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Abstract. Collective adaptive systems may be broadly defined as en-
sembles of autonomous agents, whose interaction may lead to the emer-
gence of global features and patterns. Formal verification may provide
strong guarantees about the emergence of these features, but may suffer
from scalability issues caused by state space explosion. Compositional
verification techniques, whereby the state space of a system is generated
by combining (an abstraction of) those of its components, have shown
to be a promising countermeasure to the state space explosion problem.
Therefore, in this work we apply these techniques to the problem of
verifying collective adaptive systems with stigmergic interaction. Specif-
ically, we automatically encode these systems into networks of LNT pro-
cesses, apply a static value analysis to prune the state space of individual
agents, and then reuse compositional verification procedures provided by
the CADP toolbox. We demonstrate the effectiveness of our approach by
verifying a collection of representative systems.

1 Introduction

In a collective adaptive system, autonomous individuals or agents interact with
each other according to simple local rules, which may lead to the emergence of
global features and patterns despite the lack of centralized coordination [32].
Using these systems as a modelling framework to study complex phenomena,
such as the spread of diseases through a social network [14], the role of spatial
constraints in an economy [40], or the evolution of an ecosystem [30], appears to
be a trending research methodology. Depending on the field of application, the
resulting models are variously referred to as individual- or agent-based models,
in silico cell models, or multi-agent systems, but they all share the essential traits
of collective adaptive systems.

This increasing popularity owes to the fact that, under such a framework,
one can easily specify heterogeneous agents with stateful, nonlinear or discontin-
uous behavioural rules [3]; additionally, one can easily refine these specifications
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if they turn up to be incomplete or incorrect, e.g., if undesired behaviour is
observed when simulating the model. However, simulations are unsuitable to
achieve strong confidence in the correctness of a model of this kind. In fact,
even small collective adaptive systems may evolve in a multitude of different
ways, which increases exponentially in the number of agents and the complexity
of their behaviour. This state space explosion problem means that simulations
and testing may only cover a small portion of all feasible evolutions that such
models can exhibit: therefore, attempts at uncovering unexpected or problematic
behaviour by these means are likely to fail.

Formal verification techniques, in principle, may provide the correctness guar-
antees that are out of the reach of simulation-based analysis, but they also suffer
from complexity issues related to the state space explosion problem. Composi-
tional techniques, essentially based on a divide-and-conquer strategy to break
down the analysis of large systems, appear to be a general, effective approach to
mitigate the state space explosion problem [18]. To support this claim, in this
work we introduce a fully-automated workflow to perform compositional verifi-
cation of stigmergic collective systems specified in a high-level language called
LAbS [7]. In these systems, agents do not interact directly with each other,
but rather share information by manipulating a shared medium called a virtual
stigmergy [41]. The concept of stigmergies originates from biology, where it has
been used to explain the collective behaviour of social insects such as ants, ter-
mites, and bees [47], but appears well-suited to describe a much wider range
of phenomena, including the creation and curation of content on the Wikipedia
collaborative encyclopedia [6], or the development of open-source software [45].
The indirect and asynchronous nature of this interaction mechanism induces vast
state spaces even in modestly-sized systems, making their verification challeng-
ing [10,12]. However, by combining compositional state space generation with a
static value analysis that allows us to prune the state space of individual agents,
we are able to verify a collection of example systems with significant gains over
a non-compositional model checking procedure.

The rest of this paper is organized as follows. Section 2 outlines the specifi-
cation language that we intend to verify, and provides the necessary background
about verification tools, techniques, and abstract domains that are relevant to
our work; it also includes an example of a stigmergic system that we will recur-
ringly use to illustrate our approach. Section 3 discusses the encoding of LAbS
agents into LNT processes, and how these processes are composed into a par-
allel program that emulates the agents’ evolution and interactions. Section 4
introduces a static value analysis that helps us prevent state-space explosion as
we generate the state space of individual agents. Section 5 describes the imple-
mentation of our approach and its experimental evaluation over a collection of
LAbS examples. Section 6 discusses related work. Lastly, Section 7 contains our
conclusions and potential directions for future work.
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2 Background

In this section, we provide an overview of concepts that will be referred to in
the rest of the paper. First, we will introduce the LAbS language for stigmergic
collective systems, as well as a running example to demonstrate the peculiarities
of these systems. Then, we will describe the Intervals and Powerset of Intervals
abstract domains; the CADP analysis platform and the LNT process calculus;
and some notions related to compositional state space generation.
Stigmergic collective systems and LAbS. The LAbS language [7] is a high-level
formalism to specify stigmergic collective systems. Agents in a LAbS system
cannot explicitly exchange messages with each other: rather, they assign values
to specific local variables, which we call stigmergic variables. After an assign-
ment to one of these variables, an agent will asynchronously diffuse the assigned
value among its neighbours by sending out a put-message. All assignments are
timestamped, and the receivers of a put-message with a newer value will update
their own local copy of the variable to that value. Upon receiving a more re-
cent value, agents also help propagate it by forwarding the put-message to their
own neighbours. Similarly, after accessing the value of a stigmergic variable, an
agent will asynchronously check whether someone among its neighbours has a
newer value for that variable, by sending a qry-message. Neighbours react to
the query by sending out a new put-message containing either their own value
for the variable or the received one, depending on which is newer. These simple
mechanisms allow local information to spread from one agent to the others, and
new information to replace older data.

