
Softw Syst Model

DOI 10.1007/s10270-014-0416-2

REGULAR PAPER

Heuristic search for equivalence checking

Nicoletta De Francesco · Giuseppe Lettieri ·

Antonella Santone · Gigliola Vaglini

Received: 1 July 2013 / Revised: 12 March 2014 / Accepted: 19 April 2014

Abstract Equivalence checking plays a crucial role in for-

mal verification since it is a natural relation for expressing

the matching of a system implementation against its spec-

ification. In this paper, we present an efficient procedure,

based on heuristic search, for checking well-known bisimu-

lation equivalences for concurrent systems specified through

process algebras. The method tries to improve, with respect

to other solutions, both the memory occupation and the time

required for proving the equivalence of systems. A proto-

type has been developed to evaluate the approach on several

examples of concurrent system specifications.

Keywords Heuristic search algorithms · Bisimulation ·

Concurrent systems · Model checking

1 Introduction

A suitable way for establishing desirable properties of a

model is by showing that it is behaviorally related to another

Communicated by Prof. Robert France.

N. De Francesco · G. Lettieri · G. Vaglini

Dipartimento di Ingegneria dell’Informazione, University of Pisa,

Pisa, Italy

e-mail: n.defrancesco@unipi.it

G. Lettieri

e-mail: g.lettieri@iet.unipi.it

G. Vaglini

e-mail: g.vaglini@iet.unipi.it

A. Santone (B)

Dipartimento di Ingegneria, University of Sannio, Benevento, Italy

e-mail: santone@unisannio.it

model that is known to have those properties; this kind of

verification is often carried out by means of the analysis of

the state space generated by the system. Depending on the

type of relation between systems that is chosen, this verifica-

tion technique is called refinement or equivalence checking

[1]. Model checking is an alternative way (the technique orig-

inate in works by Clarke and Emerson [2] and Queille and

Sifakis [3] from the early 1980s) to pursue the same result.

Both these methods suffer from the so-called state explosion

problem: the parallelism between the processes of the sys-

tem leads to a number of reachable states which may become

very large, in some cases in the order of millions or billions

of states. To solve or reduce the state explosion problem sev-

eral approaches can be followed: in the literature, there are

reduction techniques based on process equivalences [4,5],

symbolic model checking techniques [6], on-the-fly tech-

niques [7], heuristic searches [8–10], local model checking

approaches [11], partial order techniques [12–14], composi-

tional techniques [15–17], and abstraction approaches [18–

21]. More precisely, in [9,10], heuristic search has been

used only to find deadlocks in current systems and in [8]

to accelerate finding errors, while our goal is to use heuris-

tic search to accelerate verification. In fact, in this paper, we

propose to verify properties of concurrent systems without

the breaking down of the automated verification caused by a

too large memory occupation and with an efficiency in pursu-

ing the result better than existing approaches. We propose to

check equivalence of concurrent systems by applying heuris-

tic search techniques on AND/OR graphs. A key assumption

of heuristic search is that a utility or cost can be assigned to

each state to guide the search by suggesting the next state to

expand; in this way the most promising paths are considered

first. Heuristic search [22] is one of the classical techniques in

Artificial Intelligence and has been applied to a wide range of

problem-solving tasks including puzzles, two player games



N. De Francesco et al.

and path finding problems. The approach extends traditional

on-the-fly techniques to efficiently explore the search space,

since the heuristics overcomes the bottleneck of the exhaus-

tive exploration of the global state graph of the two systems.

There are several heuristic search algorithms for AND/OR

graphs: a main difference among them is whether they toler-

ate cyclic AND/OR graphs or not. AO* [22,23] is the most

widely known algorithm that requires the AND/OR graph

to be acyclic, while S2 [24], which will be used here, is an

algorithm designed to work also on cyclic AND/OR graphs.

In any case, the algorithms expand the graph incrementally,

starting from the initial node; an heuristic function assigns a

cost to each node and is used to guide the expansion. The solu-

tion supplied by the algorithm is optimal only if the heuristic

function is admissible, i.e., the function never overestimates

the distance to the goal.

We consider concurrent systems specified by means of

process algebras and formalize the equivalence checking of

processes as a search problem on AND/OR graphs. Then, a

procedure is presented that is based on S2 and uses admis-

sible heuristic functions for weak and strong equivalences.

The method is completely automated, i.e., there is no need

for user intervention or manual effort. The goal is to check

equivalence between processes, but also to find the minimal

sub-graph leading to two non-equivalent states, since that

graph will be examined in order to determine the source of

the error and big graphs can prevent an easy comprehension

of the fault.

To show that a significant space reduction without losing

efficiency may be obtained with respect to other approaches,

a prototype tool has been built implementing the presented

method, and several experiments are carried on processes

of different sizes. The heuristic functions are syntactically

defined considering a specific process algebra: the Calculus

of Communicating Systems (CCS) [25]. As far as we know,

this is the first complete methodology to exploit process

algebra-based heuristics in equivalence checking of con-

current systems. A very preliminary version can be found

in [26], where the simulation relation defined by Milner

[25] was considered; obviously simulation is a simpler rela-

tion than bisimulation; moreover, the algorithm used in [26]

did not consider cyclic AND/OR graphs and no actual tool

was built to perform some kind of evaluation of the pro-

posed methodology, consequently the presented heuristic

function was not tuned on the basis of the experimental

results.

The paper is organized as follows: in Sect. 2, the basic con-

cepts of behavioral equivalence and of the heuristic search

algorithms are recalled. Section 3 describes our approach.

In Sect. 4, the prototype tool implementing the approach

is briefly presented, and the experimental results obtained

are reported. Finally, comparisons with related works are

discussed in Sect. 5.

2 Preliminaries

To develop the method in a language independent way,

we assume a set of processes 1, a set of actions 2 and

a function σ that maps each p ∈ 1 to a finite set

{(p1, α1), . . . , (pn, αn)} ⊆ 1 × 2. If (p′, α) ∈ σ(p), we

say that p can perform the action α and reach the process p′,

and we write p
α

−→ p′. If p
α1

−→ p1 · · ·
αn

−→ pn , the process

pi (for i ∈ [1..n]) is called derivative of p.

2.1 Behavioral equivalence

Process algebras can be used to describe both implementa-

tions of processes and specifications of their expected behav-

iors. Therefore, they support the so-called single language

approach to process theory, that is, the approach in which

a single language is used to describe both actual processes

and their specifications. An important ingredient of these lan-

guages is therefore a notion of behavioral equivalence. One

process description, say SYS, may describe an implemen-

tation, and another, say SPEC, may describe a specification

of the expected behavior. This approach to program verifi-

cation is also sometimes called implementation verification.

Behavioral equivalence can be used also for other purposes,

like for example for clone detection [27,28].

In the following, we introduce well-known notions of

behavioral equivalence which describe how processes (i.e.

systems) match each other’s behavior. Milner introduces

strong and weak equivalences. Strong equivalence is a kind

of invariant relation between process that is preserved by

actions as stated by the following definition.

Definition 2.1 Let p and q be two processes.

– A strong bisimulation, B, is a binary relation on 1 such

that p B q implies:

(i) p
α

−→ p′ implies ∃q ′ such that q
α

−→ q ′ with p′ B q ′;

and

(ii) q
α

−→ q ′ implies ∃p′ such that p
α

−→ p′ with p′ B q ′

– p and q are strongly equivalent (p ∼ q) iff there exists a

strong bisimulation B containing the pair (p, q).

The idea underlying the definition of the weak equiva-

lence is that an action of a process can now be matched by a

sequence of action from the other that has the same “observa-

tional content” (i.e. ignoring internal actions) and leads to a

state that is equivalent to that reached by the first process. In

order to define the weak equivalence, we assume there exists

a special action τ ∈ 2, which we interpret as a silent, inter-

nal action, and we introduce the following transition relation

that ignores it.



Heuristic search for equivalence checking

Let p and q be processes in 1. We write p
ǫ

H⇒ q if and

only if there is a (possibly empty) sequence of τ actions that

leads from p to q. (If the sequence is empty, then p = q.)

For each action α, we write p
α

H⇒ q iff there are processes

p′ and q ′ such that

p
ǫ

H⇒ p′ α
H⇒ q ′ ǫ

H⇒ q.

Thus, p
α

H⇒ q holds if p can reach q by performing an α

action, possibly preceded and followed by sequences of τ

actions. For each action α, we use α̂ to stand for ǫ if α = τ ,

and for α otherwise.

Definition 2.2 Let p and q be two processes.

– A weak bisimulation, B, is a binary relation on 1 such

that p B q implies:

(i) p
α̂

H⇒ r ′ implies ∃q ′ such that q
α̂

H⇒ q ′ with p′ B q ′;

and

(ii) q
α̂

H⇒ q ′ implies ∃p′ such that p
α̂

H⇒ p′ with p′ B q ′

– p and q are weak equivalent (p ≈ q) iff there exists a

weak bisimulation B containing the pair (p, q).

2.2 Heuristic search: AND/OR graphs and algorithm S2

In this section, we briefly review AND/OR graphs and the

heuristic search algorithm S2 [24] for solving problems for-

malized as AND/OR graphs.

First, we establish some terminology for graphs in general.

A (directed) graph G is a pair (N , A) where N is a set of nodes

and A ⊆ N × N is the set of arcs. If n ∈ N is a node of G,

then

sG(n) = { m ∈ N | (n, m) ∈ A }

is the set of successors of n in G. A graph G ′ = (N ′, A′) is

a subgraph of G = (N , A) if N ′ ⊆ N and A′ ⊆ N ′ × N ′

with A′ ⊆ A. A graph G = (N , A) is finite if both N and A

are finite sets. Let G = (N , A) be a graph and s, d ∈ N be

two nodes (not necessarily distinct). A path from s to d is a

sequence of nodes n1, . . . , nk with k > 1 such that s = n1,

d = nk and (ni , ni+1) ∈ A for each 1 ≤ i < k. A path from

a node to the same node is a cycle. A graph is acyclic if it

contains no cycles, and cyclic otherwise.

