timed automa-
ton. That is,

MaxProbReachPS(s, F ) ≤ P(s,♦φF),

where φF is a formula characterizing the set of states F .

4 Encoding of a Reachability Graph in PRISM

The reachability graph obtained with Kronos is a list of
symbolic states and transitions between them. In order
to model-check probabilistic properties we must encode
it as a Markov decision process using Prism’s descrip-
tion language, a simple, state-based language similar to
Reactive Modules [4].

The behaviour of a Markov decision process is de-
scribed in this language by a set of guarded commands
of the form:

[] <guard> -> <command>;

where guard is a predicate over variables of the system,
and command describes a transition that the system can
make when the guard is true. A transition updates the
value of the variables, by giving their new primed value
with respect to their old unprimed value. We consider
two types of encoding of a reachability graph in this
language.

4.1 Explicit Encoding

The first solution is to use an explicit encoding of the
reachability graph with a single variable s whose value is
the index of the symbolic state of the reachability graph.
Transitions are simply encoded by guarded commands
such that the guard tests the value of s and the com-
mand updates it according to the transition relation of
the reachability graph.

For example, the encoding of the outgoing proba-
bilistic transitions from symbolic states 0, 4 and 7, cor-
responding to location send in the reachability graph of
Figure 2, is:

[] (s=0) -> 0.99:(s’=1) + 0.01:(s’=2);
[] (s=4) -> 0.99:(s’=5) + 0.01:(s’=6);
[] (s=7) -> 0.99:(s’=8) + 0.01:(s’=9);

and the incoming transitions to symbolic state 3, corre-
sponding to location error before are encoded as:

[] (s=2) -> 1:(s’=3);
[] (s=6) -> 1:(s’=3);

This encoding generates a description file whose size is,
in number of command lines, the size of the transition
relation of the reachability graph, which can grow dras-
tically as the complexity of the system increases. Prism
involves a model construction phase, during which the



6 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

system description is parsed and an MTBDD [10,5] rep-
resenting the transition relation is built. When the input
file is not a modular description of a system, such as the
file generated with the explicit encoding, this phase can
be extremely time consuming. An encoding allowing for
a more compact description of the system is needed.

4.2 Instances Encoding

Symbolic states in the reachability graph correspond to
several instances of locations of the timed automaton
from which it was generated, with different time con-
straints. We can then encode them with two variables: a
location variable l and an instance variable n describing
to which instance of the location it corresponds.

Let l = 0, 1, 2 and 3 be the values corresponding to
locations send, wait, error, and error before in Figure 2,
respectively. Then, symbolic states 0, 4 and 7 correspond
to three different instances of location send, say n = 0, 1
and 2. The outgoing probabilistic transitions from these
states can be specified by the guarded commands:

[] (l=0)&(n=0) -> 0.99:(l’=1)&(n’=0)
+ 0.01:(l’=2)&(n’=0);

[] (l=0)&(n=1) -> 0.99:(l’=1)&(n’=1)
+ 0.01:(l’=2)&(n’=1);

[] (l=0)&(n=2) -> 0.99:(l’=1)&(n’=2)
+ 0.01:(l’=2)&(n’=2);

Similarly, symbolic state 3 is the unique instance of lo-
cation error before, encoded as l = 3 and n = 0. The
incoming transitions to this state are described by:

[] (l=2)&(n=0) -> 1:(l’=3)&(n’=0)
[] (l=2)&(n=1) -> 1:(l’=3)&(n’=0)

Instances are computed by a breadth-first traversal of
the reachability graph.

4.2.1 Relative compaction

Note that, in the commands representing the outgoing
transitions from location send, the instance variable n is
left unchanged, meaning that the transition only affects
the location variable for instances 0, 1 and 2. This is
equivalent to write that n′ = n, which can be omitted
since, by default, a non updated variable takes its old
value. Thus, the transitions above have the same update
command, and can then be described more compactly in
a single command line:

[] (l=0)&(n=0|n=1|n=2) -> 0.99:(l’=1)
+ 0.01:(l’=2);

In a reachability graph, a transition between two given
locations is usually repeated several times for different
instances of the locations. This encoding allows us to
specify them all in a single command line.

We will refer to this as the relative compaction, be-
cause it is based on specifying the updated value n′ rel-
ative to its old value n.

4.2.2 Absolute compaction

The previous compaction does not apply in the case of
the two incoming transitions to error before. However, if
we specify the updated value n′ with its absolute value,
the update command of both transitions is the same.
Thus, they can both be described more compactly in a
single command line:

[] (l=2)&(n=0|n=1) -> 1:(l’=3)&(n’=0)

In a reachability graph, we encounter states which are
the destination of many different transitions, such as the
state encoded by l = 3 and n = 0 in the example of
Figure 2. This encoding allows us to specify them all in
a single command line.

We will refer to this as the absolute compaction, be-
cause it is based on specifying the absolute value of n′.
Note that this compaction could also be applied to the
explicit encoding. However, since in practice the relative
compaction leads to a more compact description, com-
paction algorithms have only been implemented in the
case of the instances encoding. Absolute compaction is
especially interesting when used in combination with the
relative one.

4.2.3 Combination

In order to obtain a further reduction, we can combine
both compactions. Since in practice there are potentially
more transitions to be compacted with the relative en-
coding than with the absolute one, the heuristic imple-
mented consists in first applying the relative compaction
and then, for those transitions that weren’t compacted,
i.e. those whose guard correspond to a unique source
state, to change the command updates for the instance
variable n from relative to absolute, and then apply the
absolute compaction.