In LAbS, the definition of an agent’s neighbourhood is not fixed: in fact, the
language allows to equip stigmergic variables with link predicates to customize
this concept. A link predicate is a Boolean function over the state of a sender
and a (potential) receiver. Whenever an agent sends a message regarding a given
variable x, this message will be received by all the agents that (together with the
sender) satisfy x’s link predicate. These agents are the neighbours of the sender
with respect to x’s predicate. This feature makes LAbS quite flexible, as it allows
modelling different capabilities among the agents, such as their communication
range, or having privileged access to some variables, and so on; it also induces
neighbourhoods that may vary as the system evolves.
Running example: stigmergic bully election. A bully election is a simple protocol
to elect a leader in a distributed system [24]. The protocol assumes that each node
in the system has a fixed, unique numeric identifier (id) in the range 0..N − 1,
where N is the number of nodes. Intuitively, each node in the system initially
considers itself the leader, and advertises this by broadcasting its id to the rest
of the system. However, a node that receives a message with an id i lower than
their own will instead regard node i as its new leader. When this happens, the
node also stops advertising itself, but keeps changing the leader every time it
receives a message with a lower id. This protocol eventually makes all nodes
agree that the one with the lowest id is the leader.

Replicating such a protocol in a stigmergic system is not immediate, as agents
have no primitive to explicitly exchange messages with one another. However,
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Listing 1: A sketch of a stigmergic election system in LAbS.
1 system {
2 spawn = Node: N
3 }
4 stigmergy Election {
5 link = true
6 leader: N
7 }

8 agent Node {
9 stigmergies = Election

10 Behavior =
11 leader > id ->
12 leader <~ id;
13 Behavior
14 }

we can let them manipulate a stigmergic variable leader until they reach a
consensus on its value. Essentially, each node only needs to check whether leader
is currently higher than its own id. If it is, it means that the node still has a
chance of becoming the leader: so, the node assigns its own id to leader. As the
link predicate for leader, we use the one that is always satisfied: this induces
a broadcast communication model, i.e., every time a node assigns a value to
leader, this will be (asynchronously) diffused to every other node in the system.
Every time a value j gets diffused in this way, it immediately puts all nodes with
id i > j out of the race. We can speculate that, eventually, every node gets out
of the election except the one with the lowest id, and all nodes have that id
assigned to leader.3

Listing 1 shows how such a protocol can be expressed in LAbS. The code
specifies that the system is composed of N agents of type Node; declares a
stigmergy (i.e., a collection of stigmergic variables with the same link predicate)
Election, equipped with the always-satisfied link predicate true and containing
a single variable leader, which is initialised to N ; and finally specifies the Node
type. Namely, each Node participates in the Election stigmergy, meaning that
it will have a local copy of the leader variable. Its behaviour is a guarded
recursive process: a guard blocks the agent until the value of leader is greater
than its identifier id. When this is the case, the agent assigns id to leader
and then starts over. (The <~ operator denotes an assignment to a stigmergic
variable).
Intervals and their powersets. For our purpose, an interval is either the empty
interval ⊥ or a pair [a, b], with a ∈ R ∪ {−∞}, b ∈ R ∪ {∞}, and a ≤ b; we do
not need open-bounded intervals, which are excluded from our definition. Intu-
itively, an interval-based value analysis [5] starts from an initial abstract state
s0 of the program under analysis, i.e., a mapping from program variables to in-
tervals. The precise way in which s0 is computed depends on the semantics of
the language; generally, variables that are initialized to a constant κ are mapped
to the singleton interval [κ, κ], while nondeterministic variables, e.g., those rep-
resenting inputs to the program, are mapped to [−∞,∞], meaning that they
may initially assume any value. The analysis then explores the abstract states
that are reachable from s0 by performing an abstract interpretation of the pro-
gram. As an example, Fig. 1a shows a function JeK(s), defined by induction on
the structure of a very simple expression language, to evaluate an expression e

3 In Section 5, we will prove by model-checking that this speculation is correct.
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JxK(s) = s(x)

JκK(s) = [κ, κ], κ ∈ Z

Je1 ◦ e2K(s) = Je1K(s) ◦♯ Je2K(s)

(a) Abstract evaluation of expressions.

[a, b] +♯ [c, d] = [a+ c, b+ d]

[a, b]−♯ [c, d] = [a− d, b− c]

[a, b]×♯ [c, d] = [min(ac, bc, ad, bd),

max(ac, bc, ad, bd)]

(b) Examples of abstract operators.

Jx← eK(s) = s [x 7→ JeK(s)]

(c) Abstract evaluation of assignments.

[a, b] ⊔ [c, d] = [min(a, c),max(b, d)]
[a, b] ⊔ ⊥ = [a, b]
⊥ ⊔ [a, b] = [a, b]
⊥ ⊔ ⊥ = ⊥

(d) The join operator.

[a, b] ∩ [c, d] =

{
⊥ iff a > d or b < c

[max(a, c),min(b, d)] otherwise
⊥ ∩ [a, b] = [a, b] ∩ ⊥ = ⊥

⊥ ∩⊥ = ⊥

(e) The intersection operator.

Fig. 1: Definitions related to the interval abstraction.

on an abstract state s. An integer constant κ evaluates to the single-element
interval [κ, κ]. A reference to a variable x evaluates to the interval s(x). For a
binary operation e1 ◦ e2, one evaluates e1, e2 to obtain two intervals, and then
composes the intervals according to an abstract version ◦♯ of the operation. As
a minimal example, in Fig. 1b we show the usual definition of abstract addition,
subtraction, and multiplications over integers. Lastly, we can slightly abuse our
notation and write Jx ← eK(s) to denote the abstract evaluation of an assign-
ment statement on state s, where variable x will receive the result of expression
e. This operation returns a new abstract state that is identical to s, except that
x maps to the abstract evaluation of e on s (Fig. 1c).