A problem can be formalized in terms of a graph, for exam-

ple as follows. A common problem-solving strategy consists

of decomposing a problem P into subproblems, so that either

all or just one of these subproblems need to be solved in order

to obtain a solution for P . Each problem can be represented as

a node in a directed graph, where arcs express the decompo-

sition relationship between problems and subproblems. The

two kinds of decomposition give rise to two kinds of nodes:

AND nodes and OR nodes.

Fig. 1 An AND node

An AND/OR graph G is a directed graph with a special

node s, called the start (or root) node, and a (possibly empty)

set of terminal leaf nodes denoted as t, t1, . . .. The start node s

represents the given problem to be solved, while the terminal

leaf nodes correspond to subproblems with known solutions.

The nonterminal nodes of G are of three types: OR, AND,

and nonterminal leaf. An OR node is solved if one of its

immediate subproblems is solved, while an AND node is

solved only when every one of its immediate subproblems

is solved. A nonterminal leaf node has no successors and

is unsolvable. AND nodes with at least two successors are

recognized from OR nodes by connecting the subproblems

arcs by a line, like in Fig. 1.

Given an AND/OR graph G, a solution of G is represented

by an AND/OR subgraph, called solution (sub)graph of G

with the characteristics given below.

Definition 2.3 A finite subgraph D of an AND/OR graph G

is a solution subgraph of G if it is acyclic and:

(i) the start node of G is in D;

(ii) if n is an OR node in G and n is in D, then exactly one

of the immediate successors of n in G is in D;

(iii) if n is an AND node in G and n is in D, then all the

immediate successors of n in G are in D;

(iv) every maximal path in D ends in a terminal leaf node.

Each solution subgraph can obtain a cost through a cost

function that assigns a cost to each arc: each directed arc

(m, n) in the graph has a discrete cost c(m, n) > 0.

Definition 2.4 Let D be a solution graph and n a node in D,

the cost of n in D, denoted h(n) is defined as follows:

(i) h(n) = 0 if n is a terminal leaf node;

(ii) h(n) = ∞ if n is a nonterminal leaf node;

(iii) h(n) = c(n, p) + h(p) if n is an OR node and p is its

immediate successor;

(iv) h(n) =
∑k

i=1[c(n, pi ) + h(pi )] if n is an AND node

with immediate successors p1, p2, . . . , pk .

A solution graph of an AND/OR graph G is a minimal-

cost solution graph if the cost of its root is the minimum

over the cost of the roots of all the solution graphs of G. The

goal of any search algorithm for AND/OR graphs is to find

a minimal-cost solution graph.



N. De Francesco et al.

Since in most domains, the AND/OR graph G is unknown

in advance, it is not supplied explicitly to a search algorithm.

We refer to G as the implicit graph; it is specified implicitly by

a start node s and a successor function. The search algorithm

works on an explicit graph G ′, which initially consists of the

start node s. The start node is then expanded, that is, all the

immediate successors of s are added to the explicit graph G ′.

At any moment, the explicit graph has a number of tip nodes,

which are nodes with no successors in the explicit graph,

and the search algorithm chooses one of these tip nodes for

expansion. In this way, more and more nodes and arcs get

added to the explicit graph, until finally it has one or more

solution graphs as subgraphs. One of these solution graphs

is then output by the search algorithm.

Heuristic search algorithms use an heuristic estimate func-

tion ĥ, which can be viewed as an estimate of h, to direct the

search and to restrict the number of nodes expanded within

acceptable limits. Thus, the heuristic search can find an opti-

mal solution graph without evaluating the entire state space.

There are several heuristic search algorithms for AND/OR

graphs. The algorithms differ on the kind of AND/OR graphs

they accept as input and the solution subgraphs they produce

as output. The classic AO* algorithm [22,23] only works

with AND/OR graphs, both explicit and implicit, that do not

contain cycles; for cyclic AND/OR graphs we have algo-

rithm REV* [29], which only works on explicit graphs, and

algorithms CFCREV* [30] and S2 [24] that accept implicit

AND/OR graphs. All these algorithms only search for solu-

tion subgraphs that do not themselves contain cycles, and thus

adhere to Definition 2.3. Algorithm LAO* [31] removes this

limitation in the context of Markov decision problems.

In this paper, we use the algorithm S2 reproduced in

Fig. 2. The algorithm mainly consists of two iterated steps:

(i) expand the most promising tip node of the explicit graph

(step S2.2.1); (ii) update of the computed node costs (step

S2.2.3). The algorithm uses a map front to select the node

to expand in step (i). This map is updated during step (ii),

together with the node costs. Step (ii) uses the procedure

Bottom_Up defined in Fig. 3. The algorithm terminates with

success if an acyclic solution exists, otherwise it terminates

with failure. When the acyclic solution exists, it also returns

the cost of the solution.

An important property holds: S2 returns a minimal-cost

solution graph if the heuristic estimate function ĥ (used in

step S2.2.1 of Fig. 2) satisfies the so-called admissibility con-

dition, i.e. ĥ is optimistic. More formally:

Definition 2.5 (admissibility) Let G be an AND/OR graph

and D a minimal solution subgraph of G. A heuristic estimate

function ĥ defined on the nodes of G is admissible if for each

node n in G

ĥ(n) ≤ h(n),

where h(n) is the cost of n in D.

3 The method

In this section, we explain the basis of our approach to

strong equivalence checking. In Subsect. 3.1, AND/OR struc-

tures are defined as a slight modification of the concept of

AND/OR graph more suitable to the problem of equivalence

checking. Given two processes p and q, we build an AND/OR

structure that has a solution if and only if p and q are bisimi-

lar (Theorem 3.2). In Subsect. 3.2, we show how algorithms

for heuristic search on AND/OR graphs can be used to find

solutions of AND/OR structures. This allows for the method

to be implemented in practice. In Subsect. 3.3, we apply the

method to the CCS language. In Subsect. 3.4, the heuristic

function to be used in the search for strong equivalence of

CCS processes is described and its admissibility is proved,

while in the Subsect. 3.5, the heuristic function for weak

equivalence is defined.

Fig. 2 The S2 algorithm



Heuristic search for equivalence checking

Fig. 3 The Bottom_Up(List

OPEN) procedure

3.1 AND/OR structures

AND/OR structures are related to AND/OR graphs, but dif-

fer slightly in the way the terminal nodes and the solution

subgraphs are defined. These differences allow AND/OR

structures to have duals which are again AND/OR structures.

More importantly, the existence of solutions for an AND/OR

structure can be related to the existence of solutions for its

dual (Theorem 3.1).

Definition 3.1 (AND/OR structure) An AND/OR structure

is a triple 〈G, s, t〉, where G = (N , R) is a directed graph,

s ∈ N is the start node, and t : N → {AND, OR}.

Nodes in t−1({AND}) are called AND nodes and nodes in

t−1({OR}) are called OR nodes. Terminal and non terminal

leaves are defined as special cases of AND and OR leaves

(i.e., nodes with no successors): AND leaves are terminal,

while OR leaves are non terminal.

The AND/OR structure 〈G, s, t〉 is finite/cyclic/acyclic if

G is respectively finite/cyclic/acyclic.

Definition 3.2 (Solution) Let T = 〈G, s, t〉 be an AND/OR

structure. A subgraph D = (N ′, R′) of G is a solution of T

if:

(i) s ∈ N ′;

(ii) if n ∈ N ′ and t (n) = AND, then sD(n) = sG(n);

(iii) if n ∈ N ′ and t (n) = OR then sD(n) 6= ∅.

In point (iii) one successor at least is required for OR

nodes, in contrast with the exactly one successor required in

Definition 2.3. Moreover, the solution is not required to be

acyclic and the maximal paths are not required to end in ter-

minal leaves. Note that OR nodes which have no successors

in G cannot belong to any solution, hence their labeling as

non terminal leaves.

We now define the notion of dual of an AND/OR structure

that is obtained by switching the type of all the nodes of the

original structure.

Definition 3.3 (Dual) If T = 〈(N , R), s, t〉 is an AND/OR

structure, its dual, denoted T ∂ , is the AND/OR structure

〈(N , R), s, t∂ 〉, where t∂ : N → {AND, OR} is defined as

t∂(n) =

{
AND if t (n) = OR,

OR if t (n) = AND.

Note that the terminal leaves of the original structure became

non terminal leaves of the dual structure, while non terminal

leaves of the original become terminal in the dual.

The utility of the notion of dual comes from the following

Theorem, which permits to look for acyclic solutions even if

the original problem may admit cyclic solutions.

Theorem 3.1 A finite AND/OR structure has no solutions iff

its dual has an acyclic solution.

Proof Let T = 〈G, s, t〉 be a finite AND/OR structure and

let T ∂ be the dual of T . We prove the ⇐ direction first.

