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Abstract. To combat state space explosion several compositional verifi-
cation approaches have been proposed. One such approach is composi-
tional aggregation, where a given system consisting of a number of parallel
components is iteratively composed and minimised. Compositional ag-
gregation has shown to perform better (in the size of the largest state
space in memory at one time) than classical monolithic composition in a
number of cases. However, there are also cases in which compositional
aggregation performs much worse.

It is unclear when one should apply compositional aggregation in favor
of other techniques and how it is affected by action hiding and the scale
of the model.

This paper presents a descriptive analysis following the quantitiative
experimental approach. The experiments were conducted in a controlled
test bed setup in a computer laboratory environment. A total of eight
scalable models with different network topologies considering a number of
varying properties were investigated comprising 119 subjects. This makes
it the most comprehensive study done so far on the topic. We investigate
whether there is any systematic difference in the success of compositional
aggregation based on the model, scaling, and action hiding. Our results
indicate that both scaling up the model and hiding more behaviour has a
positive influence on compositional aggregation.

1 Introduction

Although model checking [5] is one of the most successful approaches for the
analysis and verification of the behaviour of concurrent systems, it is plagued with
the so-called state space explosion problem: the state space of a concurrent system
tends to increase exponentially as the number of parallel processes increases
linearly.
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To combat state space explosion several compositional approaches have been
proposed such as assume-guarantee reasoning [19,29] and partial model check-
ing [2]. An evaluation of assume-guarantee reasoning was recently conducted [7].
The study raises doubt whether it is an effective alternative to classical, monolithic
model checking.

A prominent alternative approach is compositional aggregation [9,10] (also
known as compositional state space generation [36], incremental composition
and reduction [33], incremental reachability analysis [34,35], and inductive com-
pression [32]). Given a system consisting of a number of parallel components
the compositional aggregation approach iteratively composes the components
and minimises the result. Action abstraction or hiding [24] may be applied to
abstract away all actions irrelevant for the property being verified such that
minimisation is more effective. The idea of compositional aggregation is that
incremental minimisation should warrant a lower maximum memory use than
composing the system monolithicly. Compositional aggregation has shown to
perform better (in the size of the largest state space in memory) than monolithic
composition in a number of cases [8,9,11,30,34]. However, sometimes the former
is not effective, even producing a (much) larger state space than the monolithic
approach [11].

The aggregation order of a composition can be understood as a tree, where
leaves are the parallel components and the nodes represent an operation that
constructs a composite Labelled Transition System (LTS) from the children nodes
and minimises the result. As such the number of possible aggregation orders is
exponential in the number of parallel components. The selection of an efficient
order, i.e., that results in compositional aggregation being as memory efficient as
possible is still an unsolved issue [9].

To automate the selection of the aggregation order several heuristics have been
proposed [9,8,34]. However, it is unpredictable whether aggregation orders selected
by the heuristics are an improvement over the monolithic approach. Insights
in the conditions in which compositional aggregation is expected to perform
well are vital for successful application of the techniques, but these insights are
currently limited. Evaluation of compositional aggregation and heuristics is, to
the best of our knowledge, only limited to small benchmarks with no control
on aggregation order, model scale, and action hiding. To gain understanding on
how these variables influence the effectiveness of compositional aggregation, this
paper presents a characterisation of the compositional aggregation method. The
objective of this study is as follows:

Analyse compositional aggregation for the purpose of characterisation of
the maximum memory use of the generated state space in the context
of aggregation orderings of concurrent models with different scaling and
action hiding.

The goal is to find guidelines that help deciding whether to apply compositional
aggregation. To this end we address the following main research question.

RQ main: When can compositional aggregation be expected to be more
(memory) efficient than monolithic minimisation?
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To answer this question we first answer a number of smaller questions. First, we
investigate the effect of three specific aspects of the application of compositional
aggregation: the aggregation order, the amount of action hiding, and the number
of parallel processes in the model that compositional aggregation is applied on.

RQ 1: How do action hiding, number of parallel processes, and aggregation
order affect the memory consumption of compositional aggregation?

As stated earlier, some aggregation orders are better than others. Heuristics are
employed in an attempt to find the well performing aggregation orders. Therefore,
to determine whether or not it is wise to apply compositional aggregation the
performance of the heuristics must be kept in mind.

RQ 2: How effective are the aggregation orders chosen by current heuris-
tics?

Having established what minimisation approach is most efficient on which
variants of the models, we finally investigate the relation between subjects
within these two groups (compositional aggregation and monolithic minimisation).
Answering this research question provides insights into which structural properties
of models are indicative for the success or failure of compositional aggregation.

RQ 3: How can the success or failure of compositional aggregation be
explained?

In terms of scaling, due to the exponential growth of aggregation orders, we
limit the number of analysed aggregation orders to 2,647, this is precisely the
number of aggregation orders for a model consisting of six parallel components,
hence, an optimum can be found for subjects up to a scale of six. The action hiding
sets are derived from properties formulated for the corresponding models using
the maximal hiding technique [24]. Finally, for minimisation we use branching
bisimulation with explicit divergence [15] as it supports a broad range of safety
and liveness properties.