Interval-based reasoning provides a rather coarse approximation of the con-
crete set of values that a variable may assume. For instance, interval [0, 10] is
a sound abstraction of the concrete set {0, 3, 10}, but includes several elements
that do not belong to the set. To enjoy a tighter approximation while still relying
on the (computationally cheap) domain of intervals, we consider the powerset of
intervals [5, 16] domain, commonly denoted by P (I). Intuitively, an element in
P (I) is a set of disjoint intervals; we say that two intervals i, j are disjoint when
their intersection i∩ j, as defined in Fig. 1e, is the empty interval. Given any set
of intervals S, possibly including non-disjoint intervals, we can find its normal
form n(S) ∈ P (I), defined by Eq. 3 below, which replaces subsets of continuous
(Eq. 1) intervals disjoint (Eq. 2) from the rest by their join, where the join of

5



two intervals i ⊔ j is the smallest interval that entirely contains both i and j,
and is computed as shown in Fig. 1d. Lastly, we can use P (I) as a domain for
abstract interpretation of expressions by lifting the abstract operators already
defined over intervals. Namely, if S1, S2 are elements of P (I) and ◦ is a binary
operator, one can soundly define S1 ◦♯ S2 as in Eq. 4 below, by evaluating the
operation pairwise over the elements of S1 and S2, and then finding the normal
form of the resulting set.

cont(S) = (∀x ∈
⊔

S) (∃i ∈ S) x ∈ i (1)

disj (S, S′) = (∀i ∈ S, j ∈ S′) i ∩ j = ⊥ (2)

n(S) = {
⊔

S′ | S′ ⊆ S ∧ cont(S′) ∧ disj (S′, S \ S′)} (3)

S1 ◦♯ S2 = n({i1 ◦♯ i2 | i1 ∈ S1, i2 ∈ S2}) (4)

Compositional state space generation. The systems we are interested in analysing
may be imagined as trees of parallel processes, branching out from a root parallel
composition and whose leaves correspond to sequential processes. To generate
the state space of these systems, we may apply a divide-and-conquer approach
where we first generate the state spaces of each leaf, and then compose them
together [49]. What makes this approach appealing is that, under appropriate
assumptions and depending on our goals (e.g., on which properties we want to
verify on the system), we can also perform hiding and minimization steps on the
components, facilitating their composition.

Several compositional strategies have been put forward to outline the order
in which these steps are carried out [18]. In this work we exploit one such strat-
egy, namely root leaf reduction. Under this strategy, first, hiding operators are
propagated as far down the tree as allowed; then, the state spaces of the leaves
are generated and minimized modulo some equivalence relation R; lastly, the
state spaces are composed together according to the structure of the tree and
the resulting state space is further minimized modulo R.
The CADP toolbox and LNT. CADP [19] is a software toolbox for the analysis
of asynchronous concurrent systems. It provides a wide range of tools for sim-
ulation, test generation, verification, performance evaluation, etc., and accepts
system descriptions in several languages whose semantics can be expressed in
the form of an LTS (labelled transition system). CADP provides efficient model-
checking procedures for a data-aware extension of the modal µ-calculus called
MCL [37], and allows declaring complex verification tasks by means of an ad-hoc
scripting language called SVL [17]. SVL natively supports several compositional
strategies, including root leaf reduction.

In this work we will use LNT [21] to describe networks of processes that inter-
act by means of offers. We will use the following subset of LNT communication
actions: G(x1, . . . , xn) denotes an output offer, i.e., an action by which a process
is willing to output the values x1, . . . , xn through a gate G; on the other hand,
G(?x1, . . . , ?xn) denotes an input offer, i.e., an action where a process is willing
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to receive any n values from gate G and bind them to variables x1, . . . , xn. Fi-
nally, G(?x1, . . . , ?xn) where p(x1, . . . , xn) is also an input offer, but the process
is only willing to receive those values that satisfy a given Boolean predicate p.
The semantics of a process is an LTS in which each label corresponds to an offer.

To make LNT processes synchronize on offers, we have to compose them in
parallel and specify a synchronization set for the composition. Specifically, the
syntax par G1, . . . , Gm inP1∥ · · · ∥Pn end par denotes a parallel composition of
n processes where an offer on any of the gates G1, . . . , Gm may only take place
if all processes are willing to perform it simultaneously; all other offers may
happen freely. Partial synchronization sets may also be defined by using the
syntax par Γ1→P1∥ · · · ∥Γn→Pn end par, where Γ1, . . . , Γn are sets of gates. In
this case, synchronization over a gate G is only required among those processes
that have G in their set of gates [23].

Notice that an input offer is semantically equivalent to an output offer of
a nondeterministic value. For instance, if x is a Boolean variable, G(?x) is the
same as a choice between G(true) and G(false), followed by an assignment
of the offered value to x. Thus, even though the LNT syntax might suggest
asymmetrical interactions (à la CCS [39]), its synchronization semantics makes
no difference between senders and receivers, and naturally supports multi-party
rendezvous.

3 Parallel emulation programs

Given a specification S of a collective system, an emulation program P for it is a
program, written in some target programming language, that may reproduce all
feasible executions of S without introducing spurious ones. Thus, one may check
whether a given temporal property holds in S by verifying an adequate encoding
of the property against P. A sequential emulation program replaces agent con-
currency with nondeterminism, essentially applying sequentialization [43] to S.
Sequential emulation programs may be written in any imperative language and
enable verification of collective systems by means of several analysis techniques
for sequential programs [9]. In this section, instead, we show how we can exploit
LNT’s native constructs for parallelism to construct a parallel emulation pro-
gram, where each agent is encoded into a separate process and communication
is described via process synchronization. This encoding preserves the structure
of the original system and enables compositional analysis.