The proof is by contradiction, so let C = (N ′, R′) be an



N. De Francesco et al.

acyclic solution of T ∂ and assume that there exists a solution

D = (N ′′, R′′) of T . Let n1, n2, . . . be a topological sorting

of the nodes of C with n1 = s and such that if (ni , n j ) ∈ R′

then i < j . Note that n1 = s ∈ N ′′. We claim that if a

non-leaf ni is in N ′′, then there is a j > i such that also n j

is in N ′′. Indeed, if t (ni ) = AND then ni is an OR node in

T ∂ , thus C must contain a successor node, which must be

n j for some j > i . Then surely n j ∈ N ′′, since D must

contain all successors of ni . If, instead, t (ni ) = OR, then

D must contain a successor node m. Since ni is an AND

node in T ∂ , m must appear as n j for some j > i . If we

iterate this reasoning, we must arrive at a terminal leaf of

T ∂ which is in D, but this is a contradiction, since terminal

leaves of T ∂ are non terminal leaves of T and cannot belong

to a solution.

Now let us prove the H⇒ direction. We know that G

has no solutions. This implies that any subgraph of G that

contains s will either contain an AND node without con-

taining at least one of its successors, or it will contain an

OR node, but none of its successors. We use this property

to build an acyclic solution for T ∂ in the following way: we

build a sequence D1, . . . , Dk of subgraphs of T and a paral-

lel sequence C1, . . . , Ck of subgraphs of T ∂ such that: (i) for

each 1 ≤ i ≤ k, subgraph Ci is acyclic and the set of nodes of

Ci and Di form a partition of the nodes of G; (ii) s is contained

in Di for all 1 ≤ i < k; (iii) s is not contained in Dk . Then, Ck

will be the required solution. To build the two sequences, start

with D1 = G. Then, D1 must contain at least a non terminal

leaf, be it n1. Let C1 = ({n1}, ∅) and build D2 = D1 − n1,

i.e., D1 after the removal of n1 and all arcs incident on n1. If

n1 = s we are done, otherwise we can continue. Assume we

have already built sequences D1, . . . , Di and C1, . . . , Ci sat-

isfying properties (i) and (ii) above. If Di does not contain s

we are done, otherwise Di must contain an AND node with at

least one successor in Ci , or an OR node with all of its succes-

sors in Ci . Let ni+1 be any such node. Let Di+1 = Di −ni+1

and build Ci+1 from Ci by adding node ni+1 and all the arcs

from ni+1 to nodes already in Ci . Since Ci was assumed to

by acyclic, so is Ci+1. We can iterate the process and, since

G is finite, property (iii) will eventually hold. ⊓⊔

Let p and q be two processes in 1: an AND/OR structure

can be built that has a solution iff p and q are bisimilar. The

idea is to check the requirements of Definitions 2.1 and 2.2

by letting p and q move in alternating turns.

Let T (p, q) = 〈G, s, t〉 with G = (N , R). The nodes

contained in N are tuples of 4 elements 〈r, s, γ, u〉 where

• r is a derivative of p;

• s is a derivative of q;

• γ ∈ {⊤,⊥} ∪ Act;

• u ∈ {1, 2, λ}.

We assume that {⊤,⊥} ∩ Act = ∅ and that u = λ iff γ = ⊤.

When γ = ⊤ it is the turn of both r and s to move; when

γ = ⊥ then r has to move if u = 1, while s has to move

if u = 2; finally, when γ = α ∈ Act then r has to move if

u = 1 and s has to move if u = 2, but, in both cases, α has

to be performed (the idea is that α is the action that the other

process has performed in the previous turn).

The map t of T (p, q) only depends on γ and is defined as

t (〈r, s, γ, u〉) =

{
AND if γ = ⊤ or γ = ⊥;

OR if γ ∈ Act.

The graph G of T (p, q) is obtained by repeated applica-

tion of the operators given in Table 1, starting with a graph

containing the node 〈p, q,⊤, λ〉 and no arcs. The operators

generate the outgoing arcs and the successor nodes of each

node; if (n, n′) ∈ R, we write n −→ n′. The operators with

the form

premise

n −→ n1 and · · · and n −→ nm

where premise is the antecedent, possibly empty, of the rule,

generate all the outgoing arcs and successor nodes of the

AND node n. On the other hand, the operators with the form:

premise

n −→ n1 or · · · or n −→ nm

generate all the outgoing arcs and successor nodes of the OR

node n. Finally, the start node s of T (p, q) is 〈p, q,⊤, λ〉.

The rule op1 transforms the initial node, which is an AND

node, into the two successors nodes with γ = ⊥ and u = 1

and u = 2, respectively. The rule op2 points out the possible

moves (αi ) of p when u = 1 and γ = ⊥; in this way an

AND node can be connected with its successor nodes in the

graph, all such successors have γ = αi and u = 2; roughly

speaking if p can move performing an action αi and reaches

the process pi then it is the turn of q to move with the same

action αi . The rule op
′

2 is similar to op2 applied when it is the

turn of q to move. In rule op3, the process p must simulate the

action α performed by q, while in rule op
′

3, it is the process

q that must simulate the action α performed by p. In both

cases, an OR node can be connected with its successor nodes

in the graph, all such successors have γ = ⊤ and u = λ, i.e.

nodes that can be transformed only through the operator op1

like the initial node.

The following theorem shows that finding a solution of

T (p, q) is equivalent to checking whether p and q are

strongly bisimilar.

Theorem 3.2 Let p and q be two processes in 1 and con-

sider the AND/OR structure T (p, q) generated starting from

〈p, q,⊤, λ〉 using the operators of Table 1. Then p ∼ q iff

T (p, q) has a solution.



Heuristic search for equivalence checking

Table 1 The operators

op1
〈p, q,⊤, λ〉 −→ 〈p, q,⊥, 1〉 and 〈p, q, ⊤, λ〉 −→ 〈p, q,⊥, 2〉

op2

σ(p) = {(p1, α1), . . . , (pn, αn)} 6= ∅

〈p, q,⊥, 1〉 −→ 〈p1, q, α1, 2〉 and · · · and 〈p, q,⊥, 1〉 −→ 〈pn, q, αn, 2〉

op′
2

σ(q) = {(q1, α1), . . . , (qn, αn)} 6= ∅

〈p, q,⊥, 2〉 −→ 〈p, q1, α1, 1〉 and · · · and 〈p, q,⊥, 2〉 −→〈p, qn, αn, 1〉

op3

σ(p) = {(p1, α1), . . . , (pn, αn)} 6= ∅, αi = α ∀i ∈ [1..n]

〈p, q, α, 1〉 −→ 〈p1, q,⊤, λ〉 or · · · or 〈p, q, α, 1〉 −→ 〈pn, q,⊤, λ〉

op′
3

σ(q) = {(q1, α1), . . . , (qn, αn)} 6= ∅, αi = α ∀i ∈ [1..n]

〈p, q, α, 2〉 −→ 〈p, q1⊤, λ〉 or · · · or 〈p, q, α, 2〉 −→ 〈p, qn,⊤, λ〉

Proof Let us prove the ⇐ direction first. Take a solution

D = (N , R) of T (p, q) and consider the relation

S = { (p′, q ′) | 〈p′, q ′,⊤, λ〉 ∈ N }. (*)

Clearly (p, q) ∈ S. We claim that S is a strong bisimulation,

thus proving p ∼ q. Indeed, take any (p′, q ′) ∈ S. Thus,

the AND node 〈p′, q ′,⊤, λ〉 is in N and, since D is a solu-

tion, both its successors 〈p′, q ′,⊥, 1〉 and 〈q ′, p′,⊥, 2〉 (as

given by operator op1 in Table 1) are also in N (according

to Definition 3.2). If p′ α
−→ p′′, then node 〈p′, q ′,⊥, 1〉 will

produce processes in 1 node 〈p′′, q ′, α, 2〉 through operator

op2. Since 〈p′, q ′,⊥, 1〉 is and AND node in D and D is

a solution, then node 〈p′′, q ′, α, 2〉 will also be in D. Now,

node 〈p′′, q ′, α, 2〉 is an OR node, thus D must contain at

least on successor for it (Definition 3.2(iii)). Since succes-

sors of node 〈p′′, q ′, α, 2〉 are produced by operator op
′

3, this

means that q ′ α
−→ q ′′ must hold for some q ′′. Moreover, the

successor of node 〈p′′, q ′, α, 2〉 will be node 〈p′′, q ′′,⊤, λ〉.

Since this latter node must be in D, then (p′′, q ′′) must be

in S according to (∗). This proves point (i) of Definition 2.1.

Point (ii) is proved symmetrically.

Now let us prove the H⇒ direction. Assume we are given

a bisimulation B such that (p, q) ∈ B. We first use B to build

and AND/OR structure D(B). We build D(B) in two steps:

A. For each (p′, q ′) ∈ B we add to D(p, q) the AND nodes

〈p′, q ′,⊤, λ〉, 〈p′, q ′,⊥, 1〉 and 〈p′, q ′,⊥, 2〉, with the

appropriate arcs.

B. for each p′ α
−→ p′′ such that (p′, q ′) ∈ B for some q ′,

we use point (ii) of Definition 2.1 to find q ′′ such that

q ′ α
−→ q ′′ and (p′′, q ′′) ∈ B. Then, we add to D(p, q)

the OR node 〈p′′, q ′, α, 2〉, with an arc coming from node

〈p′, q ′,⊥, 1〉 and an arc going to node 〈p′′, q ′′,⊤, λ〉

(these latter two nodes were added in step A). We operate

analogously for each q ′ α
−→ q ′′ such that (p′, q ′) ∈ B for

some p′.

It is now easy to show that D(B) is a solution of T (p, q).

⊓⊔

3.2 Heuristic search for strong equivalence

When trying to use the S2 algorithm to prove strong equiv-

alence we face two problems: i) the S2 algorithm works

on AND/OR graphs, rather then AND/OR structures; ii)

the solutions found by the S2 algorithm follow Defini-

tion 2.3, while we are interested in solutions that follow

Definition 3.2.