4.2.4 Algorithms

The compaction algorithms are based on a traversal of
the set of transitions of the reachability graph in or-
der to find those which correspond to the same update
command, and then describe them in a single line as a
transition from multiple sates.

Roughly speaking, the algorithm keeps a set of up-
date commands as pairs (d, k), with d ∈ N and k ∈ Z,
corresponding to an update (l′ = d)&(n′ = n+k) in the
case of a relative encoding, and to (l′ = d)&(n′ = k) in
the case of an absolute encoding. It then associates a list
of source states to every update command.

Furthermore, in order to improve the model building
phase, the algorithm detects when different source states
correspond to the same location and successive numbers
of instance. The corresponding guard is then a constraint
specifying that the value of n is between two bounds. The
set of transitions considered in the examples above are
then specified by:



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 7

[] (l=0)&(n=0..2) -> 0.99:(l’=1)
+ 0.01:(l’=2);

[] (l=2)&(n=0..1) -> 1:(l’=3)&(n’=0);

5 Verification of the Root Contention Protocol

The IEEE 1394 High Performance serial bus is used to
transport digitized video and audio signals within a net-
work of multimedia systems and devices, such as TVs,
PCs and VCRs. It has a scalable architecture, and it
is hot-pluggable, meaning that devices can be added or
removed from the network at any time, supports both
isochronous and asynchronous communication and al-
lows quick, reliable and inexpensive data transfer. It is
currently one of the standard protocols for interconnect-
ing multimedia equipment. The system uses a number of
different protocols for different tasks, including a leader
election protocol, called tree identify protocol.

The tree identify protocol is a leader election proto-
col which takes place after a bus reset in the network,
i.e. when a node (device or peripheral) is added to, or re-
moved from, the network. After a bus reset, all nodes in
the network have equal status, and know only to which
nodes they are directly connected, so a leader must then
be chosen. The aim of this protocol is to check whether
the network topology is a tree and, if so, to construct a
spanning tree over the network whose root is the leader
elected by the protocol.

In order to elect a leader, nodes exchange “be my par-
ent” requests with its neighbours. However, contention
may arise when two nodes simultaneously send “be my
parent” requests to each other. The solution adopted by
the standard to overcome this conflict, called root con-
tention, is both probabilistic and timed: each node will
flip a coin in order to decide whether to wait for a short
or for a long time for a request. The property of interest
of the protocol is whether a leader is elected before a
certain deadline, with a certain probability or greater.

5.1 The Probabilistic Timed Automata Models

The models presented here are based on the classical
timed automata models of [34]. Figure 3 shows Nodepi ,
the probabilistic timed automaton for a contending node
of the network involved in the root contention protocol.

The probabilistic timed automaton Nodepi is a proba-
bilistic extension of the classical timed automaton node
model from [34]. The usual conventions for the graphi-
cal representation of classical timed automata are used.
The edges leaving the locations root contention (the ini-
tial location, as denoted by the bold node) and rec idle,
correspond to probabilistic transitions. For example, the
left-hand edges leaving root contention correspond to a
probabilistic choice of taking a transition to either of the
target locations, rec req fast and rec req slow, each with

probability 0.5, while resetting the clock xi. For sim-
plicity, we omit the probability labels from edges corre-
sponding to probability 1. Urgent locations are indicated
by the dashed locations. The communication medium
between the nodes, which assumes that signals are driven
continuously across wires which comprise of two-place
buffers, is then represented by the models Wirei, for
i ∈ {1, 2} (Figure 4), adopted directly from [34]. The
full model of the protocol is defined as the parallel com-
position

Implp
1 = Nodep1‖Wire1‖Wire2‖Nodep2

using Definition 2.
We also study the abstract probabilistic timed au-

tomaton Ip
1 of the root contention protocol given in Fig-

ure 5. It is a probabilistic extension of the classical timed
automaton I1 of [34] where each instance of bifurcating
edges corresponds to a coin being flipped. For example,
in the initial location start start, there is a nondetermin-
istic choice corresponding to node 1 (resp. node 2) start-
ing the root contention protocol and flipping its coin,
leading with probability 0.5 to each of slow start and
fast start (resp. start slow and start fast). For simplicity,
probability labels are omitted from the figure and prob-
abilistic edges are represented by dashed arrows.

The probabilistic timed automaton Ip
1 represents an

abstraction of the root contention protocol, in the sense
that it may exhibit a superset of adversaries of the more
refined protocol model Implp

1. However, similarly to the
results presented in [29], the probabilities computed for
the verification of Ip

1 and Implp
1 agree for all the dead-

lines considered.
The timing constraints are derived from those given

in the IEEE 1394a standard when the communication
delay between the nodes is set to 360 ns, which rep-
resents the assumption that the contending nodes are
separated by a distance close to the maximum required
for the correctness of the protocol (from the analysis of
[34]). Note that in the abstract model (Figure 5) the tim-
ing constant for the enabling condition of the edge from
fast fast to done is obtained from 760 ns, the minimal
waiting time if the “fast” side of the coin is obtained,
minus 360 ns, the wire propagation delay; similarly, the
enabling conditions of the other edges to done are ob-
tained from 1590 ns, the minimal waiting time if the
“slow” side of the coin is obtained, minus 360 ns. In Sec-
tion 5.5 we will investigate the effect of changing the
communication delay.