Contributions. We present our findings after having conducted a thorough
experiment to study the effectiveness of compositional aggregation when applied
on models with varying network topologies. Having exhaustively analysed a
significant number of possible aggregation orders, we are able to compare several
heuristics proposed in the literature with the optimal composition results. In
total, we have selected 119 subjects for the analysis, making this the most
comprehensive study performed on the topic so far. Our main conclusion is that
the amount of internal behaviour of individual processes in the model, and the
amount of synchronisation between those processes, seem to be the two main
factors influencing the success of compositional aggregation. Furthermore, our
results suggest that there is real potential to construct better heuristics in the
near future.

Note that the study was conducted on networks of LTSs and, therefore, the
results are possibly limited to models represented as networks of LTSs.
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Structure of the paper. In Section 2, we discuss related work. Preliminaries are
given in Section 3. The methodology used in our experiment is discussed in
Section 4. Section 5 presents our results, and finally, conclusions and future work
are discussed in Section 6.

2 Related Work

Compositional aggregation. In the past, compositional aggregation has been
applied in a number of experiments [35,8,11]. In [35], the experiments do not
involve the optimal aggregation order for each considered case, and they target a
set of models mostly consisting of randomly generated models and variations of
only one or two real use cases. Not involving the optimal order means that it is
impossible to indicate the quality of the considered heuristics, i.e., how well they
perform compared to how well they could potentially perform. The usefulness of
insights gained by analysing randomly generated models heavily depends on how
similar the models are to real models, in terms of their structural characteristics.

In [8], two of the three heuristics proposed in [35] are further developed and
combined into what the authors call smart reduction. They consider a benchmark
set of 28 models that are variants of 13 models. This is a relatively high number
of subjects, but unfortunately, discussion of the results is very limited, and the
differences between subjects based on the same model are not explained. Due to
this, the effect of these differences between the subjects cannot be correlated to
the presented performance.

In [11] the combined heuristic is subjected to another experiment to show the
effect of action hiding, i.e., abstraction of behaviour irrelevant for the considered
functional property. The experiment measures the largest number of states
generated during aggregation with and without action hiding. The experiment
considers 90 subjects; a single (industrial) use case consisting of 5 scenarios, each
considering a subset of 25 properties. They report that action hiding improves
the performance of the heuristic. It is not reported whether there is a correlation
between the amount of reduction and the properties.

Other compositional approaches. A method for automatically generating context
constraints for compositional aggregation methods is proposed in [6]. It consists
of generating an interface LTS representing the communicating behaviour of a
set of components, and then composing this interface with the remainder of the
components. The resulting state space is observably equivalent to the monolithicly
generated state space. To evaluate the approach the authors perform several
experiments with client/server models that are scaled by adding clients to the
model. In each experiment the aggregation order was fixed. In contrast, we both
scale the models and vary the aggregation orders to see how they affect the
effectiveness of the technique.

An evaluation of automated assume-guarantee reasoning was conducted in [7].
The authors study whether assume-guarantee reasoning provides an advantage
over monolithic verification. They conclude by raising doubts whether assume-
guarantee reasoning is an effective compositional verification approach. However,
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no attempts were made to investigate the effects of combining multiple components
in one step, i.e., n-way decomposition, and action hiding. Assume-guarantee
reasoning may be more effective when these approaches are involved.

Assume-guarantee reasoning by abstraction refinement [14] improves upon
the approach. The technique is inspired by the experience that small interfaces
between components positively affect compositional reasoning. The study consid-
ers four cases with a total of twelve subjects. The improved approach uses less
memory than the original one in seven of the twelve subjects. However, it is not
reported how the memory consumption is measured (i.e., of what the memory
consumption is measured exactly), and furthermore, the results are not compared
to monolithic verification.

An n-way decomposition with alphabet refinement is proposed in [1]. A
benchmark consisting of three cases with a total of fifteen subjects is performed,
but memory consumption is not reported. In eight of the fifteen subjects, the
approach turned out to be faster than monolithic verification.

Other contributions to assume-guarantee reasoning [16,26] present similarly
small benchmarks with the number of cases not exceeding four and the number
of subjects not exceeding seventeen. In [16] memory consumption is reported as
the number of states in an assumption LTS, however, no correlation with actual
memory consumption is discussed. In [26] the memory consumption of the tools
used is reported. Still, all these benchmarks suffer from the problem of repeated
measures.

Concluding, compared to our study, none of the related studies consider (non-
random) models of varying network topologies, and take those topologies explicitly
into account. We also study in detail the effect of action hiding. Furthermore,
in none of the studies the results are corrected for repeated measures, which
occur when you obtain results from variations of test cases. Finally, it should be
noted that most studies consider to few cases and subjects to extract general
conclusions.