Problem (i), however, is only apparent. Indeed, any

AND/OR structure 〈G, s, t〉 can also be interpreted as an

AND/OR graph G with the same root node s. The AND nodes

of the AND/OR graph are the AND nodes of the AND/OR

structure with at least one successor, while the terminal leaves

of the AND/OR graph are the AND nodes of the AND/OR

structure with no successors, and similarly for OR nodes and

nonterminal leaves.

For problem (ii), we first note that the main difference

between the two kinds of solutions is that Definition 2.3

requires acyclicity, while Definition 3.2 does not. Indeed, it

is easy to find bisimilar processes p and q such that T (p, q)

only contains cyclic solutions: consider for example two

processes p and q such that p
a

−→ p and q
a

−→ q.

To cope with this problem we use Theorem 3.1. More

precisely, given two processes p and q, an heuristic search

on T ∂(p, q), the dual of T (p, q), can be performed. If the

search terminates with failure, then p and q are bisimilar. If,

instead, the search terminates with success, then p and q are

not bisimilar. Essentially, we try prove/disprove bisimilarity

by looking for counterexamples, which are always acyclic.

The other differences between Definition 2.3 and Defini-

tion 3.2 are taken into account by the following Theorem.

Theorem 3.3 Let T = 〈G, s, t〉 be a finite AND/OR strucu-

ture also interpreted as an AND/OR graph. Then, T has an

acyclic solution according to Definition 2.3 iff it also has a

solution according to Definition 3.2.



N. De Francesco et al.

Proof One direction is trivial, since Definition 2.3 is more

restrictive than Definition 3.2, and therefore, any solution in

the AND/OR graph sense is also a solution in the AND/OR

structure sense. In the other direction, assume D is an acyclic

solution of T according to Definition 3.2. Since T is finite

and D is acyclic, the maximal paths in D must end in a node

with no successors. This must be an AND node, since D is a

solution. But AND nodes with no successors in an AND/OR

structure are terminal nodes in the corresponding AND/OR

graph, so point (iv) of Definition 2.3 is satisfied. Now, D may

fail to be a solution in the AND/OR graph sense only if some

of the OR nodes it contains have more than one successor

in D. However, we can build a subgraph D′ of D in which

we keep all nodes, all outgoing arcs of the AND nodes, and

exactly one outgoing arc for each OR node. Then, D′ is a

solution according to Definition 2.3. ⊓⊔

Therefore, S2 applied to T ∂(p, q) finds a solution iff

T ∂(p, q) has a solution iff p and q are not strongly bisim-

ilar. Note that the proof also shows that any solution found

by S2 can be readily interpreted as a solution of T ∂(p, q),

i.e., as a counterexample of T (p, q). Moreover, the heuris-

tic search founds a counterexample of minimal cost. The

cost of each arc is 1, so that the cost of the counterexam-

ple is related to the number of actions performed by the two

processes.

3.3 Application of the method to CCS processes

In this section, we apply our method to the CCS language

specification. Thus, we briefly recall the Calculus of Com-

municating Systems (CCS) [25], which is an algebra suitable

for modeling and analyzing processes. The reader can refer

to [25] for further details. The syntax of processes is the

following:

p::=nil
∣∣ α.p

∣∣ p + p
∣∣ p | p

∣∣ p\L
∣∣ p[ f ]

∣∣ x

where α ranges over a finite set of actions Act = {τ, a, a,

b, b, ...}. Input actions are labeled with “non-barred” names,

e.g. a, while output actions are “barred”, e.g. a. The action

τ ∈ Act is called internal action. The set L , in processes

with the form p\L , ranges over sets of visible actions (V =

Act − {τ }), f ranges over functions from actions to actions,

while x ranges over a set of constant names: each constant x

is defined by a constant definition x
def
= p. Given L ⊆ V , with

L◦, we denote the set { l, l | l ∈ L }. We call P the processes

generated by p.

Given a process p, a constant x of p is said to be

guarded in p if x is contained in a sub-process of p of the

form α.q, where q is a process. A process p is guarded

if every constant of p is guarded in p, it is unguarded

otherwise. In the following, we consider only guarded

processes.

Table 2 Operational semantics of CCS

Act
α.p

α
−→ p

Sum
p

α
−→ p′

p + q
α

−→ p′

Con
p

α
−→ p′

x
α

−→ p′
x

def
= p Par

p
α

−→ p′

p | q
α

−→ p′ | q

Com
p

l
−→ p′, q

l
−→ q ′

p | q
τ

−→ p′ | q ′
Rel

p
α

−→ p′

p[ f ]
f (α)
−→ p′[ f ]

Res
p

α
−→ p′

p\L
α

−→ p′\L
α 6∈ L◦

The standard operational semantics [25] is given by a

relation −→ ⊆ P × Act × P , which is the least relation

defined by the rules in Table 2 (we omit the symmetric rule

of Sum and Par).

A (labeled) transition system is a quadruple (S, Act,

−→, p), where S is a set of states, Act is a set of transi-

tion labels (actions), p ∈ S is the initial state, and −→ ⊆

S × Act ×S is the transition relation. If (p, α, q) ∈ −→, we

write p
α

−→ q.

If δ ∈ Act∗ and δ = α1 . . . αn , n ≥ 1, we write p
δ

−→ q

to mean p
α1

−→ · · ·
αn

−→ q. Moreover, p
λ

−→ p, where λ is the

empty sequence. Given p ∈ S, with R(p) = { q | p
δ

−→ q }

we denote the set of the states reachable from p by −→,

also called derivatives of p. When p has a finite number of

syntactically different derivatives, p is called finite state, or

simply finite.

Given a CCS process p, the standard transition system

for p is defined as S(p) = (R(p), Act,−→, p). Note that,

with abuse of notation, we use −→ for denoting both the

operational semantics and the transition relation among the

states of the transition system.

In this paper, we use CCS without the relabeling operator.

Note that this is not a restriction since the calculus is still

Turing equivalent.

To build the AND/OR structure for CCS processes, we

take 1 as the set of CCS processes P , and the σ function

described in the previous sub-section, is rephrased using

the standard operational semantic, i.e. σ(p) = { (p′, α) |

p
α

−→ p′ } = {(p1, α1), . . . , (pn, αn)}.

Example 3.1 Consider the following CCS processes:

p
def
= b.nil + c.k.d. f.nil

q
def
= b.c.nil + c.k.d.nil

The AND/OR structure T (p, q) generated starting from

〈p, q,⊤, λ〉, using the operators of Table 1, is sketched in

Fig. 4. For simplicity, only the first four levels have been

shown in detail.



Heuristic search for equivalence checking

Fig. 4 The AND/OR structure

T (p, q)

Table 3 Auxiliary functions

used by the heuristics
ĥ⊤(p, q, i) =

{
0 if stop(p, q, i)

1 + min(̂h⊥(p, q, i + 1), ĥ⊥(q, p, i + 1) otherwise

ĥ⊥(p, q, i) =

{
0 if stop(p, q, i)

min{ 1 + ĥα(p′, q, i + 1) | p
α

−→ p′ } otherwise

ĥα(p, q, i) =

{
0 if stop(p, q, i)∑

{ 1 + ĥ⊤(p, q ′, i + 1) | q
α

−→ q ′ } otherwise

where

stop(p, q, i) ≡ (i > M) or not wf (p) or not wf (q)

3.4 The heuristic function for checking strong equivalence

In order to apply an heuristic search, an heuristic function

over nodes has to be defined. This function is called ĥ and it

is aimed at working during the construction of the AND/OR

graph by means of the operators of Table 1.

If n is a node in the AND/OR graph, ĥ should be an esti-

mate of h(n) (see Definition 2.4). In our method, h(n) is the

cost of the minimal counterexample sub-graph having n as

a start node. Note that, if n has no counterexample below it,

then h(n) = ∞.

Algorithm S2 is only guaranteed to work and find the min-

imal counterexample if the heuristics ĥ is admissible accord-

ing to Definition 2.5. To meet the admissibility requisite, the

heuristics we propose performs a limited look-ahead in the

(yet to be constructed) AND/OR graph, in some of those

cases where this can be done efficiently. The lookahead is

limited, since this computation is still subject to combinato-

rial explosion and, if not truncated somewhere, it can easily

make the cost of computing the heuristics overcame any ben-

efit we may gain from it.

Definition 3.4 (̂h(〈p, q, γ, u〉): the heuristic function)

ĥ(〈p, q, γ, u〉) uses three auxiliary functions, one for each

value of the γ component of the node:

• ĥ⊤, when γ is equal to ⊤;

• ĥ⊥, when γ is equal to ⊥;

• ĥα , when γ is equal to α; the latter is actually a family

of functions one for each α ∈ Act.

Each auxiliary function has three arguments: two CCS

processes and a natural number. The three functions are

defined in Table 3, while

ĥ(〈p, q, γ, u〉) =





ĥ⊤(p, q, 0) if γ = ⊤;

ĥ⊥(p, q, 0) if γ = ⊥, u = 1;

ĥ⊥(q, p, 0) if γ = ⊥, u = 2;

ĥα(q, p, 0) if γ = α, u = 1;

ĥα(p, q, 0) if γ = α, u = 2.

The heuristic function guides the construction of the

AND/OR structure aiming to find a node containing two not

bisimilar states; in fact, ĥ(n) associates a nonnegative value

with each node n of the structure, called the ĥ-value of n:

roughly speaking, which value approximates the number of

arcs of the structure that must be crossed to establish that p

and q are not bisimilar.