5.2 Verification Method

In this section we outline our approach of using Kronos
and Prism to verify deadline properties of the tree iden-
tify protocol of the IEEE 1394 High Performance serial
bus. In particular we calculate the probability of elect-
ing a leader before a certain deadline D for both the full



8 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

root i
snd idle i

snd req i

rec ack i child i
snd idle i

rec idle i

rec req i

rec req i

rec idle i

rec req i

rec idle i

snd ack i

snd ack i

xi ≥ 760

xi ≥ 1590

xi ≥ 760

snd req i

xi ≥ 1590

xi := 0

xi := 0

xi := 0

xi := 0

rec req i

xi≤850 xi≤850

xi≤1670

rec req slow

xi≤1670

0.5

0.5 0.5

0.5

root

contention

rec req fast

rec idleroot child

Fig. 3. The probabilistic timed automaton Node
p
i .

rec_ack_req

x<=delay

rec_req

y<=delay

rec_idle_ack

x<=delay

rec_ack

y<=delay

rec_req_idle

x<=delay

empty
rec_ack_idle

x<=delay

rec_req_ack

x<=delay

rec_idle

y<=delay

rec_idle_req

x<=delay

snd_idle?

x:=0, y:=0
snd_req?
x:=0, y:=0

snd_ack?

x:=0, y:=0

snd_req?

y:=0

snd_idle?

y:=0

snd_ack?

y:=0

snd_idle?

y:=0

snd_ack?

y:=0

snd_req?

y:=0

rec_ack!

rec_ack!

rec_req!

rec_req!

rec_idle!

rec_idle!rec_idle!

rec_req!

rec_ack!

snd_ack?

snd_req?

snd_idle?

snd_idle?

snd_req?

snd_req?

snd_ack?

snd_ack?

snd_idle?

Fig. 4. The timed automaton template for Wirei.

model Implp
1 and the abstract model Ip

1. For both mod-
els the first step is to construct the reachability graph
of the probabilistic timed automaton Ip

1 until a deadline
D is exceeded. To do this, we add an additional clock
y, which measures the time elapsed since the beginning
of the execution, and, upon entering a location where
a leader is elected, we immediately check whether the
clock y satisfies the deadline and then force the system
to move to distinct locations depending on whether the
deadline is satisfied by y or not.

For example, in the case of the abstract model Ip
1,

upon entering the location done, we test in time zero,

by adding an invariant x = 0 to this location and re-
setting the clock x on all incoming edges (this invari-
ant then forces the system to leave the location immedi-
ately) whether the clock y exceeds this deadline or not,
by adding two outgoing edges from done, one with the
guard y ≥ D leading to a location done after and one
with the guard y < D leading to a location done before.

Next, we specify the property of the root contention
protocol we are interested in, namely, that a leader is
elected before the deadline D with at least a given prob-
ability λ. The PCTL formula that specifies this property
is of the form P≥λ(♦ (leader elected ∧ y < D)), which



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 9

x≤360

fast start start fast

x≤360

start slow slow start

x≤360

slow slowslow fast

x≤1670 x≤1670

x≤360

start start

x≤1670

fast fast

x≤850

done

x≥400

root 1

x≥760
x:=0

x:=0

x:=0
x:=0

x:=0

root 2

x≥1230x≥1230

root 1

x≥1230

root 1

x≥1230

root 2

x≥1590
x:=0

root 2

x:=0 x:=0

fast slow

x:=0

x≥400

x:=0

x≤360

Fig. 5. The probabilistic timed automaton I
p
1.

cannot be verified with our technique because the prob-
abilistic quantifier P≥λ is not of the correct form. How-
ever, it can be shown [29] that it is equivalent to the
formula P<1−λ(♦ (leader elected ∧ y ≥ D))) which can
actually be verified on the reachability graph. For exam-
ple, in the case of the abstract model this corresponds
to checking the formula P<1−λ(♦ done after).

More precisely, we compute P(s,♦ (leader elected ∧
y ≥ D)), the maximal probability for electing a leader
after the deadline on the forwards reachability graph,
and then, from above, p(s,♦ (leader elected ∧ y < D)),
the minimal probability of electing a leader before the
deadline, equals 1 minus this computed probability. Note
that, as explained in Section 2.3, since using forwards
reachability yields only upper bounds on the actual max-
imal reachability probability, the computed minimal reach-
ability probability is a lower bound on the actual min-
imal reachability probability. However, the results gen-
erated with this forwards reachability approach for both
the full model Implp

1 and abstract model Ip
1 agree with

the exact results presented in [29].

5.3 Experimental Results

The deadlines D we consider range up to 105ns and, un-
less otherwise stated, the wire delay is set to 360 ns.
These experiments were performed on a PC running
Linux, with a 1400 MHz processor and 512 MB of RAM.
Prism was used with its default options. Additional in-
formation can be found in [32].

Table 1 and Table 2 show the results concerning the
generation with Kronos of the reachability graph and

5 10 15 20 25 30 35 40

0.5

1

1.5

2

x 10
5

deadline D (103 ns)

N
um

be
r 

of
 li

ne
s

explicit
inst. abs.
inst. rel
inst. rel.+abs.

Fig. 6. Number of lines of the MDP for the full protocol Implp
1

of its encoding as an MDP for the full model Implp
1 and

abstract model Ip
1. In both tables, the first two columns

give information about the generation of the reachabil-
ity graph, its size in terms of the number of states and
the time in seconds needed to generate it. The remain-
ing columns show the size, in number of lines (i.e. transi-
tions), of the MDP file generated by Kronos, for the dif-
ferent encodings we considered: explicit, instances with
either absolute or relative compaction, and with both of
them.

Figure 6 and Figure 7 show the evolution of the num-
ber of command lines of the generated file for different
values of the deadline for the full protocol Implp

1 and
abstract model Ip

1 respectively. The graphs demonstrate
that the instances encoding allows for compactions which
reduce drastically the number of lines of the MDP file.