The structure of an Agent LNT process is summarized in Fig. 2. We assume
that each agent has a unique identifier, denoted by id . First, the agent performs
an initialization (init), where its (potentially nondeterministic) internal state is
set up according to the specifications. This state is entirely contained into two
arrays Lid (the local stigmergy of id) and Iid (the interface of id), which respec-
tively contain the values of stigmergic variables and of other internal variables.

After the initialization, the agent enters a loop during which it may repeat-
edly choose between six alternative behaviours. Namely, it may perform an indi-
vidual action itself (step), signalled by an offer tick(id), or let another agent do
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tick(id); ...

tick(?j) where j ̸= id

only if “put k” is pending
then put(id , k, Lid , Iid)

only if “qry k” is pending
then qry(id , k, Lid , Iid)

put(?j, ?k, ?Lj , ?Ij) where j ̸= id;
(receive or ignore message)

qry(?j, ?k, ?Lj , ?Ij) where j ̸= id;
(receive or ignore message)

Lid := . . . ;
Iid := . . .

yield

step

send-put

react-put

send-qry

react-qry

init

loop select
end
select end

loop

Fig. 2: Structure of an Agent process with identifier id .

the same (yield), signalled by an input offer tick(?j) for some j ̸= id . It may
also send one of its pending stigmergic messages, if any (send-put, send-qry);
or it may react to a message sent by another agent (react-put, react-qry). By
reacting to a message, we mean that the agent either accepts or ignores it, based
on the semantic rules outlined in Section 2. To take this decision, we need the
sender to evaluate the link predicate for the variable k within the message. To
do so, it needs to know the state of the sender j, which is why Lj and Ij are part
of the input offers (and Lid , Iid are part of the corresponding output offers).

Note that, while the definition of most blocks depends only on the variables of
the input LAbS agent, the step block is the only one whose definition depends on
its behaviour: generating the step block essentially amounts to transforming the
LAbS behaviour into LNT fragments, by means of an automated procedure [9].
All other blocks simply implement the semantic rules of LAbS and are the same
for every specification.

To model a LAbS system of n agents, we construct an LNT parallel emulation
program following the structure shown in Listing 2. Specifically, we instantiate
n Agent processes, each with a unique identifier from 0 to n − 1 (lines 3–7).
These processes are composed in parallel, with a global synchronization set con-
taining gates tick, put, and qry, so that all agents must synchronize in order
to perform an input/output offer over these gates. This ensures that individual
actions never overlap with each other nor with message-passing steps, and also
that messages are always visible to all agents (which then decide whether to
accept or ignore them). These restrictions are necessary to avoid spurious ex-
ecutions, i.e., computations of the programs that do not correspond to a trace
in the original specifications. The program also features a Timestamps process
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Listing 2: A parallel emulation pro-
gram for a system of n agents.

1 process Main [...] is
2 par refresh, request in
3 par tick, put, qry in
4 Agent [...] (0)
5 || · · ·
6 || Agent [...] (n − 1)
7 end par
8 || Timestamps [refresh, request]
9 end par

10 end process

Listing 3: An emulation program with
round-robin scheduling.

1 process Sched [tick] is loop
2 tick(0); tick(1); . . . ;
3 tick(n − 1)
4 end loop end process
5
6 process Main [...] is
7 par
8 tick, refresh, request ->
9 par tick, put, qry in

10 Agent [...] (0)
11 || · · ·
12 || Agent [...] (n − 1)
13 end par
14 || refresh, request ->
15 Timestamps [refresh, request]
16 || tick -> Sched [tick]
17 end par

Listing 4: Sketch of the LNT transla-
tion of the Node process from Listing 1.

1 process Agent [...] (id: Nat) is
2 -- init
3 L[0] := N; -- leader
4 pending := ∅;
5 . . .;
6 loop
7 select
8 -- step
9 tick(id);

10 if L[0] > id then
11 L[0] := id;
12 updateTimestamp(0);
13 addPendingMsg("put", 0)
14 else loop spurious end loop
15 end if
16 []
17 -- yield
18 tick(?j) where j <> id
19 []
20 -- other behaviours
21 -- (react-put, react-qry,
22 -- send-put, send-qry)
23 end select
24 end loop
25 end process