The auxiliary functions in Table 3 mimic a visit in the

(not yet generated) AND/OR graph below node n. The visit

is stopped when either the distance from n exceeds a fixed

maximum M , or when the transitions of the CCS processes

can no longer be obtained by inspecting their textual rep-

resentation in node n. This latter constraint is checked by



N. De Francesco et al.

Table 4 Restricted syntax for CCS processes

Lin::=nil
∣∣ α.p (where p is any CCS process)

Sum::=Lin
∣∣ Lin + Sum

Par::=Sum
∣∣ Sum′′ |′′ Par

Res::=Par\L (where L is a set of actions)

the wf predicate. If p is the textual representation of a CCS

process, we define wf (p) to be true iff p can be generated

by the Res production in the grammar defined in Table 4. It

turn out that our heuristic returns a value different from zero

for processes generated by this grammar. An example of a

process generated by Res is

(a.b.X + d.e.Y | c.Y | ā.X)\{a}.

In the process expression above, we have marked all the pos-

sible first actions (in the case of a and ā, these will actually

produce τ ). For each marked action, we can obtain the cor-

responding derivative of the process by keeping the same

textual representation and changing the markings. E.g., if we

let the process perform action d, we obtain

(a.b.X + d.e.Y | c.Y | ā.X)\{a}

and we can use this as an equivalent representation of the

actual derivative, i.e., (e.Y | c.Y | ā.X)\{a}. Note that per-

forming action c produces a derivative that can no longer be

obtained from the grammar in Table 4. In fact, we choose

to stop the lookahead when we meet a process constant,

since the expansion of the constant may require a (possibly

costly) process rewriting. Note, however, that this would be

too restrictive at the beginning of the computation, since it

is very common to have CCS processes defined as a par-

allel composition of constants. Therefore, when comput-

ing ĥ(〈p, q, γ, u〉), we actually do a first pass in which we

replace all constants with their definitions.

The actual expressions of the auxiliary functions are

derived by Definition 2.4 and the operators of Table 1. Please

keep in mind that we set the cost of each arc to 1, and that

AND nodes and OR nodes are exchanged w.r.t. Table 1, since

we are visiting the dual graph in order to look for counterex-

amples (see Sect. 3.2). To address special cases, we assume

min ∅ = ∞ and
∑

∅ = 0.

Consider the following two CCS processes

p =(c.k.nil | c.nil)\{c}

q =(d.h.nil | d.nil)\{d}

Let n = 〈p, q,⊥, 1〉, it holds that ĥ⊥(p, q, 0) = 3. In fact,

ĥ⊥(p, q, 0) = 1 + ĥτ ((k.nil | nil)\{c}, q, 1) Dfn. ĥ⊥

= 1 + 1 + ĥ⊤((k.nil | nil)\{c}, (h.nil | nil)\{d}, 2) Dfn. ĥα

= 1 + 1 + min(n1, n2) Dfn. ĥ⊤

where

n1 = ĥ⊥((k.nil | nil)\{c}, (h.nil | nil)\{d}, 3); and

n2 = ĥ⊥((h.nil | nil)\{d}, (k.nil | nil)\{c}, 3).

Finally,

n1 = 1 + (̂hk((nil | nil)\{c}, (h.nil | nil)\{d}, 4) = 0), Dfn. ĥ⊥

n2 = 1 + (̂hh((nil | nil)\{d}, (k.nil | nil)\{c}, 4) = 0). Dfn. ĥ⊥

Since ĥ⊥(p, q, 0) = 3, to reach two non bisimilar states

we have to cross 3 arcs: the two arcs corresponding to the

τ actions and the arc connecting the node ⊤ with a node

⊥. Then, the value of ĥ(n) could be interpreted as a lower

bound to the number of actions that have to be performed

by both processes before reaching a node in which they are

discovered not bisimilar. Nevertheless, this is an optimistic

point of view: in fact, it is possible that

The following theorem states that the heuristic function is

admissible, i.e., it never overestimates the actual cost.

Theorem 3.4 The heuristic function ĥ of Definition 3.4 is

admissible.

Proof (See Definition 2.5) Let p and q be any two CSS

processes. The AND/OR graph G, on which nodes the heuris-

tics is defined, is T ∂(p, q). Let D be a minimal solution sub-

graph of G. We need to show that ĥ(n) ≤ h(n) for each n

in G, where h(n) is the cost of n in D as defined in Defini-

tion 2.4.

Note that D is acyclic. Take any topological sort of the

nodes in D, such that n comes before m whenever m is a

successor of n in D. The proof is by induction on the number

of nodes that come after any given node in the topological

sort.

Preliminarily, note that ĥ⊤(p′, q ′, j) ≤ ĥ⊤(p′, q ′, i)

whenever i ≤ j , for any processes p′ and q ′. The same

holds for ĥ⊥ and ĥα .

The base case of the induction is for the last node in

the sort. This must be a terminal leaf n, with h(n) = 0.

A terminal leaf is an AND node of T ∂(p, q), i.e., an OR

node of T (p, q), with no successors. Therefore, n must have

the form 〈α, p′, q ′, u〉 for some processes p′, q ′, α ∈ Act

and u ∈ {1, 2}. Assume, without loss of generality, that

u = 2. Then, since the node must have no successors,

process q ′ must be unable to perform action α. We will have

ĥ(n) = hα(p′, q ′, 0) = 0, either because stop(p′, q ′, 0) is

true, or by computing
∑

∅ = 0.

Now assume that ĥ(m) ≤ h(m) for all nodes m that follow

a node n in the topological sort, whenever n has at most k

nodes after it, and consider a node n′ followed by k+1 nodes.



Heuristic search for equivalence checking

Now, n′ has the form 〈γ, p′, q ′, u〉 for some p′ and q ′, with

γ ∈ {⊤,⊥}∪Act and u ∈ {1, 2, λ}. We consider the possible

cases for γ in turn.

Assume γ = ⊤. Then u = λ, node n′ is an OR

node of T ∂(p, q) and it has two successors after it: m′ =

〈⊥, p′, q ′, 1〉 and m′′ = 〈⊥, p′, q ′, 2〉. According to Defini-

tion 2.4, h(n) is either 1 + h(m′) or 1 + h(m′′). By induction

hypotesis, ĥ(m′) ≤ h(m′) and ĥ(m′′) ≤ h(m′′). Note that

ĥ(m′) = ĥ⊥(p′, q ′, 0) and ĥ(m′′) = ĥ⊥(q ′, p′, 0). By look-

ing at the definition of ĥ⊤, we can see that we will have

ĥ(n) = 0 if stop(p′, q ′, 0) is true, or the following chain of

inequalities will hold:

ĥ(n′) = ĥ⊤(p′, q ′, 0)

= 1 + min
(̂
h⊥(p′, q ′, 1), ĥ⊥(q ′, p′, 1)

)

≤ 1 + min
(̂
h⊥(p′, q ′, 0), ĥ⊥(q ′, p′, 0)

)

= 1 + min
(̂
h(m′), ĥ(m′′)

)

≤ 1 + min
(
h(m′), h(m′′)

)

≤ h(n′).

The arguments for γ = ⊥ and γ ∈ Act are similar. ⊓⊔

3.5 The heuristic function for checking weak equivalence

The heuristics we use for weak equivalence is obtained from

the heuristics for strong equivalence, by replacing −→ with

H⇒ in the defintions of ĥ⊥ and ĥα in Table 3. A result anal-

ogous to Theorem 3.4 also holds for this case and can be

proved similarly.

4 Experimental results

In this section, we present and discuss our experience with

using a C++ tool1 implementing the presented approach to

check both strong and weak equivalence of several well-

known processes. Our aim is to evaluate the performances

of the approach presented in Sect. 3 and compare it against

both the CWB-NC [32] and the CADP tool [33]. Experiments

were executed on a 64 bit, 2.67 GHz Intel i5 CPU equipped

with 8 GiB of RAM and running Gentoo Linux.

First, we consider the effect of the M constants in Table 3.

This constant measures the amount of lookahead performed

by the heuristics function. High values of M improve the

heuristics, but also increase the time required to compute it.

Therefore, we expect that incrementing M should be bene-

ficial only up to a certain value. We consider a particularly

problematic example (MUTUAL 8, described below) and use

our tool to check for weak equivalence with different values

of M . In Table 5, we show the running time, number of gener-

ated process states, and percentage of the running time spent

1 http://www2.ing.unipi.it/~a080224/grease/.

Table 5 Results on MUTUAL 8 (weak equivalence)

M Time (s) States Heu (%)

0 99.7 3,335 0.3

1 79.2 3,302 0.6

2 64.7 3,089 1.6

3 51.7 3,068 4.1

4 45.8 2,866 6.3

5 43.0 2,810 14.2

6 42.0 2,698 29.4

7 48.2 2,698 40.5

8 66.2 2,684 58.9

computing the heuristics, for values of M ranging from 0

to 8. The data largely confirm our expectations: the running

time decreases at first, but then it start to increase again for

M ≥ 7. The increase is due to the high computational cost

of the heuristics, which becomes very significant starting at

M = 5. Note that the number of generated process states

continues to decrease, but at decreasing rate: it is essentially

constant for M ≤ 6. In the rest of the experiments, we select

M = 4.

Now, we consider different instances of the dining philoso-

phers problem. In the first version, when a philosopher gets

hungry, he can, without any control, pick up his left fork first,

then his right one; after having eaten, he puts the forks down

in the same order that he had picked them up. In the sec-

ond version, shown in [34], when a philosopher gets hungry,

he tries to sit at the table, but an usher keeps at least one

philosopher from sitting. Only after having sit, a philosopher

can pick up his left fork and then his right one; he eats and

then puts the forks down in the same order that he picked

them up. We prove that the two versions are not strongly

equivalent.