10 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

deadline forw. reach. explicit instances
(103 ns) states time (s) abs rel rel+abs

4 2599 0.940 3716 2424 974 894
6 4337 1.64 6202 4050 1545 1473
8 7831 2.93 11262 7320 2748 2622
10 11119 4.27 15986 10398 3864 3710
20 41017 18.7 59254 38406 14062 13730
30 89283 56.1 129154 83634 30349 29843
40 155675 129 225420 145854 52681 52019

Table 1. Generation and encoding of the reachability graph for the full model Implp
1

deadline forw. reach. explicit instances
(103 ns) states time (s) abs rel rel+abs

4 131 0.00 174 104 42 26
6 216 0.01 290 173 64 27
8 372 0.02 499 297 91 36
10 526 0.03 709 421 126 39
20 1876 0.09 2531 1501 368 72
30 4049 0.20 5466 3240 734 100
40 7034 0.46 9499 5629 1223 126
50 10865 1.23 14674 8694 1842 159
60 15511 2.74 20952 12412 2586 186
80 27296 8.94 36868 21841 4437 243
100 42401 22.29 57274 33926 6797 303

Table 2. Generation and encoding of the reachability graph for the abstract model Ip
1

20 40 60 80 100

1

2

3

4

5

x 10
4

deadline D (103 ns)

N
um

be
r 

of
 li

ne
s

explicit
inst. abs.
inst. rel
inst. rel.+abs.

Fig. 7. Number of lines of the MDP for the abstract model Ip
1

In the case of the abstract model Ip
1, when both relative

and absolute compactions are considered, the number of
lines grows less than linearly on the value of the dead-
line. However, there is not such a drastic improvement
in the case of the more complex model Implp

1. Currently,
the compaction algorithms do not take into account the
fact that this model is built through the parallel com-
position of subcomponents which may explain why the
compaction methods are not as efficient in this case.

The experimental results concerning the verification
with Prism for the full protocol Implp

1 and abstract
model Ip

1 are shown in Table 3 and Table 4 respectively.
The left-most column shows the deadline used in the
property, and the right-most column shows the minimal
probability with which the system has reached a state
where a leader is elected before the deadline. The results
reflect the obvious fact that increasing the deadline in-
creases the probability of a leader being elected. Notice
that the probabilities is computed for deadlines of more
than 80000 ns, have value 1, the meaning that the prob-

5 10 15 20 25 30

1000

2000

3000

4000

5000

6000

7000

8000

9000

deadline D (103 ns)

T
im

e 
(s

ec
)

explicit
inst. abs.
inst. rel
inst. rel.+abs.

Fig. 8. Time to build the full protocol Implp
1

abilities equal one when rounded up to 8 decimal places
not that the probability equals 1.

The remaining columns give information on the time
performance of Prism in seconds, to build the model
(columns labelled “model”) and to compute the proba-
bility (columns labelled “verif”), using the explicit en-
coding and the instances encoding with relative com-
paction (inst+rel) and with relative and absolute com-
paction (inst+rel+abs) .

Compared to the previous attempt of verifying the
root contention protocol using forwards reachability [29],
an approach which uses HyTech [23], the generation
of the reachability graph is no longer a problem, since
it only took about 20 seconds to generate the forwards
reachability graph of the abstract model Ip

1 for a deadline
of 100000 ns, whilst it took approximately 24 hours to
generate it with HyTech for a deadline of 6,000 ns.
Moreover, model checking of the probabilistic property
in the case of the abstract model took less than one
second in the worst case.



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 11

deadline explicit inst+rel inst+rel+abs probability
(103 ns) model (s) verif (s) model (s) verif (s) model (s) verif (s)

4 249 0.461 5.52 0.109 4.76 0.111 0.62500000
6 792 0.709 13.1 0.217 10.8 0.158 0.85156250
8 2657 1.31 43.4 0.272 37.9 0.229 0.93945313
10 5915 9.76 189 0.719 89.7 0.364 0.97473145
20 – – 1684 1.48 1450 1.39 0.99962956
30 – – 9268 5.07 7669 4.29 0.99999445
40 – – 30977 14.9 27870 20.3 0.99999991

Table 3. Time performances for model building and verification of the full model Implp
1

deadline explicit inst+rel inst+rel+abs probability
(103 ns) model (s) verif (s) model (s) verif (s) model (s) verif (s)

4 0.497 0.020 0.062 0.010 0.051 0.001 0.625000000
6 1.21 0.025 0.094 0.017 0.058 0.018 0.851562500
8 4.00 0.035 0.157 0.019 0.091 0.023 0.939453135
10 9.31 0.051 0.244 0.020 0.108 0.020 0.974731455
20 131 0.158 2.01 0.042 0.466 0.043 0.999629565
30 778 0.383 9.06 0.088 1.35 0.089 0.999994454
40 2445 0.554 28.9 0.151 3.30 0.151 0.999999919
50 – – 78.2 0.239 7.32 0.231 0.999999998
60 – – 151 0.334 13.9 0.343 0.999999999
80 – – 555 0.604 37.3 0.606 1.000000000
100 – – 1449 1.00 90.6 0.963 1.000000000

Table 4. Time performances for model building and verification of the abstract model Ip
1

10 20 30 40 50 60 70 80

1

2

3

4

5

6

7
x 10

5

deadline D (103 ns)

N
um

be
r 

of
 s

ta
te

s

Full protocol

reachability graph
reduced reachability graph

20 40 60 80 100

1

2

3

4

5
x 10

4

deadline D (103 ns)

N
um

be
r 

of
 s

ta
te

s

Abstract model

reachability graph
reduced reachability graph

Fig. 10. State space reduction through bisimulation quotient for both models

20 40 60 80 100

500

1000

1500

2000

deadline D (103 ns)

T
im

e 
(s

)

explicit
inst. abs.
inst. rel.
inst. rel.+abs.