3 Background

Our experiments are performed using the Cadp toolbox [11]. In this section, we
explain the computational model behind compositional aggregation as offered by
Cadp.

Vectors. A vector v̄ of size n contains n elements indexed from 1 to n. We
write 1..n for the set of integers ranging from 1 to n. For all i ∈ 1..n, v̄i represents
the ith element of v̄. Given a vector of indices I ⊆ 1..n, the projection of a vector
v̄ on to I is defined as the vector v̄I = 〈v̄I1 , . . . , v̄I|I|〉 of length |I|.

Labelled Transition System (LTS). The semantics of a process, or a composi-
tion of several processes, can be formally expressed by an LTS as presented in
Definition 1.

Definition 1 (Labelled Transition System). An LTS G is a tuple (SG ,AG ,
TG , IG), with
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– SG a finite set of states;
– AG a set of action labels;
– TG ⊆ SG ×AG × SG a transition relation;
– IG ⊆ SG a (non-empty) set of initial states.

Internal, or hidden, system steps are represented by the special action label
τ ∈ AG . A transition (s, a, s′) ∈ TG , or s

a−→G s′ for short, denotes that LTS G can
move from state s to state s′ by performing the a-action. A sequence consisting
of at least one τ -transition is denoted by

τ−→+
G .

An equivalence relation between two LTSs relates states that have equivalent
behaviour. We use divergence-preserving branching bisimulation, also called
branching bisimulation with explicit divergence [15]. It supports action hiding and
preserves both safety and liveness properties, due to the fact that it is sensitive
to cycles of τ -transitions, i.e., inifinite internal behaviour. The smallest infinite
ordinal is denoted by ω.

Definition 2 (Divergence-Preserving Branching bisimulation). A binary
relation B between two LTSs G1 and G2 is a divergence-preserving branching
bisimulation iff it is symmetric and for all s ∈ SG1 and t ∈ SG2 , s B t implies:

1. if s
a−→G1 s′ then

(a) either a = τ with s′ B t;

(b) or t
τ−→∗G2 t̂

a−→G2 t′ with s B t̂ and s′ B t′.

2. if there is an infinite sequence of states (sk)k∈ω such that s = s0, sk
τ−→G1 sk+1

and sk B t for all k ∈ ω, then there exists a state t′ such that t
τ−→+
G2t
′ and

sk B t′ for some k ∈ ω.

The minimisation of an LTS consists of the merging of all states that are
related by a divergence-preserving branching bisimulation relation. To maximise
the potential for minimisation, maximal hiding [24] can be applied, which identifies
exactly which actions are essential to correctly determine whether an LTS satisfies
a given functional property or not. This roughly corresponds to hiding all actions
except those occurring in the formula. For this to work correctly, the property
needs to be specified in a fragment of the modal µ-calculus, which is expressive
enough to express most properties. When combined with compositional model
checking, actions of one process that require synchronisation with those of another
cannot be abstracted away prematurely.

LTS Network. An LTS network M is a tuple (Π,V), with Π a vector of
process LTSs and V a set of synchronisation laws that define by means of vectors
of actions which actions of the corresponding LTSs can synchronise with each
other. For example, a law (〈a, b〉, c) defines that in a network consisting of two
LTSs, a transition labelled a of LTS Π1 can synchronise with a b-transition
of LTS Π2, resulting in a c-transition in the resulting LTS, called the system
LTS. This system LTS is the result of first combining the initial states of the
individual process LTSs into state vectors, together defining the set of initial
states, and then repeatedly combining process transitions according to the laws,
and combining the target states of those transitions into vectors of process LTS
states. This LTS can by obtained through monolithic state space construction.
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{4, 5, 6}{1, 2, 3}

{1, 2, 3, 4, 5, 6}

{1} {3}

{1, 3} {2} {4} {5} {6}

Fig. 1. Aggregation order; leaves are minimised first, then the tree is aggregated
following an post-order walk of the tree

In line with the notion of projection for vectors, an LTS network M can be
projected onto a vector of indices, by projecting both Π and V onto I. The result
is an LTS network that can be considered as a subsystem or component of M
consisting of the processes originally indexed in Π at the positions indicated by
I.

Minimisation of processes in an LTS network (such as in compositional
aggregation) is possible if the used equivalence relation is a congruence for LTS
networks. Branching bisimulation, branching bisimulation with explicit divergence,
observational equivalence, safety equivalence and weak trace equivalence, are
congruences for admissible LTS networks [11,30]. An LTS network is called
admissible if the synchronisation laws of the network do not synchronise, rename,
or cut τ -transitions [22]. The intuition behind this is that internal behaviour, i.e.,
τ -transitions. should not be restricted by any operation.

Compositional order. The compositional aggregation of an LTS network
M = (Π,V) is the incremental composition and minimisation of subsets of
processes in Π. More specifically, the composition of a set of LTSs followed by a
minimisation of the result is called an aggregation. The compositional aggregation
modulo R of an LTS network M is the incremental aggregation of the processes
in Π subject to V such that the result LTS is R-equivalent to the system LTS.
Before we formally define compositional aggregation, we must first introduce
aggregation orders.