(line 8) that tracks timestamping information about stigmergic variables. This
information, in turn, determines how agents will react when they receive a stig-
mergic message. Each agent may independently contact this process through two
gates: namely, they can either refresh their timestamp for a variable (which
they do after assigning a new value to it), or request a comparison between
their timestamp for a variable and the one of another agent (which they do when
they process an incoming message).
Round-robin scheduling. In the emulation program shown so far, agents can freely
interleave their actions. In some cases, however, it makes sense to only consider
round-robin executions, i.e., those where agents perform one step at a time, in
a fixed sequence given by their identifiers. (Message passing actions can still
happen at any time). We may enforce this restriction by adding to our program
a scheduler process that constrains tick offers, so that the agent with identifier
0 is forced to act first, followed by the one with id 1, and so on (Listing 3).
Correctness of the encoding. Our argument for the correctness of the LAbS-to-
LNT encoding is essentially the same as the one we put forward for generic emu-
lation programs [9], the main difference being that the sequentializing scheduler
in that work is now replaced by multi-party synchronizations where the agents
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decide who should act next. First, we assume there exists a translation from each
LAbS action α (e.g., as an assignment) to an LNT fragment that respects the
operational semantics of α. By forcing synchronizations over the tick gate, we
prevent agents from overlapping their actions with other actions or with mes-
sage exchanges. Therefore, for every sequence of actions allowed by the original
specification S, the emulation program P features some execution in which the
corresponding LNT code fragments are invoked in the correct order. Vice versa,
if P allows a sequence of code fragments to be executed, then there is a feasible
execution of S where agents perform the corresponding LAbS actions in the same
order.
Running example. Listing 4 contains a simplified sketch of how the Node agent
from Listing 1 would get translated into LNT. First, the agent’s stigmergic vari-
able leader (stored in L[0]) and its set of pending messages are initialized to N
and to the empty set, respectively. We omit the rest of the initialization. Then,
the agent enters the loop we graphically depicted in Figure 2. For sake of brevity,
we only include a simplified version of the step and yield behaviours. We encode
the guarded action of Listing 1 by means of an if statement. If the guard is not
satisfied, we send the agent to a sink state where it repeatedly performs a special
spurious action (line 14). We will use this action to detect and ignore invalid
traces during our analysis. If the guard holds, the agent can proceed with the
stigmergic assignments, which consists of three steps: updating the value, set-
ting its timestamp to the current instant, and adding a put-message to the list
of pending messages (lines 11–13).

Notice that, for an agent with a more elaborate behaviour, the step block
would be a nondeterministic choice over the feasible actions that the agent can
perform at the present time. This also requires keeping track of the agent’s
execution point: for instance, an agent whose behaviour is a sequence of two
actions a; b must necessarily perform a before it is able to perform b. To maintain
track of this information, we constrain the agent’s choice of actions by a dedicated
variable that acts as a program counter, and is updated after every action [9].

4 Value analysis of LAbS specifications

As seen in Fig. 2, the exchange of stigmergic messages requires the sender to offer
its local stigmergy and interface to all other agents, so that they can perform a
corresponding input offer to receive this information and evaluate whether they
should receive or ignore the message. These input offers make generating the
state space of individual agents problematic. In fact, each agent may expect to
receive any possible Lj and Ij over the put and qry gates, meaning that its tran-
sition system has to enumerate all potential offers. This easily makes the agent’s
state space explode, even when we assume that variables range over relatively
modest intervals, such as the 8-bit representation range (−128, . . . , 127).

We work around this issue by observing that, in typical systems, agents will
only ever see a rather small subset of those offers. We can over-approximate this
subset by performing an automated value analysis on the input specifications,
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1 ς0 ← initial abstract state of S
2 A← all assignments within S
3 σ ← {ς0}
4 while true do
5 σ′ ← {JaK(ς) | ς ∈ σ, a ∈ A}
6 if σ′ ⊆ σ then
7 break
8 else
9 σ ← σ ∪ σ′

10 end
11 end
12 return

⊔
σ

Fig. 3: Value analysis of a LAbS spec-
ification S.

.labs file
PASS

or
(FAIL + cex)

LAbS frontend Counterexample
translator

Value analysis
+

LNT generator

MCL encoder

SVL generator

SLiVER

SVL interpreter (CADP)

Temporal
property

System
specification

MCL query
LNT program

SVL script Verification
outcome

Fig. 4: Our compositional verification
workflow.

and then constrain input offers based on the result of this analysis. Notice that
this over-approximation will not lead our procedure to produce spurious coun-
terexamples: during composition, spurious input offers will find no matching
output offers, and will therefore be pruned away.

Given a specification S, let us denote by V the set of its variables. From now
on, we define an abstract state for S as a mapping from V to P (I). Furthermore,
we define the merge of two abstract states ς1⊔ς2 as the state ς such that, for every
x ∈ V, ς(x) = n(ς1(x) ∪ ς2(x)). Our value analysis (Fig. 3) is straightforward.
Initially, we compute the initial abstract state ς0 for the given specification,
and create a set σ that only contains this state. Computing ς0 is immediate, as
every LAbS specification must specify one or more feasible initial values for each
declared variable.4 We also extract from S a set A of all assignment statements
that appear in it (lines 1–3). Then, we run a loop in which we abstractly evaluate
every assignment a ∈ A on every state ς ∈ σ and add the resulting states to σ
(lines 4–11). If, at some point, we fail to find any new states, then we break out
of this loop, and return as the final value analysis the merge of all states in σ
(line 12).

The result of running this algorithm is an abstract state ς̄, mapping every
variable name x to a powerset of intervals ς̄(x). We can easily see that ς̄(x) over-
approximates the set of all values that x may actually assume across all feasible
executions of S. In fact, our analysis simply performs every possible assignment

4 LAbS allows variables with an undefined initial value undef, but we currently do
not support that feature in our analysis.
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at every iteration, without considering the order in which they appear in the
specifications, or whether they are guarded or not. Thus, we may say that we
are considering the chaos automaton chaos(A), i.e., the automaton that can
always perform any of the assignments in S. Every sequence of assignments from
A, including those that are actual executions of S, is a feasible execution in
chaos(A). Therefore, the set of values that a variable x can ever assume in the
state space of chaos(A) is a superset of those it may assume in the state space
of S, meaning that our analysis is sound but potentially over-approximating.

It is also nonterminating on infinite-state specifications, which are out of the
scope of this work. This over-approximation also takes into account the exchange
of values through stigmergic messages. To understand this, it suffices to notice
that a value (say, κ) may be sent in a message only if it has been previously
computed and stored in a stigmergic variable (say, x) by some agent. That
is, messages cannot include values that are not the result of some sequence of
assignments. But then, chaos(A) will necessarily allow every agent to perform
that same sequence of assignments and assign κ to x. Thus, there is no need to
explicitly model message passing within our algorithm.