Fig. 9. Time to build the abstract model Ip
1

Figure 8 and Figure 9 shows the evolution of the
time needed to build the model for different deadlines us-
ing different encodings for the full protocol and abstract
model respectively. We can see that the compactions also

improve the time required to build the model in Prism.
We note the improvements in the case of the abstract
model Ip

1 over the result presented in [13] (the full model
Implp

1 was not considered there), where the time to build
the model in Prism grew drastically as the value of the
deadline increased, even though the size of the input file
grows linearly. This was due to the complexity of the
guards after compaction. However, the model building
phase of Prism has since been optimized, leading to an
order of magnitude decrease in construction times.

5.4 Probabilistic Bisimulation

The results presented in Figure 8 and Table 3 demon-
strate that, even after applying the compaction tech-
niques of Section 4, the main obstacle to verifying the
full protocol Implp

1 against large deadlines is the time re-
quired by Prism to build the model. In this section we
consider an approach to overcome this problem, by first



12 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

reducing the forwards reachability graph to its (strong)
probabilistic bisimulation quotient and then construct-
ing the Prism model. This is similar to the approach
in [11,12], where probabilistic systems are reduced with
respect to a probabilistic simulation relation, which is re-
fined until the probabilities are accurate enough, yielding
in the worst case the probabilistic bisimulation quotient.

We use the CADP (Ceasar/Aldebaran Development
Package) [20] a tool set for the design and verification
of complex systems, which has recently be extended to
allow for performance evaluation [19]. In particular, we
use the Bcg Min tool [8] which supports the minimiza-
tion of probabilistic systems with respect to probabilistic
bisimulation. The main steps in this approach are: rep-
resent the reachability graph in a format suitable for the
CADP toolset, use CADP (in particular Bcg Min) to
construct the bisimulation quotient, and finally translate
the CADP output into the Prism language.

To construct the input to CADP required only a
straightforward modification 4 of the output from Kro-
nos. For the quotient system to preserve the maximal
reachability probability of interest, we must identify the
states where a leader has been elected after the dead-
line has passed. For simplicity, since these are the only
states that we need to identify, we label all the transi-
tions leaving such states with one action and then label
all remaining transitions with another distinct action.

Using this version of the reachability graph, we then
use the toolset CADP to construct the quotient under
probabilistic bisimulation which preserves the maximal
probability of electing a leader after the deadline has
passed.

To translate the CADP output into the Prism lan-
guage we wrote a simple translator which takes as input
the probabilistic system representing the quotient sys-
tem (the output from CADP) and translates this into
the Prism language. We note that at this stage we have
lost all information concerning which locations and zones
correspond to which states, and hence we are restricted
to an explicit encoding of the quotient system.

The results obtained with CADP for both the full
protocol Implp

1 and abstract model Ip
1 are given in Fig-

ure 10. As can be seen from the graphs of Figure 10,
there is a significant state-space reduction in both cases,
in particular when considering the full protocol. The im-
proved reduction for the full protocol can be expected,
since the model Ip

1 is already an abstraction, and hence
there is less reduction possible by applying the bisimu-
lation quotient.

In Table 5 we give the experimental results concern-
ing the verification with Prism on the reduced reach-
ability graph for different deadlines and for both the
full protocol Implp

1 and abstract model Ip
1. The results

demonstrate that, similarly to the compaction based ap-

4 The main step is converting the reachability graph to the al-
ternating model [21].

proach, the majority of the time required by Prism is
with respect to model construction and not verification.
Note that, as expected, the probabilities match those ob-
tained through the compaction approach. In Figure 11
we compare the time required to construct the models in
Prism with the time taken when using the most efficient
compaction technique (instances encoding with both rel-
ative and absolute compactions). In the case of the full
protocol Implp

1, because there is such a significant reduc-
tion in the state space, even though we can only use an
explicit encoding, the time taken to construct the model
in Prism is faster than when applying any of the com-
paction algorithms. On the other hand, in the case of
the abstract model Ip

1, the results show that using the
compaction algorithms on the (unreduced) reachability
graph is more efficient than using the explicit encoding
of the reduced reachability graph. This can be seen as
both a result of the efficiency of the compaction algo-
rithms in this case and the less signification reduction in
the state space when using probabilistic bisimulation in
comparison with the reduction for the full protocol.

5.5 RCP under wires of different lengths

In this section we report on the results obtained as the
communication delay between the nodes varies, which
corresponds to running the protocol with wires of differ-
ent lengths connecting the nodes. The results obtained
are presented in Figure 12. As expected, as the communi-
cation delay between the nodes increases, the probability
of electing the root before a deadline decreases.

The statistics obtained when considering different
wire delays, for both the full protocol and abstract model,
with regards to both the compaction algorithms and the
reduction by probabilistic bisimulation follow a similar
pattern as those presented above (where the communica-
tion delay equals 360ns). In particular, the most efficient
approach for the full protocol is to use the reduced reach-
ability graph with the explicit encoding, and, in the case
of the abstract protocol, to apply the instances encoding
with both the relative and absolute compaction on the
unreduced reachability graph.