The aggregation order organises the processes of an LTS network in a tree-
structure as presented in Definition 3. The leaves represent the individual process
LTSs in Π, and the nodes represent subsets of Π. The root represents all the
processes in Π. For the sake of simplicity, the processes are represented by their
index in the process vector Π. An example of an aggregation order is presented
in Figure 1.

Definition 3 (Aggregation Order). Given an LTS network M = (Π,V) of
size n, an aggregation order of M is a tree TM = (V,E) where ∅ ⊂ V ⊂ 21..n

such that

– 1..n is the root of the tree,
– The singleton sets {i} ∈ V with i ∈ 1..n are the leaves of the tree, and
– For every non-leaf node t ∈ V , the children of t must form a partition of t.
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The compositional aggregation of a network M proceeds as follows. Let t be
the root of aggregation order tree T . Compositional aggregation decomposes M
by projectingM on the sets of the nodes in T and by pre-order walk of the aggre-
gation order. That is, each component represented by a child of t is aggregated,
i.e., the LTSs of its children are combined after which the result is minimised,
before finally constructing and minimising the state space corresponding to t.
Minimisation starts at the leaves. Aggregation is performed in a post-order walk
of the aggregation tree (i.e., children are processed before their parents). At each
non-leaf node t the state space of component t is constructed by concatenating
the process vectors of the child networks and restoring synchronisations according
to the sychronisation laws of the complete model M.

The Cadp toolbox offers several minimisation generation strategies.
– The monolithic approach, referred to as root reduction, directly computes the

system LTS of an LTS network and then applies minimisation.
– Root leaf reduction applies minimisation on the process LTSs of a network

and then applies root reduction on the resulting network.
– Smart reduction [8] is a heuristic that attempts to find an efficient aggregation

order. First, all the process LTSs are minimised. Then, recursively, a set I of
process LTSs is selected and the LTS in I are replaced by their aggregation.

4 Methodology

Setup. Our experiments were conducted in a controlled test bed comprising a set
of homogeneous machines from the DAS-4 [4] cluster. Each machine has a dual
quad-core Intel Xeon E5620 2.4 GHz CPU, 24 GB memory, and runs CentOS
Linux 6. We used Cadp version 2017-e “Sophia Antipolis” as implementation
for the monolithic and compositional aggregation approaches.

The monolithic approach has been used as the control group. For compositional
aggregation, all possible aggregation orders were computed using Refiner [37]
in combination with the decomposition.brute force plugin. The minimi-
sation strategies were coded in the Script Verification Language (Svl) [13] of
Cadp. Given a property the hiding set was calculated using the maximal hiding
technique [24]. This technique produces a set of property relevant actions that
may not be hidden in the system. All other actions can be safely hidden without
affecting the verification result.

As cases we consider LTS network models in Cadp’s EXP format. As sub-
jects we consider case instances with a particular scale and hiding set. We use
minimisation strategy to refer to both aggregation according to some order, and
monolithic minimisation.

Research Questions. The variable of interest, i.e., the response variable, is the
maximum memory cost of the state spaces produced by compositional aggregation.
However, Cadp reports the disk space cost of their LTS storage format, i.e.,
Binary Code Graphs (BCG), rather than the internal memory cost. As an
alternative we use the maximum number of transitions generated as a measure
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for memory cost. The maximum number of transitions of an LTS has a strong
and highly significant correlation with the disk space cost reported by Cadp, i.e.,
they have a Kendall’s τb coefficient [21] of 0.91 with a p-value of 2.2 · 10−16. An
additional advantage is that the metric is tool agnostic.

To answer RQ 1 (see Section 1) we measured the maximum number of
transitions among the state spaces produced by compositional aggregation for all
possible aggregation orders on a set of subjects. The effect of scaling and action
hiding were investigating by controlling, respectively, the number of parallel
processes and the property.

Next, the performance of current heuristics are compared to that of other
aggregation orders in RQ 2. The smart reduction and root leaf reduction heuristics
were applied on the subjects. Both heuristics are supported by Cadp and have
shown to be competitive w.r.t. other heuristics [8]. Again we measured the maxi-
mum number of transitions among the state spaces processed by compositional
aggregation.

The intention of RQ 3 is to explain the success or failure of composition
aggregation. Observed difference in performance between the subjects of the cases
were investigated closer by inspecting the effect of action hiding, number of parallel
processes, and aggregation order. Findings were verified with adjusted models
fixing one or more aspects, therefore, obtaining more controlled measurements.

There are numerous variables that may affect the performance of compositional
aggregation w.r.t. monolithic minimisation. Variables of interest are typically
related to the size of a process LTS, or the reduction or interleaving that a process
LTS or the composition of process LTSs may introduce.