After computing ς̄, we can easily derive a Boolean function goodL that takes
a local stigmergy L and returns true if and only if, for every stigmergic variable
x, L(x) is in ς̄(x). Likewise, we can derive a function goodI that does the same
for interfaces. Then, we force agents to only consider these objects as valid by
constraining all their input offers, such as put(?j, ?k, ?Lj , ?Ij) (as in the recv-put
block of Fig. 2), by the predicate j ̸= id ∧ goodL(Lj) ∧ goodI(Ij).
Running example. Our bully election system (Listing 1) contains one variable
leader, initialized to N for every agent. Plus, it refers to a special variable id
that stores the agent’s identifier. LAbS guarantees that identifiers are unique,
contiguous and start at 0: so, the initial abstract state for our analysis will be
ς0 = {leader 7→ [N,N ]; id 7→ [0, N − 1]}. Then, interpreting the assignment
leader <~ id over ς0 yields a new abstract state ς1 = {leader 7→ [0, N −
1]; id 7→ [0, N − 1]}. It is plain to see that our analysis cannot find any other
states beyond this, since JaK(ς1) = ς1. Thus, the result of the analysis is just the
merge ς0 ⊔ ς1 = {leader 7→ {[0, N − 1], [N,N ]}; id 7→ [0, N − 1]}.

5 Compositional verification workflow

In this section, we describe how we combined the contributions described so far
into an automated workflow for the compositional verification of LAbS systems.
The workflow is implemented as a module within the SLiVER analysis tool,5
and it is depicted in Figure 4.

First, a frontend parses a LAbS file and extracts the temporal property to
verify, as well as the system specification. The former is transformed into an
equivalent MCL query [10]; the latter, instead, is fed to a code generator to
construct a parallel emulation program as described in Section 3. The code

5 https://github.com/labs-lang/sliver
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generator also runs the value analysis described in Section 4 and uses the results
to constrain all input offers on gates put, qry. Then, we generate an SVL script
that describes the compositional verification task, and submit it to CADP; when
the task is completed, we interpret its verdict (e.g., if a counterexample is found,
we translate it into the syntax of LABS) and show the result to the user.

Listing 5 shows the structure of a verification script generated by our work-
flow. Intuitively, we ask CADP to generate the state space of the parallel emu-
lation program of Listing 2 by means of root leaf reduction, minimizing modulo
divergence-preserving sharp bisimulation [35], and then to verify our MCL query
against the resulting transition system using the Evaluator4 model checker. No-
tice that the program is wrapped in a hiding and a priority operator.

Hiding (hide G in P end hide) replaces all offers over gate G that occur in
P with internal actions, denoted by τ . When generating our script, we determine
all labels that are relevant to our query, denoted as gates("query.mcl"), and
then hide all other gates. This reduces the state space (as sharp bisimulation
compresses sequences of τ -transitions) and thus accelerates model-checking.

The priority operator (prio Ω in P end prio) allows to specify a partial
order of labels so that, when the state space of P is generated, transitions with
a low-priority label are cut from every state that also features at least one tran-
sition with a higher-priority label. We use priorities to prune some sections of
our programs where agents are free to interleave their actions in any order (e.g.,
when they have to react to an incoming message). These sections are not part of
the semantics of LAbS, where message exchanges are treated as atomic events,
but are rather an artefact of the encoding into parallel LNT programs. Further-
more, in these sections, each agent only affects its internal state, so reordering
their actions does not affect the satisfaction of properties we are interested in
verifying. Thus, we can analyse all orderings by only considering a representa-
tive one. Specifically, we give decreasing priorities to offers over gates refresh,
request, and l (which agents use to signal a new assignment to a stigmergic
variable); additionally, when multiple agents are willing to perform an action
over one of these gates, the agent with lowest id is prioritized. This prioritiza-
tion is independent of the specification being analysed, as it concerns the LNT
encoding of stigmergic messaging regardless of the actual data being exchanged.

Lastly, our choice of sharp bisimulation is motivated by our use of the prior-
ity operator. In fact, applying sharp minimization under an appropriate set of
strong actions, as we do here, preserves priorities (like strong minimization does),
but also results in smaller LTSs than the one obtained through strong minimiza-
tion. Minimizing modulo divergence-preserving branching bisimulation [27] (also
known as divbranching bisimulation, for short) or weaker equivalences could in
principle lead to even smaller LTSs, but would not preserve the semantics of
the system. In fact, divbranching bisimulation and weaker equivalences are not
congruences for the priority operator [11]. To see this, it suffices to consider the
process τ.a which is divbranching bisimilar to a (Eq. 5), and observe that we can
easily find a context with priorities, e.g., C[P ] = prio a > b in P ∥ b end prio,
such that replacing P with either τ.a or a gives us non-bisimilar terms (Eq. 8).
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Listing 5: Structure of an SVL script for our verification workflow
1 "system.bcg" = root leaf divsharp reduction
2 hold "refresh", "request", "l"
3 in (
4 hide all but gates("query.mcl") in
5 prio
6 "refresh" > "request" > "l"
7 "refresh i .*" > "refresh j .*", i < j
8 "request i .*" > "request j .*", i < j
9 "l i .*" > "l j .*", i < j

10 in
11 ... (* Parallel emulation program (Listing 2 or 3) *)
12 end prio
13 end hide);
14
15 property CHECK is
16 verify "query.mcl" with evaluator4
17 in "system.bcg"
18 expected TRUE
19 end property;

τ.a ∼db a (5)
C[τ.a] = prio a > b in τ.a ∥ b end prio = (τ.a.b+ b.τ.a) (6)

C[a] = prio a > b in a ∥ b end prio = a.b (7)
(τ.a.b+ b.τ.a) ̸∼db a.b (8)

Experimental evaluation. To demonstrate our approach, we carry out a collection
of verification tasks [10] in two different ways: first, we use a baseline workflow
that generates a sequential LNT program, constructs its state space, minimizes it
modulo divergence-preserving branching bisimulation,6 and finally model-checks
the reduced state space; then, we apply the compositional procedure proposed
above. We then measure and compare the time and memory requirements of the
two approaches.