5.6 RCP with a biased coin

We now study the influence of using a biased coin on
the performance of the protocol. As conjectured in [35],
a curious property of the protocol is that the probability
for electing a leader before a deadline can be slightly in-
creased if the probability to choose fast timing increases
for both nodes.

Note that we do not need to recompute the forward
reachability graph in each case. Instead, since probabil-
ities for choosing a fast or slow timings can be given as
parameters in Prism description language, the same in-
put file is used to perform probabilistic model checking,
and only the actual values of the probabilities change.



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 13

deadline full protocol Implp
1 abstract model Ip

1 probability
(103 ns) model (s) verif (s) model (s) verif (s)

4 0.268 0.054 0.092 0.039 0.625000000
6 0.711 0.076 0.167 0.048 0.851562500
8 1.85 0.124 0.208 0.045 0.939453135
10 5.08 0.180 0.339 0.093 0.974731455
20 81.8 0.709 5.79 0.129 0.999629565
30 389 1.94 27.7 0.333 0.999994454
40 1305 4.11 111 0.655 0.999999919
50 3451 6.17 284 1.087 0.999999998
60 7172 13.0 554 1.379 0.999999999
80 23320 30.5 1802 2.771 1.000000000
100 – – 5181 6.05 1.000000000

Table 5. Time performances for model building and verification for both models after reduction

10 20 30 40 50 60 70 80

0.5

1

1.5

2

2.5

x 10
4

deadline D (103 ns)

T
im

e 
(s

ec
)

Full protocol

inst. rel.+abs.
bisim+explicit

20 40 60 80 100

1000

2000

3000

4000

5000

deadline D (103 ns)

T
im

e 
(s

)

Abstract model

inst. rel.+abs.
bisim+explicit

Fig. 11. Comparison of construction time for compaction based and bisimulation based approaches

fast slow D = 3000 D = 4000 D = 6000 D = 8000 D = 10000

0.01 0.99 0.019800 0.019803 0.039211 0.058237 0.076886
0.10 0.90 0.180000 0.181800 0.330534 0.452219 0.551777
0.20 0.80 0.320000 0.332800 0.554516 0.702353 0.801006
0.30 0.70 0.420000 0.457800 0.704352 0.838050 0.910958
0.40 0.60 0.480000 0.556800 0.799150 0.907635 0.957090
0.45 0.55 0.495000 0.595238 0.830027 0.927066 0.968234
0.50 0.50 0.500000 0.625000 0.851562 0.939453 0.974731
0.55 0.45 0.495000 0.644738 0.864616 0.946095 0.977772
0.60 0.40 0.480000 0.652800 0.869498 0.947313 0.977795
0.65 0.35 0.455000 0.647238 0.865609 0.942253 0.974559
0.70 0.30 0.420000 0.625800 0.850898 0.928530 0.966912
0.80 0.20 0.320000 0.524800 0.768942 0.853275 0.923035
0.90 0.10 0.180000 0.325800 0.544273 0.629189 0.746829
0.99 0.01 0.019800 0.039206 0.076872 0.095156 0.130622

Table 6. Probability of leader election with a biased coin.

0
2.5

5
7.5

10
4

12
20

28
36

0

0.2

0.4

0.6

0.8

D (10
3  ns)

communication delay (10ns)

m
in

. p
ro

ba
b.

 e
le

ct
in

g 
le

ad
er

 b
y 

T

Fig. 12. Verification results as communication delay varies.

Table 6 gives the probability for electing a leader for
deadlines between 3000ns and 10000ns, when using dif-
ferent biased coins (coins which return different proba-
bility of choosing the fast and slow timing). We suppose
that the nodes in contention have the same biased coins.
Although it is possible to improve the performance fur-
ther by supposing that nodes have different biased coins
(one node has a coin biased towards fast while the other’s
coin is biased towards slow), this is not feasible in prac-
tice as each node follows the same procedure and it is not
known in advance which nodes of the network will take
part in the root contention protocol. Furthermore, to de-
cide before entering the protocol, which node should flip
what sort of coin is equivalent to electing a root.

The results demonstrate that the (timing) perfor-
mance of the root contention protocol can be improved



14 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

0
2.5

5
7.5

10

0
0.25

0.5
0.75

1
0

0.2

0.4

0.6

0.8

1

D (10
3  ns)

prob. choosing fast

m
in

. p
ro

ba
b.

 e
le

ct
in

g 
le

ad
er

 b
y 

T

Fig. 13. Verification results with a biased coin.

using a biased coin which has a higher probability of
flipping “fast”. This curious result is possible because,
although using such a biased coin decreases the likeli-
hood of the nodes flipping different values, when nodes
flip the same values there is a greater chance (i.e. when
both flip “fast”) that less time elapses before they flip
again. There is a compromise here though: as the coin
becomes more biased towards “fast”, the probability of
the nodes actually flipping different values (which is re-
quired for a leader to be elected) decreases, even though
the delay between coin flips will on average decrease.
This decrease in probability is demonstrated in Table 6
and Figure 13, where it is shown that increasing the
probability of flipping “fast” eventually leads to a de-
crease in the probability of electing a leader by any given
deadline.

We also considered the effect of using a biased coin as
the communication delay between the nodes varies. The
results showed that, for shorter communication delays
(wire lengths), there is a greater advantage in using a
biased coin (for shorter wire length the maximum prob-
ability for a fixed deadline occurs for a coin which has
a greater bias towards “fast”). The reason this happens
is that, for the short wire length, there is a greater sav-
ing in time when both nodes flip “fast” than for a longer
wire length, since the time required when both nodes flip
“fast” is a constant delay given in the protocol plus a de-
lay which is dependent on the wire length. For details of
computed probabilities in this case see the Prism web
page [32].