Case and Subject Selection. The cases were sampled using quota sampling [25],
i.e., cases with various characteristics were selected. To avoid source bias the
cases were selected from four different sources, and where needed, converted to
LTS networks.
Source 1 The BEnchmark for Explicit Model checkers (BEEM) database [27]. The

benchmark includes 57 parameterised models with corresponding properties.
1

Source 2 The demos of the Cadp distribution. The Cadp distribution contains
a set of 42 demos. Many of the demos were extracted from the numerous real
world verification case studies performed with Cadp.

Source 3 The cases considered in an evaluation of automated assume-guarantee
reasoning [7]. This set contains 6 scalable cases with corresponding properties.
2

Source 4 The cases considered in our previous work [31]. In previous work we
experimented with a set of 10 cases of which some are scalable.3

As mentioned by Cobleigh et al. [7] the generality of their work is threatened
by the limited variety in network topology. To avoid this, we selected cases with

1 paradise.fi.muni.cz/beem.
2 http://laser.cs.umass.edu/breakingup-examples.
3 http://www.win.tue.nl/mdse/property_preservation/FAC2017_
experiments.zip.
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a variety of network topologies. In addition, we took the following considerations
into account:
1. The effect of action hiding was considered by selecting for each case various

relevant safety and liveness properties.
2. To investigate the effect of the number of parallel LTSs on compositional

aggregation we selected scalable cases. Each scalable case has one or more
repeatable LTSs with which the model was scaled up; e.g., a model consisting
of single server LTS and two client LTSs was scaled up by adding copies of
the client LTSs.

3. The number of possible aggregation orders and the time required to construct
state spaces grow exponentially with scale. Due to time considerations we
limited each compositional aggregation to two hours. In addition, we pre-
maturely terminated a compositional aggregation procedure as soon as it
required more than the available (physical) memory, i.e., 24 GB. Any subjects
violating the time or memory criteria were discarded from the experiment.

4. It is infeasible to calculate all 34,588 possible aggregation orders at seven
parallel LTSs within reasonable time. For six parallel LTSs, this number is
2,647. To still find best and worst aggregation orders for up to six parallel
LTS we limit the number of considered aggregation orders to 2,647.
Initially the sources above provided 115 models. We selected a number of

scalable cases with a variety of network topologies. We discarded the cases for
which it was infeasible to compute 2,647 aggregation orders for less than two
scaled up version of the case. Finally, eight cases were selected covering five
different network topologies. Six out of the eight cases were able scale to a size of
six parallel LTSs while satisfying the time and memory criteria. The other two
cases were scaled to four and seven parallel LTSs, respectively.

Next, we selected a range of properties relevant for the cases and modeled
several scaled-up LTS networks. This finally resulted in a total of 129 subjects.
The experiments were run on these 129 subjects. In total 117,879 decompositions
were considered costing a total of 2.5 CPU-years. Finally, for 119 subjects all the
run aggregation orders satisfied the time and memory criteria.

5 Results

5.1 Case and subject descriptions

Network topologies. The selected cases are characterised by the network topolo-
gies depicted in Figure 2. Dots indicate parallel processes and lines indicate
synchronisation relations. Dashed lines show the synchronisation relations that
are introduced by adding a repeatable process p.

Figure 2a shows a client-server topology. Such a network contains one or
more servers and one or more clients.

In Figure 2b a pipes and filter topology is presented. The first process p1
produces data and each process pi (i ∈ 1..n) in the sequence processes the data
and filters before forwarding the filtered data to the next process pi+1.
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Table 1. Selected cases and their characteristics; with p ≥ 1 the # of repeated
LTSs

Case
Case description Topology Scaling Source

ID
1 The Gas Station problem [17] a (3 servers) 3 + p ≥ 4 1,3
2 Chiron user interface (single dispatcher) [20] a (2 servers) 3 + p ≥ 4 3
3 Eratosthenes’ Sieve (distributed calculation of primes) b 1 + p ≥ 3 2
4 Le Lann leader election protocol [23] c 2 · p ≥ 4 1
5 A simple token ring c 1 + p ≥ 3 4
6 Peterson’s mutual exclusion protocol [28] d 2 · p ≥ 4 1,2,3
7 Anderson’s mutual exclusion protocol [3] d 1 + 2 · p ≥ 5 1
8 Open Distributed Processing trader (ODP) [12] e 1 + p ≥ 3 2

s

p2p1 pn

(a) Clients pi (i ∈ 1..n)
and server s

p1 p2 pn

(b) Pipes and filters with
processing nodes pi (i ∈
1..n)

p1

p2 pn

(c) Ring with processing
nodes pi (i ∈ 1..n)

v1 v2 vn

p1 p2 pn

(d) Processes pi sharing
variables vi (i ∈ 1..n)

p1 p2

pn

s

(e) Peer-to-peer network
with peers pi (i ∈ 1..n)
and tracker-server s

Fig. 2. Network topologies

A ring network topology is shown in Figure 2c.
Communication between processes is organised as
a ring structure. Often a token is passed along the
edges that grants special privileges to the process
holding the token.