Table 6 shows the number of generated nodes and the run-

ning time, measured in seconds, resulting from the CWB-

NC and our approach, respectively, where column n indi-

cates the number of philosophers. The column “dimension”

shows the number of states of the standard transition sys-

tem of the two CCS processes specifying the two versions

of the dining philosophers, namely p and q. Finally, the last

column indicates the cost of the counterexample. We may

see a significant reduction of both state space and time when

applying our approach. In fact, for n = 6, the CWB-NC tool

was not able give an answer, while with our methodology we

managed to check equivalence up to a configuration of 20

philosophers.

In Table 7, our approach is compared with the CADP tool.

Again, we consider the dining philosophers example and

check strong equivalence. Since CADP tool uses LOTOS

[35] as specification language, all the CCS specifications

have been equivalently translated in LOTOS. Moreover, the



N. De Francesco et al.

Table 6 Results on the dining

philosophers

(CWB-NC—strong

equivalence)

n Our approach CWB-NC Dimension State-space

reduction (%)

Cost of

counterexample

Gen Time Gen Time p q

2 41 0.00 156 0.10 74 82 73 14

3 57 0.01 1,072 0.14 639 433 94 14

4 125 0.05 7,212 1.53 5,510 1,702 98 14

5 203 0.15 53,815 19.89 47,496 6,319 99 14

6 305 0.39 – – – – – 14

8 597 1.78 – – – – – 14

12 1,687 18.20 – – – – – 14

16 3,600 92.73 – – – – – 14

20 6,472 337.96 – – – – – 14

Table 7 Results on the dining

philosophers (CADP—strong

equivalence)

n Our approach memory CADP memory Our approach time CADP time

2 10,480 51,600 0.00 0.60

3 11,616 57,840 0.01 0.66

4 14,432 62,672 0.05 0.77

5 20,112 67,824 0.15 1.01

6 29,408 72,992 0.39 1.69

8 71,664 87,890 1.78 6.97

12 375,392 – 18.20 –

16 1,372,048 – 92.73 –

20 3,749,648 – 337.96 –

memory usage is considered instead of the generated states.

The table shows both the memory consumption (KB) and

the runtime performance (sec) of both approaches: again our

method obtains better results. Actually, we set a timeout of

15 minutes during the checking of 12 philosophers trying to

dine.

The goodness of the proposed heuristic function is esti-

mated by the comparison of the results of using our approach

with the function defined in the previous section, called ĥ,

and with an heuristic function always equal to zero, from

now on called ĥ0. Essentially, by means of ĥ0, we simulate

a breath-first search strategy. The results of checking strong

equivalence between the two versions of dining philosophers

are shown in Table 8, where the second and third columns

show the number of states (gen) generated using ĥ0 and ĥ,

respectively; moreover, the fourth and fifth column show

the time results in terms of seconds. Is easy to see that the

non informative heuristic ĥ0 has both the disadvantages of a

higher computational cost and a less effectiveness. In fact, the

search with the non informative heuristics is not able to give

an answer for 16 dining philosophers after having waited

more than 15 minutes, while we manage the checking of

strong equivalence up to a configuration of 20 philosophers

through ĥ.

For a more complete evaluation of our approach, we select

from the literature a sample of well-known systems. In all

examples, we prove the equivalence between two processes,

namely p and q.

• DEK-PET

– p: the CCS specification of the mutual exclusion

algorithms [36] due to Dekker.

– q: the CCS specification of the mutual exclusion algo-

rithms [36] due to Peterson.

– It holds that p 6∼ q.

• BUFF:

– p: a buffer of capacity 2.

– q: the implementation of the buffer obtained by com-

posing in parallel 2 copies of a buffer cell.

– It holds that p 6∼ q.

• XOR:

– p: specification of an XOR of 3 inputs.

– q: the implementation obtained using two XOR gates

of 2 inputs each one.

– It holds that p 6∼ q.



Heuristic search for equivalence checking

Table 8 Results on the dining

philosophers (̂h vs ĥ0) n Gen Time

Our approach ĥ0 Our approach ĥ Our approach ĥ0 Our approach ĥ

2 60 41 0.00 0.00

3 163 57 0.01 0.01

4 348 125 0.07 0.05

5 664 203 0.26 0.15

6 1,170 305 0.79 0.39

8 3,070 597 5.15 1.78

12 13,768 1,687 107.32 18.20

16 – 3,600 – 92.73

20 – 6,472 – 337.96

Table 9 Results for other

systems (CWB-NC—strong

equivalence)

Case study Our approach CWB-NC Dimension State-space

reduction (%)

Cost of

counterexample
Gen Time Gen Time p q

DEK-PET 36 0.00 256 0.02 165 91 86 17

BUFF 7 0.00 17 0.01 7 10 58 5

XOR 8 0.00 18 0.01 8 10 55 8

MUTUAL 1,532 0.03 8,704 2.89 6,912 6,912 82 20

MAIL 68 0.00 1,434 0.24 1,025 409 95 17

BRP 1,518 0.01 1,518 0.60 759 759 0 Strong bisimilar

• MUTUAL:

– p: a system handling the requests of a resource shared

by 8 processes. It presents two alternative choices

between a server based on a round robin scheduling

and a server based on mutual exclusion.

– q: similar to p with the round robin scheduling

changed.

– It holds that p 6∼ q.

• MAIL:

– p: an old specification of a mail system, devised by

Gordon Brebner [37].

– q: a new specification of a mail system, always pro-

duced by Gordon Brebner [37].

– It holds that p 6∼ q.

• BRP: Philips Bounded Retransmission Protocol (BRP):

the Bounded Retransmission Protocol used by the Philips

Company in one of its products [38–40].

– p and q are two similar specifications of the protocol.

– It holds that p ∼ q.

The results of all runs are reported in Table 9 (compari-

son with CWB-NC) and Table 10 (comparison with CADP),

while Table 11 shows the results of our approach against

CADP when checking weak equivalence. The tables show

the number of generated nodes/memory usage and the run-

ning time, measured in seconds. As we can see in Table 9,

no space reduction is obtained for BRP since our approach is

only successful when applied to non-equivalence checking.

Our tool is generally much faster than CWB-NC, but this is

mainly a fault of CWB-NC implementation. On BRP, CADP

takes several seconds to complete, while our tool completes

in a fraction of a second; this result, however, may be due

to the fact that the BRP LOTOS specification (coming from

CADP’s demos) is slightly different from our CCS specifi-

cation. Accordingly, we have omitted the BRP results from

Table 10. For what regards weak equivalence, while its mem-

ory occupation is higher, CADP shows a better performance,

in particular, the execution time in the MUTUAL case study

is about 3 s against 50 s of our tool. In fact, CADP uses very

efficient algorithms, and great attention is devoted to imple-

mentation efficiency issues. Actually, for the MUTUAL case,

also when checking strong equivalence, CADP has better

time performance. This is mainly due to the structure of the

two CCS processes that are modeled with a very low level of

structural difference The high execution time is also due to

the overhead introduced by the S2 algorithm. For the MUTAL

case study, through measurements of the time we can confirm

that the computational complexity of our approach mainly

depends on the S2 algorithm. In fact, the Bottom_Up step of



N. De Francesco et al.

Table 10 Results for other

systems (CADP—strong

equivalence)

Case study Our approach memory CADP memory Our approach time CADP time

DEK-PET 10,416 50,848 0.00 0.32

BUFF 9,856 44,784 0.00 0.30

XOR 9,904 46,464 0.00 0.40

MUTUAL 41,440 63,392 8.03 0.70

MAIL 91,504 53,008 0.00 1.44

Table 11 Results for other

systems (CADP—weak

equivalence)

Case study Our approach memory CADP memory Our approach time CADP time Weak bisimilar?

DEK-PET 45,808 73,472 4.11 0.45 No

BUFF 10,048 46,544 0.00 0.32 Yes

XOR 10,048 47,584 0.00 0.32 Yes

MUTUAL 107,168 105,712 49.12 2.47 No

MAIL 14,272 106,960 0.02 0.46 No

Fig. 3 requires more than seventy percent (70 %) of the time

for detecting processes similarities, while the time required to

compute the heuristic function is negligible. Also the authors

of S2 have found that the algorithm is much slower than the

competing algorithm CFCREV*, for example, but we found

that S2 is relatively easy to explain and it is proved to reach

the minimum counterexample (this is the main reason of our

choice). Similar algorithms in literature with better perfor-

mances pay the price of a very complex behavior. However,

the objective of our paper is to propose a heuristic-based

methodology to check non-equivalence regardless of the used

algorithm and our main aim is checking equivalences trying

to save as memory space as possible and obtain the mini-

mum counterexample in the case of not equivalence. It is

worth noting that the presented approach has the advantage

that a good heuristic function can help to obtain both memory

saving (less nodes to explore) and low execution time (less

work to do).

From the point of view of our initial goal, with these

examples we have provided some experimental evidence of

the reduction of both state space and running time that may

result when applying our methodology with respect to CWB-

NC and CADP, when checking strong equivalence. Note that

in some cases we obtain a reduction of more than 99 %.

However, for weak equivalence, our approach outperforms

CWB-NC, while its performance, with particular reference

to the scalability of the analysis, is lower than CADP, even if

the tests performed so far show that our approach based on

heuristic searches is comparable to the CADP tool in terms of

memory space reduction. For the time being, our impression

is that the technique looks promising via further refinements

of the method. For example, we investigated the use of more

accurate heuristic functions (and more complex) especially

for weak equivalence; in fact, as the accuracy of the heuris-

tics improves, the amount of search required to find a solu-

tion and the time for obtaining the solution both decrease.