6 Conclusions

We have presented an approach to the automatic verifi-
cation of soft deadlines for timed probabilistic systems
modelled as probabilistic timed automata. We use Kro-
nos to generate the probabilistic reachability graph with
respect to the deadline and encode it in the Prism in-
put language. A probabilistic reachability property is
then verified with Prism. We have successfully applied

this verification technique to the timed and probabilis-
tic root contention protocol of the IEEE 1394. We have
computed the minimal probability of electing a leader
before different deadlines, and studied the influence of
using a biased coin, and of varying the wire length, on
this minimal probability.

The main obstacle we had to face was the encoding
of the reachability graph in the Prism input language.
The model checking algorithms of Prism are based on
(MT)BDDs, so its input needs to be specified in a mod-
ular way. An explicit encoding of the reachability graph
using a single variable to encode a state turned out to
be inadequate even for small values of the deadline. The
instances encoding using two variables, one correspond-
ing to the location of the timed automaton, and the
other to the instance of this location in the reachabil-
ity graph, allowed us to apply compaction techniques
that helped overcoming this problem in the case of the
abstract model.

However, verification of the full model showed that
compaction algorithms do not always lead to a substan-
tial reduction. Taking these results into account, a bet-
ter encoding allowing for a better compaction is under
study. Reduction by strong bisimulation proved to be
very useful in this case, although it was limited to the
use of the explicit encoding. It will be interesting to in-
vestigate the use of the instances encoding and the com-
paction algorithms on the reduced model to obtain a
further compaction, and lower the time needed to build
the model. These different aspects should be studied by
applying this approach to other systems where timing
and probabilistic aspects arise.

Acknowledgments

We would like to thank Sergio Yovine for providing us
the libraries of Kronos, Dave Parker for improving the
model-building algorithms of Prism and the referees for
their useful suggestions.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model-checking
for probabilistic real-time systems. In J. L. Al-
bert, B. Monien, and M. Rodŕıguez-Artalejo, editors,
ICALP’91, volume 510 of Lecture Notes in Computer
Science. Springer, 1991.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking
in dense real-time. Information and Computation,
104(1):2–34, 1993.

3. R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

4. R. Alur and T. Henzinger. Reactive modules. Formal
Methods in System Design, 15(1):7–48, 1999.

5. I. Bahar, E. Frohm, C. Gaona, G. Hachtel, E.Macii,
A. Pardo, and F. Somenzi. Algebraic decision diagrams



C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM 15

and their applications. In Proc. International Conference
on Computer-Aided Design (ICCAD’93), pages 188–191,
1993. Also available in Formal Methods in System De-
sign, 10(2/3):171–206, 1997.

6. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen.
Model checking continuous-time Markov chains by tran-
sient analysis. In E. Emerson and A. Sistla, editors, Proc.
12th Conference on Computer Aided Verification (CAV
2000), volume 1855 of LNCS, pages 358–372. Springer,
2000.

7. C. Baier and M. Z. Kwiatkowska. Model checking for
a probabilistic branching time logic with fairness. Dis-
tributed Computing, 11(3):125–155, 1998.

8. Bcg Min manual page. http://www.inrialpes.fr/

vasy/cadp/man/bcg_min.html.

9. A. Bianco and L. de Alfaro. Model checking of prob-
abilistic and nondeterministic systems. In P. S. Thia-
garajan, editor, Proc. 15th Conference on Foundations
of Software Technology and Theoretical Computer Sci-
ence (FSTTCS’95), volume 1026 of LNCS, pages 499–
513. Springer-Verlag, 1995.

10. E. Clarke, M. Fujita, P. McGeer, K. McMillan, J. Yang,
and X. Zhao. Multi-terminal binary decision diagrams:
An efficient data structure for matrix representation.
In Proc. International Workshop on Logic Synthesis
(IWLS’93), pages 1–15, 1993. Also available in Formal
Methods in System Design, 10(2/3):149–169, 1997.

11. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen.
Reachability analysis of probabilistic systems by succes-
sive refinements. In L. de Alfaro and S. Gilmore, editors,
Proceedings of Process Algebra and Probabilistic Meth-
ods. Performance Modeling and Verification. Joint In-
ternational Workshop, PAPM-PROBMIV 2001, Aachen,
Germany, volume 2165 of Lecture Notes in Computer Sci-
ence, pages 29–56. Springer-Verlag, 2001.

12. P. D’Argenio, B. Jeannet, H. Jensen, and K. Larsen. Re-
duction and refinement strategies for probabilistic anal-
ysis. In H. Hermanns and R. Segala, editors, Proceed-
ings of Process Algebra and Probabilistic Methods. Per-
formance Modeling and Verification. Joint International
Workshop, PAPM-PROBMIV 2002, Copenhagen, Den-
mark, Lecture Notes in Computer Science. Springer-
Verlag, 2002.

13. C. Daws, M. Kwiatkowska, and G. Norman. Automatic
verification of the IEEE 1394 root contention protocol
with KRONOS and PRISM. In Proc. 7th International
Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’02), volume 66(2) of Electronic Notes in
Theoretical Computer Science. Elsevier Science, 2002.

14. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool
Kronos. In R. Alur, T. A. Henzinger, and E. D. Sontag,
editors, Hybrid Systems III, volume 1066 of Lecture Notes
in Computer Science, pages 208–219. Springer-Verlag,
1996.