Figure 2d depicts communication via a number
of shared variables. In the selected cases, for each
repeatable process pi there is a repeatable variable
vi.

In Figure 2e a peer-to-peer network topology
is shown. Addresses and services of the peers pi
(i ∈ 1..n) are published via the tracker-server s
after which the offered services can be employed on
a peer-to-peer basis.

Case descriptions. We have selected eight scalable
models as cases. An overview of these cases is given
in Table 1. We identify the cases by their case num-
ber indicated in the Case ID column. The Scaling
column shows the scaling of the cases in the num-
ber of repeated LTSs p and, on the right-hand side
of the inequality, the minimum number of parallel
LTSs; e.g., ODP’s scaling 1 + p ≥ 3 states that
there is one non-repeated LTSs (the trader) and
one repeated LTS (the client), but the number of
processes must be at least 3. Finally, in the Source
column the sources of the cases are given, these
correspond to the list of sources (Section 4). 4

Subject descriptions. Subjects correspond to instances of cases with a particular
scale and hiding set, i.e., property. Subjects are identified by three alphanumeric
characters: the first indicating the number of the case ID, the second indicating

4 The models are available at http://www.win.tue.nl/mdse/composition/
test_cases.zip.
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the letter of a corresponding case property, and the third indicating the scale of
the case model. With “ ”, we denote the absence of a property, i.e., no hiding
is applied. For instance, 1e5 is the case 1 model where actions not relevant to
property e (of case 1) have been hidden and the subject has a total of 5 parallel
LTSs. For each model, we identified between two and eight relevant properties.

The selected scaling is from the minimum scale of the case up to the possible
scale nearest to six; e.g., for case 1 with property a the set of subjects is 1a4,
1a5, 1a6 and for case 6 with no property the set of subjects is 6 4, 6 6.

5.2 Analysis

Figure 3 shows the distribution of the normalised maximum number of transitions
of the generated state spaces for all possible aggregation orders of each subject,
in the form of violin plots [18].5 The black horizontal lines within each plot
connected by a black vertical line indicate the first, second, and third quartiles.
On the x-axis the subjects are displayed, grouped by case ID and scale. The
y-axis displays the largest number of transitions the state space contained during
compositioning on a log10-scale. Furthermore, the dashed horizontal line indicates
the performance of monolithic construction. Finally, the normalised maximum
number of transitions in memory during smart reduction and root leaf reduction
are indicated by a red dot and blue diamond, respectively. It should be noted that
the repeating of LTSs have a noticeable effect on the distribution of aggregation
orders. Some peaks arise due to accumulation of sets of symmetric aggregation
orders measuring the same normalized maximum number of transitions. However,
as can be seen in the plots, in most cases this effect does not change significantly
as more repeated LTSs are added.

RQ 1 How do action hiding, number of parallel processes, and aggre-
gation order affect the memory consumption of compositional aggre-
gation? We answer this research question using Figure 3. The chosen aggregation
order has a major impact on the maximum number of transitions residing in
memory. Two aggregation orders may differ up to several orders of magnitude
depending on the subject.

In general we observe that the range covered by the distribution of aggregation
orders increases as the number of parallel processes increases. In all cases scaling
up results in a better performance of the best aggregation orders w.r.t. monolithic
verification, i.e., as the subjects increase in size, compositional aggregation
becomes increasingly viable. In cases 1, 3, and 8 the range extends both upwards
and downwards as the scale is increased; compared to the smaller subjects (in
scale) the bad aggregation orders become worse and the good aggregation orders
better. In the remaining cases the whole range shifts downwards as the number
of parallel processes increases.

The shape of the distributions tends to change as the number of parallel
processes increases. One of the factors contributing to this phenomenon is the

5 All generated data is available at http://www.win.tue.nl/mdse/
composition/test_cases_data.zip.
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Fig. 3. Distribution of the normalised maximum number of transitions generated
by the aggregation orders per subject (violin plots) and case (sub-figures).
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increasing number of data points in the distributions as the scale increases; there
are 4, 26, 236, and 2,647 distinct aggregation orders at 3, 4, 5, and 6 parallel
processes, respectively. At larger scales a sample of 2,647 orders was taken. This
effect is particularly visible in case 3, where the model at scales 3 and 4 are
compared. However, most likely the changes are due to the number of repeated
processes. Due to this the balance of constituents of the model changes causing
the high density areas to change accordingly.

Applying action hiding practically always results in an improvement, the only
exception being subjects 5a3 and 8a3 to 8d3. In cases 1 and 2 practically no
distinction in performance is observed between the applied hiding sets. Cases 3, 4,
6, 7, and 8 show moderate to significant variation in performance depending on
the applied hiding set. For those subjects where the hiding sets have a noticeable
impact, also the shape of the distribution is affected. For instance, subject 7c5
has a higher density around the optimal, forming a vase shape between the
minimum and the first quartile, than 7d5, which has a short tail in the same
area.