We now provide a short overview of each system along with the properties
to verify. The reader may refer to [10] for a detailed description. Systems whose
name ends in -rr were verified assuming round-robin scheduling of agents. All
properties are checked under fairness assumptions that exclude unfair loops from
the verification [44].

6 We use this relation because it preserves all the properties that we are interested in
checking.
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Table 1: Experimental results for compositional verification. Values in bold are
better. –a: theoretical, based on Compositional measurements.

Baseline [10] Compositional Parallela

System Time (s) Memory (MiB) Time (s) Memory (MiB) Time (s) Memory (MiB)
flock-rr 1875 12000 4461 11805 4426 11805
flock 4787 30865 4071 11113 4038 11113
formation-rr 1670 1657 2511 1938 1558 5875
leader5 10 41 34 117 18 212
leader6 77 147 104 225 65 258
leader7 1901 2038 374 404 326 404
twophase2 9 50 67 93 34 210
twophase3 500 209 233 322 131 560

The flock and flock-rr systems describe a simplified flocking behaviour.
The systems feature 3 agents in a 5×5 arena. Each agent is initially given a
nondeterministic position and direction of movement, with the latter stored as a
pair of stigmergic variables. The agents move by following this direction vector.
When two agents are sufficiently close (5 spaces apart or fewer), one of them
may imitate the other’s direction by receiving a stigmergic message. We check
that, eventually, all agents move in the same direction.

In the formation-rr system, 3 agents are placed on a line segment of length
10. They use stigmergic variables to signal their presence to nearby agents. If
an agent detects that it is too close to another, it moves one step away from it,
unless it is at either end of the segment. We check that, eventually, all agents
are at least 2 spaces apart from each other.

The leader<N> systems are three instances of our running example (List-
ing 1), respectively with 5, 6, and 7 nodes. We verify that all nodes eventually
choose the one with id 0 as the leader.

The twophase<N> systems describe a two-phase commit scenario [29] with N
workers and one coordinator. The coordinator initiates a voting session where all
workers must decide whether a transaction should be committed. If all workers
agree, the coordinator commits the transaction and starts a new voting round.
We implemented the workers so as they always agree to commit, and all com-
munication happens through stigmergy variables. We check that the coordinator
commits transactions infinitely often.

All the experiments were performed on the Grid’5000 testbed, specifically
on a node of the Dahu cluster. The node is equipped with two Intel Xeon Gold
6130 CPUs and 192 GiB of physical memory, and runs Debian 11 with version
5.10.0 of the Linux kernel.7 We used CADP version 2022-h, and set a timeout
of 3 hours and a memory limit of 32 GiB for all experiments. We collected
the raw experimental data into a persistent replication package [13], which also
includes the input LAbS specifications as well as binaries and scripts to facilitate
reproducing the experiments.

7 https://www.grid5000.fr/w/Grenoble:Hardware#dahu
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We summarize the experimental results in Table 1. Columns from left to right
report the name of the system and the time and memory required to verify it
by the baseline and compositional approaches, respectively. In the last column,
called Parallel, we show the time and memory it would take to perform the com-
positional workflow if we generated the individual state spaces simultaneously,
e.g, on separate machines, or on separate cores of a multi-core machine. These are
hypothetical measurements, derived from the Compositional ones. Specifically,
each compositional verification experiment is made of several tasks, namely: k
tasks T1, . . . , Tk that construct the individual state spaces of the n agents, plus
those of the processes Timestamps and (for round-robin systems) Sched; a task
TP that assembles these state spaces into the one of the whole emulation pro-
gram; and lastly, a model-checking task T|=. Let us denote the time and memory
required to execute a task T by time(T ) and mem(T ), respectively. We can
gather these measurements by executing an experiment with the Compositional
workflow. Under this workflow, tasks are carried out sequentially: thus, the time
required by the experiment is the sum of time(T ) for each task T . For the same
reason, the memory footprint is just the maximum of the memory requirements
of every task. However, if the tasks Ti are carried out in parallel, then we would
only have to wait for the task with the maximum time(Ti) before we are able to
begin TP. At the same time, we would need to satisfy the memory requirements of
all individual tasks at the same time, so we have to take into account the sum of
all mem(Ti). We summarize these simple computations in Table 2. Notice that,
on smaller systems, the memory requirements of SLiVER itself (around 400 MiB)
would dominate that of the actual memory used for model checking. To better
focus on comparing the performance of the two verification workflows, the table
omits this overhead; we reserve the implementation of a more memory-efficient
SLiVER for future work.

We can see that the baseline method is more time-efficient than the compo-
sitional one on some specific cases, e.g., when the overall system is rather small
(leader5, leader6, twophase2) or round-robin scheduling has to be enforced
(flock-rr, formation-rr). Full interleaving has an opposite effect: with the
baseline procedure, verifying flock takes longer than flock-rr, whereas the
compositional one can verify it faster. This may sound counterintuitive, since
the former system only considers a subset of the latter’s traces. Our explanation
is that, for the compositional procedure, it is much easier to just freely compose
agents rather than having to take the scheduling constraints into account. In
other words, the scheduler acts as a sort of bottleneck to the compositional task,
even though the resulting state space is smaller.