15. C. Daws and S. Tripakis. Model–checking of real–time
reachability properties using abstractions. In B. Steffen,
editor, Proc. Tools and Algorithms for Construction and
Analysis of Systems (TACAS’98), volume 1384 of LNCS,
pages 313–329. Springer-Verlag, 1998.

16. C. Daws and S. Yovine. Two examples of verifica-
tion of multirate timed automata with Kronos. In
A. Burns, Y.-H. Lee, and K. Ramamritham, editors, Pro-

ceedings of the 16th IEEE Real-Time Systems Sympo-
sium (RTSS’95), pages 66–75. IEEE Computer Society
Press, 1995.

17. L. de Alfaro. Computing minimum and maximum reach-
ability times in probabilistic systems. In J. Baeten
and S. Mauw, editors, Proc. CONCUR ’99: Concurrency
Theory, volume 1664 of LNCS, pages 66–81. Springer
Verlag, 1999.

18. L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker,
and R. Segala. Symbolic model checking of concur-
rent probabilistic processes using MTBDDs and the Kro-
necker representation. In S. Graf and M. Schwartzbach,
editors, Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’00), volume 1785 of
LNCS, pages 395–410. Springer, 2000.

19. H. Garavel and H. Hermanns. On combining functional
verification and performance evaluation using CADP. In
L. Eriksson and P. Lindsay, editors, FME 2002: Inter-
national Symposium of Formal Methods Europe, volume
2391 of LNCS, pages 410–429. Springer, 2002.

20. H. Garavel, F. Lang, and R. Mateescu. An overview of
CADP. Technical Report RT-254, INRIA, 2001.

21. H. Hansson and B. Jonsson. A logic for reasoning about
time and probability. Formal Aspects of Computing,
6(5):512–535, 1994.

22. T. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide
to HyTech. In E. Brinksma, W. Cleaveland, K. Larsen,
T. Margaria, and B. Steffen, editors, Proc. Tools and
Algorithms for the Construction and Analysis of Sys-
tems (TACAS’95), volume 1019 of LNCS, pages 41–71.
Springer-Verlag, 1995.

23. T. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a
model checker for hybrid systems. Software Tools for
Technology Transfer, 1(1+2):110–122, 1997.

24. J. Kemeny, J. Snell, and A. Knapp. Denumerable Markov
Chains. Graduate Texts in Mathematics. Springer, 2nd
edition, 1976.

25. KRONOS web page. http://www-verimag.imag.fr/

TEMPORISE/kronos/.

26. M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. In J. B. T. Field,
P. Harrison and U. Harder, editors, Proc. Modelling
Techniques and Tools for Computer Performance Eval-
uation (TOOLS’02), volume 2324 of LNCS, pages 200–
204. Springer, 2002.

27. M. Kwiatkowska, G. Norman, and D. Parker. Proba-
bilistic symbolic model checking with PRISM: A hybrid
approach. In J.-P. Katoen and P. Stevens, editors, Proc.
Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2002), volume 2280 of LNCS, pages
52–66. Springer, 2002.

28. M. Kwiatkowska, G. Norman, R. Segala, and J. Spros-
ton. Automatic verification of real-time systems with
discrete probability distributions. Theoretical Computer
Science, 282:101–150, 2002. A preliminary version of
this paper appeared in Proc. ARTS’99 , volume 1601 of
LNCS, pages 75–95, 1999.

29. M. Kwiatkowska, G. Norman, and J. Sproston. Proba-
bilistic model checking of deadline properties in the IEEE
1394 FireWire root contention protocol. Special Issue of
Formal Aspects of Computing, 2002. To appear.

http://www.inrialpes.fr/vasy/cadp/man/bcg_min.html
http://www.inrialpes.fr/vasy/cadp/man/bcg_min.html
http://www-verimag.imag.fr/TEMPORISE/kronos/
http://www-verimag.imag.fr/TEMPORISE/kronos/


16 C. Daws et. al.: Automatic Verification of the IEEE-1394 Root Contention Protocol with KRONOS and PRISM

30. K. Larsen, P. Pettersson, and W. Yi. Uppaal in
a nutshell. Software Tools for Technology Transfer,
1(1+2):134–152, 1997.

31. K. Larsen and A. Skou. Bisimulation through proba-
bilistic testing. Information and Computation, 94(1):1–
28, 1991. Preliminary version of this paper appeared
in Proc. 16th Annual ACM Symposium on Principles of
Programming Languages, pages 134-352, 1989.

32. PRISM web page. http://www.cs.bham.ac.uk/~dxp/

prism/.
33. R. Segala and N. Lynch. Probabilistic simulations for

probabilistic processes. Nordic Journal of Computing,
2(2):250–273, 1995.

34. D. Simons and M. Stoelinga. Mechanical verification
of the IEEE 1394a root contention protocol using Up-
paal2k. Springer International Journal of Software Tools
for Technology Transfer, 3(4):469–485, 2001.

35. M. Stoelinga. Alea jacta est: verification of probabilis-
tic, real-time and parametric systems. PhD thesis, Uni-
verisity of Nijmegen, 2002.

36. M. Vardi. Automatic verification of probabilistic concur-
rent finite-state programs. In Proc. Symposium on Foun-
dations of Computer Science (FOCS’85). IEEE Com-
puter Society Press, 1985.

http://www.cs.bham.ac.uk/~dxp/prism/
http://www.cs.bham.ac.uk/~dxp/prism/

	Introduction
	Probabilistic Timed Automata
	Verification with KRONOS and PRISM
	Encoding of a Reachability Graph in PRISM
	Verification of the Root Contention Protocol
	Conclusions