As said before and as evidenced by the experiments, the S2

algorithm for detecting processes similarities has not very

good performances especially due to the Bottom_Up step of

Fig. 3. However, we think that the heuristic-based approach

is a viable solution, due to the availability of several algo-

rithms with better performances. Note that the research of

algorithms for cyclic AND/OR graphs is very recent, thus

we hope that new more efficient algorithms can be proposed

in the future.

In our approach particular attention is paid to the rep-

resentation of counterexamples. In fact, in formal verifica-

tion, learning why a system fails or passes a verification

task, could be as important as the result itself. The CWB-

NC supports a game theoretic representation of counterex-

amples and, if two systems are non-equivalent, generates a

logic formula as diagnostic information. However, often this

formula is fairly hard to understand and is inadequate to be

used for debugging the model. Our approach returns a graph-

ical AND/OR structure representation, which is the minimal

sub-graph leading to two non-equivalent states. This structure

allows the user to understand and navigate through the coun-

terexample better, especially in a setting with highly non-

deterministic automata where counterexamples may become

rather complicated. For example, consider the following CCS

processes:

p
def
= a.(b.e.nil + b.k.nil)

q
def
= a.(b.c.nil + b.c.nil)

It holds that p 6∼ q. The CWB-NC returns as counterexam-

ple:



Heuristic search for equivalence checking

Fig. 5 Our counterexample

FALSE...

p satisfies:

<a><b><e>tt

q does not.

The graphical structure representation returned by our

approach is shown in Fig. 5. Note that CWB-NC returns

a logic formula and not the specific execution that causes

the false value; moreover, in some cases, the formula can

be difficult to understand for users that are unfamiliar with

temporal logic-based specifications.

5 Conclusion and related work

A method that uses heuristic searches has been proposed

for equivalence checking for concurrent systems. The novel

contributions of our work are the following.

• Application of heuristic search for equivalence checking.

As far as we know, it is the first attempt to exploit process

algebra-based heuristics for equivalence checking in con-

current systems.

• The definition of an admissible heuristic function. In this

way, using S2, we can always find minimal graph lead-

ing to two non-equivalent states. We believe that it is

important to return the minimal graph, since that graph

is examined in order to determine the source of the error.

Big graphs can prevent an easy comprehension of the

fault.

• The heuristics is syntactically defined, i.e., it is only based

on the CCS specifications of the process, and the pro-

posed method is completely automatic, thus it does not

require user intervention and manual efforts.

The most challenging task when applying automated model

checking in practice is to conquer the state explosion prob-

lem. Hence, equivalence algorithms with minimal space

complexity are of particular interest. Two algorithmic fami-

lies can be considered to perform equivalence checking. The

first one is based on refinement principle: given an initial

partition, find the coarsest partition stable with respect to the

transition relation see for example the algorithm proposed

by Paige and Tarjan in [41]. The other family of algorithms

is based on a Cartesian product traversal from the initial state

[42,43]. These algorithms are both applied on the whole state

graph, and they require an explicit enumeration of this state

space. This approach leads to the well-known state explo-

sion problem. Classical reduction algorithms already exist

[44,45], but they can be applied only when the whole state

space has been computed, which limits their interest. A pos-

sible solution is to reduce the state graph before performing

the check as shown in [46] where symbolic representation of

the state space is used. In [4] is presented an algorithm that

allows the minimization of the graph during its generation,

thus avoiding in part the state explosion problem. The main

problems of this algorithm arise from the model itself, a sys-

tem of communicating automata, where some base automata

can be bigger than the full model itself. We avoid this problem

since we use an heuristic that guides the generation of states

that are still belonging to the standard transition systems of

the two CCS processes under consideration.

Other algorithms are the ones by Bustan and Grumberg

[47] and by Gentilini, Piazza and Policriti [48]. For an input

graph with N states, T transitions and S simulation equiv-

alence classes, the space complexity of both algorithms is

O(S2 + N log S). The approach of Gentilini et al. represents

the simulation problem as a generalized coarsest partition

problem. Our heuristic approach can produce great reduction

in space, which becomes the bottleneck as the input graph

grows, especially when two processes do not bisimulate each

other.

Recently, great interest was shown in combining model

checking and heuristics to guide the exploration of the state

graph of a system. In the domain of software validation, the

work of Yang and Dill [49] is one of the original ones. They

enhance the bug-finding capability of a model checker using

heuristics to search the states that are most likely to lead to an

error. In [50], genetic algorithms are used to exploit heuris-

tics for guiding a search in large state spaces toward errors

like deadlocks and assertion violations. In [51], heuristics



N. De Francesco et al.

have been used for real-time model checking in UPPAAL. In

[52,53], heuristic search has been combined with on-the-fly

techniques, while in [54,55] with symbolic model checking.

Other works, as for example [56,57], used heuristic search

to accelerate finding errors, while in [58] heuristic search is

used to accelerate verification.

As a future work, we intend apply this approach also for

other equivalences, as for example ρ-equivalence, introduced

in [18], that formally characterizing the notion of “the same

behavior with respect to a set ρ of actions”: two transition

systems are ρ-equivalent if aρ-bisimulation relating their

initial states exists. Moreover, we intend to investigate more

accurate heuristic functions.

References

1. Parashkevov, A.N., Yantchev, J.: Arc—a tool for efficient refine-

ment and equivalence checking for csp. In: IEEE International Con-

ference on Algorithms and Architectures for Parallel Processing

ICA3PP’96, pp. 68-75

2. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchroniza-

tion skeletons using branching time temporal logic. In: Grumberg,

O., Veith, H. (eds.) 25 Years of Model Checking, vol. 5000 of Lec-

ture Notes in Computer Science, Springer, pp. 196-215 (2008)

3. Queille, J.-P., Sifakis, J.: Specification and verification of concur-

rent systems in cesar. In: Dezani-Ciancaglini, M., Montanari, U.

(eds.) Symposium on Programming, vol. 137 of Lecture Notes in

Computer Science, Springer, Berlin, pp. 337–351 (1982)

4. Bouajjani, A., Fernandez, J.-C., Halbwachs, N.: Minimal model

generation. In: Clarke, E.M., Kurshan, R.P. (eds.) CAV, vol. 531 of

Lecture Notes in Computer Science, Springer, Berlin pp. 197–203

(1990)

5. Graf, S., Steffen, B., Lüttgen, G.: Compositional minimisation of

finite state systems using interface specifications. Form. Asp. Com-

put. 8, 607–616 (1996)

6. McMillan, K.L.: Symbolic Model Checking. Kluwer, Dordrecht

(1993)

7. Jard, C., Jéron, T.: Bounded-memory algorithms for verification

on-the-fly, in: [60], pp. 192–202

8. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A.,

Aljazzar, H.: Survey on directed model checking. In: MoChArt,

pp. 65-89

9. Gradara, S., Santone, A., Villani, M.L.: Using heuristic search for

finding deadlocks in concurrent systems. Inf. Comput. 202, 191–

226 (2005)

10. Gradara, S., Santone, A., Villani, M.L.: An efficient deadlock detec-

tion tool for ccs processes. J. Comput. Syst. Sci. 72, 1397–1412

(2006)

11. Stirling, C., Walker, D.: Local model checking in the modal mu-

calculus. Theor. Comput. Sci. 89, 161–177 (1991)

12. Godefroid, P.: Partial-Order Methods for the Verification of Con-

current Systems—An Approach to the State-Explosion Problem,

vol. 1032 of Lecture Notes in Computer Science, Springer, Berlin

(1996)

13. Peled, D.: All from one, one for all: on model checking using

representatives, in: [59], pp. 409–423

14. Valmari, A.: A stubborn attack on state explosion. Form. Methods

Syst. Des. 1, 297–322 (1992)

15. Santone, A., Vaglini, G., Villani, M.L.: Incremental construction

of systems: an efficient characterization of the lacking sub-system.

Sci. Comput. Program. 78, 1346–1367 (2013)

16. Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model

checking. In: LICS, pp. 353-362

17. Santone, A.: Automatic verification of concurrent systems using

a formulabased compositional approach. Acta Inf. 38, 531–564

(2002)

18. Barbuti, R., De Francesco, N., Santone, A., Vaglini, G.: Selective

mu-calculus and formula-based equivalence of transition systems.

J. Comput. Syst. Sci. 59, 537–556 (1999)

19. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and

abstraction. ACM Trans. Program. Lang. Syst. 16, 1512–1542

(1994)

20. Santone, A., Vaglini, G.: Abstract reduction in directed model

checking ccs processes. Acta Inf. 49, 313–341 (2012)

21. De Francesco, N., Santone, A., Vaglini, G.: State space reduction

by nonstandard semantics for deadlock analysis. Sci. Comput. Pro-

gram. 30, 309–338 (1998)

22. Pearl, J.: Heuristics—Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley series in artificial intelligence.

Addison-Wesley (1984)

23. Mahanti, A., Bagchi, A.: And/or graph heuristic search methods.

J. ACM 32, 28–51 (1985)

24. Mahanti, A., Ghose, S., Sadhukhan, S.K.: A framework for search-

ing and/or graphs with cycles, CoRR cs.AI/0305001 (2003)

25. Milner, R.: Communication and Concurrency, PHI Series in Com-

puter Science. Prentice Hall, Englewood Cliffs (1989)

26. Santone, A.: Heuristic for simulation checking. In: Proceedings of

the 2011 International Conference on Artificial Intelligence (ICAI

2011), Las Vegas Nevada, USA, CSREA Press (2011)

27. Santone, A.: Clone detection through process algebras and java

bytecode. In: IWSC, pp. 73-74

28. Cuomo, A., Santone, A., Villano, U.: Cd-form: a clone detector

based on formal methods. Sci. Comput. Program. (2013) doi:10.