On small systems, namely leader5, leader6, and twophase2, the perfor-
mance of the compositional procedure is likely affected by the overhead brought
about by the component-wise state space generation. Furthermore, we are aware
that CADP currently invokes the LNT compiler multiple times, i.e., for each
component process, compounding this overhead. In conclusion, under specific
conditions, the baseline approach may still produce a verdict faster than the
compositional one. At the same time, the compositional approach appears to
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Table 2: Time and memory requirements for the Compositional and Parallel
workflows.

Compositional Parallel

Time
∑
Tasks

time(T ) max
i
{time(Ti)}+ time(TP) + time(T|=)

Memory max
Tasks

mem(T ) max

{∑
i

mem(Ti),mem(TP),mem(T|=)

}

scale better than the baseline as the size of the systems grows. This is most ev-
ident in the leader systems, where every additional agent severely impacts the
time and memory required by the baseline workflow; instead, the compositional
approach shows a much less explosive, though still super-linear, progression.

The (theoretical) parallel procedure is, by definition, always faster than
the compositional one. This speedup is most noticeable when the system in-
volves many agents (leader7), or complex behavioural rules (formation-rr,
twophase3). In some experiments, parallelization also incurs an increased mem-
ory usage, a rather obvious consequence of generating all individual state spaces
at once. At the same time, it typically allows enjoying greater memory capaci-
ties (especially when done across multiple machines), so we do not expect this
drawback to be significant. In others, however, both workflows have the same
memory footprint, as the memory required to generate all state spaces simulta-
neously does not exceed the amount used by the other tasks (TP or T|=). Thus,
in these cases the speedup from parallelization actually comes for free, i.e., it
does not impact the overall memory usage.

6 Related work

Compositional verification has been successfully applied in several domains,
ranging from hardware systems to communication protocols and service chore-
ographies [18,20]. From a recent, extensive experimental evaluation, it appears to
be effective under diverse network topologies, and its benefits generally become
more evident as the size of the system under verification grows [8].

In this work, we exploit compositionality of state space generation. A some-
what related approach to fight state space explosion is modular (or composi-
tional) reasoning [26], whereby a program is analysed by splitting it into com-
ponents, for instance according to rely-guarantee conditions [34]. This form of
compositionality has proved effective in several use cases, such as multi-robot and
multi-agent systems [4, 33], railway networks [15], smart contracts [48], and au-
thentication protocols [50]. All these applications, like our own work, exploit fully
automated verification procedures; other frameworks, such as IVy [38], combine
rely-guarantee reasoning with semi-automated procedures. LNT does provide
constructs to express pre- and post- conditions on procedures (respectively de-
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noted by require and ensure), but CADP does not use them in a compositional
fashion yet.

Some classes of collective adaptive systems may be expressed in the form
of population protocols [1], for which efficient parameterized verification proce-
dures are known [2]. These may prove that a protocol satisfies a given property
regardless of its size, but the properties of interest typically concern its eventual
convergence to certain configurations, as the focus is to verify whether the pro-
tocol is able to carry out a desired computation. Our workflow checks systems
of fixed size, but may support arbitrary branching-time temporal properties.

Preprocessing techniques to speed up program analysis by excluding invalid
or infeasible values have also been proposed in the context of symbolic model
checking. For instance, bounded model checking of programs featuring dynamic
data structures may get more efficient by precomputing tight field bounds based
on the structures’ type invariants [42].

7 Conclusion and future work

In this work, we have argued that collective adaptive systems, being collections
of autonomous and mutually interacting components, are naturally amenable to
compositional techniques that can palliate state space explosion and thus aid
in their verification. To support our claim, we have presented an encoding from
high-level specifications into networks of LNT processes, introduced a simple
value analysis to over-approximate the set of feasible offers between these pro-
cesses, and demonstrated an automated workflow that exploits these ingredients
to compositionally verify a collection of representative systems. Our experimen-
tal results do indicate that this procedure brings significant advantages over
plain model checking. Besides evident gains in terms of absolute time and mem-
ory requirements, the proposed workflow appears to scale better in the number
of agents, and can deal with freely-interleaved systems without particular effort
compared to round-robin ones.

As future work, we intend to pursue several lines of research. For instance, the
value analysis presented in this work is just a prototype and may be improved
in several ways. Its approximation may be tightened by preserving some of the
original behavioural structure and adding sensitivity to LAbS control constructs,
such as guards. In general, powerset domains have well-known scalability issues
that we could overcome by switching to more advanced abstract domains, such
as Boxes [31] or donut domains [25], which may also track relations between
variables. Our analysis only exploits data restriction; interfaces [28] could com-
plement that with behavioural constraints, allowing to prune the state space of
agents by cutting sequences of actions that are impossible under a given context.
Thus, synthesizing such interfaces could enhance our compositional approach.

We also plan to actually implement the Parallel workflow theorized in Sec-
tion 5, so that the generation of individual state spaces is distributed across
multiple machines. This could be integrated with existing procedures for dis-
tributed state space generation [22], to further exploit parallelism; it would also
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allow us to measure how other factors, e.g., networked storage latency and trans-
fer times, may affect the theoretical measurements presented in this work. An
implementation of lighter-weight formal techniques, such as runtime verifica-
tion [36] or statistical model-checking [46], could also provide some degree of
assurance about the behaviour of very large collective systems.
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