RQ 2 How effective are the aggregation orders chosen by current
heuristics? Figure 3 shows how smart reduction (indicated by a red dot) and
root leaf reduction (indicated by a blue diamond) relate to the other orders. Both
action hiding and the scaling can have a significant effect on their performance.
However, there is no clear relation between these variables and the performance,
which is particularly visible for case 3.

Smart reduction requires fewer transitions in memory than the monolithic
approach in 80 out of 119 subjects. Root leaf reduction performs better than
monolithic minimisation in 94 out of 119 subjects. Furthermore, smart reduction
and root leaf reduction find an optimal aggregation order for, respectively, 29
and 40 of the subjects.

Since our data is obtained from repeated measurements over eight cases, to
make a fair and meaningful comparison we select cases under related conditions.
We select the “smallest” and “largest” subjects in the number of parallel processes
from the subjects in Fig. 3. From the properties we select the only two property
IDs that all cases have in common; “ ” (no property) and “a” (no deadlock).
The intersection of these two pairs of selections yields four sets of subjects within
which a comparison is made. First a comparison between the performance of the
smart reduction and root leaf reduction is made, after which their performances
are compared with the performance of optimal aggregation orders.

Table 2 compares the normalised maximum number of transitions of smart
reduction and root leaf reduction. The first two columns indicate the selection
criteria for the number of parallel processes. A comparison is made between
smart reduction and root leaf reduction indicated by the smart and root leaf
columns. The Mean, Median columns show the mean and median normalised
maximum transitions. The final two columns, # cases < monolithic and # cases
< other heuristic, indicate in how many cases the heuristics perform better than
monolithic and the other heuristics, respectively.
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Table 2. Normalised (w.r.t. monolithic) max. transitions descriptive statistics;
with “Smallest” and “Largest” indicating, respectively, the smallest and largest
number of parallel processes of subjects shown in Fig. 3

Size Prop. ID
Mean Median # cases < monolithic # cases < other heuristic

smart root leaf smart root leaf smart root leaf smart root leaf
Smallest 3.12 3.10 0.74 0.77 5 5 3 1
Smallest a 2.89 2.91 0.41 0.51 5 5 2 1
Largest 54.65 1.53 0.32 0.32 6 6 4 2
Largest a 1.68 1.36 0.05 0.22 6 7 6 1

Table 3. Normalised (w.r.t opt. aggregation order) max. transitions descriptive
statistics

Size Prop. ID
Mean Median # opt. found

smart root leaf smart root leaf smart root leaf
Smallest 1.02 1.02 1.00 1.00 5 5
Smallest a 1.31 1.44 1.18 1.00 4 5
Largest 8.14 1.24 1.07 1.01 2 4
Largest a 2.43 6.78 1.90 1.89 2 1

In the groups of “smallest” subjects there is little difference between the
means of smart reduction and root leaf reduction. For both heuristics the mean
performance is around 3 times that of the monolithic approach. On a positive note,
the median is much lower than the mean for both heuristics. Smart reduction
has a slightly better median performance. Both heuristics perform better than
the monolithic approach in 5 out of 8 cases in both property ID groups. The
remaining three cases being 1, 3, and 8 for both heuristics and property ID
groups.

In the groups of “largest” subjects there is signification difference between
the means of smart reduction and root leaf reduction in group “ ”. In group “a”
this difference is only 0.32 in favor of root leaf reduction. The high mean value
for smart reduction is caused by its poor performance at cases 1 and 3. Again
the median performance is much better than the mean performance for both
heuristics. The median performance of root leaf reduction is over four times that
of smart reduction. Both heuristics perform better than the monolithic approach
in 6 out of 8 cases in property ID group “ ”, while root leaf reduction performs
better in one additional case in group “a”. The two remaining cases being 1 and
3, excluding case 1 in group “a” for root leaf reduction.

Table 3 compares the maximum number of transitions of the smart reduction
and root leaf reduction heuristics normalised w.r.t. the optimum performance of
compositional aggregation. The final columns, # opt. found, indicate how many
times an optimal aggregation order was found.

If we compare the groups “smallest” and “largest” both the means and
medians increase, and the number of optimums found decrease. This may indicate
that it becomes harder for the heuristics to find (near-)optimal aggregation orders
as the number of parallel processes increases, however, this should be confirmed
by further experiments.
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RQ 3 How can the success or failure of compositional aggregation be
explained? Although our experiment involves a large number of subjects, the
number of different cases per topology is still rather limited. However, based on
this data, we make the following observations, backed up by results obtained
for additional models with the same topology that we constructed to focus on
specific key aspects of the cases.

Two factors seem to be most influential regarding the effectiveness of com-
positional aggregation: the amount of internal behaviour within single process
LTSs, and the amount of synchronisation among the process LTSs. In the latter
case, the involvement of data has a noticeable effect, in particular the size of the
data domain; for instance, when synchronisation on a Boolean value is specified,
the receiver only needs to be able to synchronise on true and false, while the
synchronisation on a Byte value already requires 256 transitions, many of which
may be unnecessary in the complete model, since they handle values on which
synchronisation actually never happens. However, if in an aggregation order, this
receiver is selected before the corresponding sender, then in each step before
selecting the sender, all 256 transitions of the receiver will remain, and interleave
with the transitions of all LTSs that are added to the composition.