1016/j.scico.2013.11.022

29. Chakrabarti, P.P.: Algorithms for searching explicit and/or graphs

and their applications to problem reduction search. Artif. Intell. 65,

329–345 (1994)

30. Jiménez, P., Torras, C.: An efficient algorithm for searching implicit

and/or graphs with cycles. Artif. Intell. 124, 1–30 (2000)

31. Hansen, E.A., Zilberstein, S.: Lao*: A heuristic search algorithm

that finds solutions with loops. Artif. Intell. 129, 35–62 (2001)

32. Cleaveland, R., Sims, S.: The ncsu concurrency workbench. In:

Alur, R. , Henzinger, T.A. (eds.) CAV, vol. 1102 of Lecture Notes

in Computer Science, Springer, Berlin pp. 394-397 (1996)

33. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: Cadp 2010: a tool-

box for the construction and analysis of distributed processes. In:

TACAS, pp. 372-387

34. Bruns, G.: A practical technique for process abstraction. In: Best,

E. (ed.) CONCUR, vol. 715 of Lecture Notes in Computer Science,

Springer, Berlin, pp. 37–49 (1993)

35. Bolognesi, T., Brinksma, E.: Introduction to iso specification lan-

guage lotos. Comput. Netw. ISDN Syst. 14, 25–59 (1987)

36. Walker, D.J.: Automated analysis of mutual exclusion algorithms

using ccs. Form. Asp. Comput. 1, 273–292 (1989)

37. Brebner, G.J.: A ccs-based investigation of deadlock in a multi-

process electronic mail system. Form. Asp. Comput. 5, 467–478

(1993)

38. Groote, J.F., van de Pol, J.: A bounded retransmission protocol for

large data packets. In: Wirsing, M., Nivat, M. (eds.) AMAST, vol.

1101 of Lecture Notes in Computer Science. Springer, Berlin, pp.

536–550 (1996)

39. Havelund, K., Shankar, N.: Experiments in theorem proving and

model checking for protocol verification. In: Gaudel, M.-C., Wood-

cock, J. (eds.) FME, vol. 1051 of Lecture Notes in Computer Sci-

ence, Springer, Berlin, pp. 662-681 (1996)

40. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a

data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES,



Heuristic search for equivalence checking

vol. 806 of Lecture Notes in Computer Science, Springer, Berlin,

pp. 127–165 (1993)

41. Paige, R., Tarjan, R.E.: Three partition refinement algorithms.

SIAM J. Comput. 16, 973–989 (1987)

42. Fernandez, J.-C., Mounier, L.: “On the fly” verification of behav-

ioural equivalences and preorders. In: Larsen K.G., Skou A. (eds.)

CAV’91 Proceedings of the 3rd International Workshop on Com-

puter Aided Verification, pp. 181–191. Springer-verlag, London,

Uk (1991)

43. Godskesen, J., Larsen, K., Zeeberg, M.: TAV—Tools for Automatic

Verification: Users Manual. Department of Mathematics and Com-

puter Science, The University of Aalborg, Institute for Electronic

Systems (1989)

44. Fernandez, J.-C.: An implementation of an efficient algorithm

for bisimulation equivalence. Sci. Comput. Program. 13, 219–236

(1989)

45. Kanellakis, P.C., Smolka, S.A.: Ccs expressions, finite state

processes, and three problems of equivalence. Inf. Comput. 86,

43–68 (1990)

46. Fernandez, J.-C., Kerbrat, A., Mounier, L.: Symbolic equivalence

checking. In: CAV’93 Proceedings of the 5th International Con-

ference on, Computer Aided Verification, June 28-July 1. Lecture

Notes in Computer Science. vol. 697, pp. 85-96. Springer, London,

UK (1993)

47. Bustan, D., Grumberg, O.: Simulation-based minimization. ACM

Trans. Comput. Log. 4, 181–206 (2003)

48. Gentilini, R., Piazza, C., Policriti, A.: From bisimulation to simu-

lation: coarsest partition problems. J. Autom. Reason. 31, 73–103

(2003)

49. Yang, C.H., Dill, D.L.: Validation with guided search of the state

space. In: DAC, pp. 599–604

50. Godefroid, P., Khurshid, S.: Exploring very large state spaces using

genetic algorithms. In: Katoen, J.-P., Stevens, P. (eds.), TACAS, vol.

2280 of Lecture Notes in Computer Science, Springer, Berlin, pp.

266–280 (2002)

51. Behrmann, G., Fehnker, A.: Efficient guiding towards cost-

optimality in uppaal. In: Margaria, T. , Yi, W. (eds.) TACAS, vol.

2031 of Lecture Notes in Computer Science, Springer, Berlin, pp.

174–188 (2001)

52. Alur, R., Wang, B.-Y.: “Next” heuristic for on-the-fly model check-

ing. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR, vol. 1664 of

Lecture Notes in Computer Science, Springer, Berlin, pp. 98-113

(1999)

53. Möller, M.O., Alur, R.: Heuristics for hierarchical partitioning with

application to model checking. In: Margaria, T., Melham, T.F.

(eds.) CHARME, vol. 2144 of Lecture Notes in Computer Science,

Springer, Berlin, pp. 71–85 (2001)

54. Edelkamp, S., Reffel, F.: Obdds in heuristic search. In: Herzog,

O., Günter, A. (eds.), KI, vol. 1504 of Lecture Notes in Computer

Science, Springer, Berlin, pp. 81–92 (1998)

55. Jensen, R.M., Bryant, R.E., Veloso, M.M.: Seta*: an efficient bdd-

based heuristic search algorithm. In: AAAI/IAAI, pp. 668-673

56. Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit

model checking with hsf-spin. In: Dwyer, M.B. (ed.) SPIN, vol.

2057 of Lecture Notes in Computer Science, Springer, Berlin, pp.

57–79 (2001)

57. Groce, A., Visser, W.: Heuristic model checking for java programs.

In: Bosnacki, D., Leue, S. (eds.) SPIN, vol. 2318 of Lecture Notes

in Computer Science, Springer, Berlin pp. 242–245 (2002)

58. Santone, A.: Heuristic search + local model checking in selective

mucalculus. IEEE Trans. Softw. Eng. 29, 510–523 (2003)

Nicoletta De Francesco was

born in Florence in 1951. In

1974 she obtained the degree in

Computer Science (cum laude)

from the University of Pisa. From

1981 she was researcher at the

Dipartimento di Informatica of

the University of Pisa, till 1989.

From 1989 till 2000, november,

she was associate professor, first

at the University of Salerno, and

then at the University of Pisa.

From december 2000 she is full

professor of Computer Engineer-

ing at the Dipartimento di Ingeg-

neria della Informazione of the University of Pisa. From 2003 to 2010

she was delegate for teaching of the University of Pisa and from novem-

ber 2010 she is vice-rector of the University of Pisa. She made her

research in the field of the specification and verification of concurrent

and distributed systems. Her research interests included the formal ver-

ification of systems. After, she moved to the security field and to the

application of formal verification techniques to biological systems and

languages. She has been involved in several reasearch projects under the

financial support of the Italian Ministero dell’Istruzione, dell’Università

e della Ricerca (MIUR), the Italian National Research Council (CNR)

and the European Community. In 2010 she winned the Computer

Journal Wilkes Award.

Giuseppe Lettieri received the

Ph.D. degree in Computer Sys-

tems Engineering from the Uni-

versity of Pisa, Italy, in 2002.

Since 2004 he is a researcher

with the Dipartimento di Ingeg-

neria dell’Informazione of the

University of Pisa. He has

worked on distributed Operating

Systems and memory manage-

ment, then he moved to formal

methods, with special interest in

model checking and applications

of the theory of Abstract Inter-

pretation to Java bytecode verifi-

cation and secure information flow. Giuseppe Lettieri has been involved

in research projects under the finantial support of the Italian Ministero

dell’Istruzione, dell’Università e della Ricerca (MIUR) and the Cassa

di Risparmio di Pisa.



N. De Francesco et al.

Antonella Santone was born in

Montreal (Canada) on June 13,

1969. She is associate profes-

sor at the Department of Engi-

neering of the University of San-

nio, Benevento since November

2001. She received the Laurea

degree in Computer Science at

the University of Pisa, Italy, in

April 1993. In September 1997

she received the Ph.D. degree in

Computer Systems Engineering

at the Dipartimento di Ingegne-

ria della Informazione, Pisa. She

has been Assistant Professor at

the University of Pisa from November 1998 till October 2001. She was

involved in several research activities and projects. Antonella Santone’s

current research is focused on the application of formal verification

methods. Her research interests include formal description techniques,

temporal logic, concurrent and distributed systems modelling, heuristic

search.

Gigliola Vaglini is full professor

of Computer Engineering at the

Dipartimento di Ingegneria della

Informazione of the University

of Pisa. She was born in Pisa in

1952. In 1974 she obtained her

Doct. degree in Computer Sci-

ence from the University of Pisa.

She held a post-graduate scholar-

ship from the University of Pisa

and from 1981 she was a research

assistant at the Dipartimento di

Informatica of the University of

Pisa. From 1989 till 2002, she

was an associate professor, first

at the University of Naples, and then at the University of Pisa. The main

field of her research activity was the specification and verification of

concurrent and distributed systems. In particular, she worked on the

model checking of both the formal specifications of concurrent systems

and the programs. She has been involved in several reasearch projects

under the financial support of the Italian Ministero dell’Istruzione,

dell’Università e della Ricerca (MIUR), the Italian National Research

Council (CNR) and the European Community.

View publication statsView publication stats