Among the subjects, case 3 demonstrates best that the involvement of a lot
of (to be synchronised) data has a negative effect on compositional aggregation.
Additional experiments with a simple pipes and filters model, one with a data
domain ranging from 1 to 2 and the other from 1 to 100, underline this observation,
the latter performing an order of magnitude worse than the former. Furthermore,
the former performs very well compared to monolithic verification, demonstrating
that the bad performance of compositional aggregation is not inherent to the
pipes and filters topology.

The positive effect of involving a property to be checked, and therefore action
hiding, demonstrates the importance of internal behaviour in the process LTSs,
as action hiding adds internal behaviour. It seems of little importance which
property is actually added, i.e., whether it allows abstraction from all actions in
the case of deadlock detection, or only a subset. This is best demonstrated by
the token ring cases, i.e., cases 4 and 5. We manipulated case 5 in two different
ways: increasing the amount of synchronisation, and increasing the amount of
process-local (but not hidden) behaviour. The results clearly show that the former
has a negative impact on performance, while the latter results in much better
performance (by two orders of magnitude) iff a property is involved that allows
the additional behaviour to be abstracted away, such as deadlock freedom.

The mutual exclusion algorithms, i.e., cases 6 and 7, have exactly the same
set of properties. Those results demonstrate that the effect of adding a property
is not always the same for all models of the same topology; adding a property
seems to have a bigger effect on case 7 than case 6, resulting in a bigger range
between the worst and best performing aggregation orders.

In a follow-up experiment, we will extend the number of cases and/or sub-
jects per topology, to achieve conclusive evidence that could generalise these
observations.
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5.3 Threats to validity

When interpreting the results of this study consider the following threats to
validity:

– Only one tool has been involved to conduct the experiment, hence the results
may be implementation specific. On the other hand, involving multiple tools
introduces the problem that differences in implementations may affect the
outcome.

– The scope of this study is limited to models that are represented as networks
of LTSs. Therefore, the results of this study are possibly only applicable to
models represented as networks of LTSs. As the compositional aggregation
method is limited to these kind of models we have not considered alternative
model representations.

– The study only considers the DPBB equivalence as aggregation relation.
Results may vary depending on the chosen equivalence relation. The DPBB
equivalence is the strongest aggregation order offered by Cadp that still allows
abstraction. Hence, other relations are expected to show better performance
improvements.

– The scaled up models make use of a repeatable LTSs. It may be possible that
the results are skewed due to lack of heterogeneous components. However,
the used compositional aggregation methods do not take advantage of the
symmetry in the model.
The repeating of LTSs is noticeable in the violin plots (Fig. 3) as accumulation
of sets of symmetric aggregation orders measuring the same normalized
maximum number of transitions. Nevertheless, in most cases this effect does
not change significantly as more repeated LTSs are added.

– A relatively small set of different cases has been studied, even though this
experiment is the most comprehensive one performed thus far. In the future,
we plan to extend this set considerably, but obtaining such a large set is very
time-consuming. The lack of a (publicly available) set of nicely scalable models
is a problem in general when analysing and designing formal verification
techniques.

– Models with a relatively small number of parallel processes were considered.
Beyond models with six parallel LTSs the experiments quickly become un-
feasible. Extrapolation of the results presented in this work to models with
more parallel LTSs should be done with caution. In the future, we plan to
extend our analysis to subjects with more processes.

6 Conclusions

Our thorough analysis of compositional aggregation when applied on 119 subjects
with varying topology, scale, and hiding set provides the following insights:
1. The amount of internal behaviour in process LTSs and the amount of synchro-

nisation between process LTSs have the biggest impact on the performance,
in terms of the largest number of generated transitions in memory.
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2. The involvement of a functional property, and therefore a hiding set, is
significant. The size of this hiding set is of less importance. For typical
properties, maximal hiding already allows the hiding of a relatively large
amount of behaviour.

3. Among the five network topologies we considered, none of them fundamentally
rule out compositional aggregation as an effective technique.

4. As the number of processes in a model is increased, the effectiveness of
compositional aggregation tends to increase as well.
It should be noted that we only considered a few cases per topology. To

generalise our conclusions, we will have to work on extending our benchmark set.
The first two conclusions underline observations made in earlier work [8]. Since
they worked with a set of subjects of less variety, we can make these observations
with more confidence.

Future Work. In the near future, we will extend the current analysis to further
explain the success and failure of compositional aggregation for the different
subjects, and based on this, work on the construction of a new heuristic. For this
to be successful, we will have to involve many more cases. As scalable models
have now been thoroughly investigated, we can next focus on non-scalable models,
of which many are publicly available.
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