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ABSTRACT
Despite the fact that several languages have been proposed
for Web service composition (BPEL, WSCI, BPMN to name
a few), their lack of well-defined formal semantics does not
support formal analysis. The verification of Web service
composition is thus a complicated task that can benefit from
the use of formal methods. In this paper, an approach to
specify, verify and validate the service composition using
the LOTOS formal specification language is proposed. To
achieve this task, we provide a translation into LOTOS for
each workflow control-flow pattern. A working example is
then presented to show how a service composition workflow
can be specified using these patterns and validated using
CADP toolkit.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal meth-
ods; H.3.5 [Online Information Services]: Web-based
services

General Terms
Verification

Keywords
Service composition, Model-driven engineering, Workflow
patterns, Process algebra, LOTOS, Formal specification and
validation

1. INTRODUCTION
Web services are distributed and independent components

realizing specific tasks, which can communicate with each
other through message exchange. This process is called ser-
vice composition and it usually results in the creation of a
new composite service, which can be defined as an aggrega-
tion of elementary or composite services. Many researches
focus on Web services composition [1, 2,7,22].
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The process of service composition can be separated into
the following tasks: (i) requirements analysis, (ii) speci-
fication, (iii)implementation and (iv) validation. Graphi-
cal languages such as BPMN [26] and textual ones such
as BPEL [18] have been proposed to specify and imple-
ment Web services composition. However, their lack of well-
defined formal semantics does not support formal analysis.
As a consequence, the validation of Web service composition
remains a complicated task. Formal methods such as Petri
net or process algebra make good candidates to address this
issue because of the variety of validation tools available.

This paper thus proposes to specify the service compo-
sition using the standard LOTOS [4] formal specification
language. LOTOS is based on process algebra and it is ex-
tremely useful for temporal logic verification and for sim-
ulation. To support virtually any business process mod-
eling language, we provide a direct mapping into LOTOS
for each workflow control-flow pattern that identified by
Aalst in [24]. Any service composition specified in LOTOS
can then be automatically validated using tools such as the
CADP toolkit [9]. Validation is achieved through the verifi-
cation of properties expressed using temporal logic.

Section 2 provides a short survey of existing approaches
to validate service composition. An overview of LOTOS is
then given in Section 3. The translation into LOTOS for the
main workflow patterns is then presented in Section 4. In
Section 5, a working example is translated into LOTOS and
validated using CADP. Finally, Section 6 draws the conclu-
sions.

2. RELATED WORK
Several language-specific approaches focus on the valida-

tion of service composition expressed in a particular business
process modeling language using formal methods. For ex-
ample, rules are presented in [5] to translate Web service
choreographies written in WSCI into CCS [16] and then
check whether two Web services are compatible to inter-
operate. In [13], the semantics of WS-CDL are described in
CSP [11]. A two-way mapping between LOTOS and BPEL
was proposed in [10]. In [15], the semantics of BPEL were
specified using π-calculus. A more exhaustive survey of for-
mal verification for business process modeling can be found
in [17].

More generic approaches involve instead the translation of
higher-level workflow control-flow patterns into formal spec-
ifications. These patterns were identified and described us-
ing coloured Petri nets by Aalst [24]. Other researchers then
specified these patterns using CCS [23], π-calculus [19].



In [25], a translation of a well known collection of workflow
patterns were translated into Promela, which is the input
specification language of SPIN verification tool [12]. In this
tool, systems are described in Promela and the properties to
be verifed are expressed as Linear Temporal Logic (LTL) for-
mulas. The effectiveness of this approach in business process
specification and verification was illustrated with two busi-
ness process scenarios, namely Loan Request and the Travel
Agency examples. The main advantages of this approach
is that Promela’s C-like syntax makes it more accessible to
non-experts and SPIN is a model checker that allows the
automatic verification of business processes.

In this paper, an approach based on the mapping of these
patterns into LOTOS formal specification language is pro-
posed to specify, verify and validate the service composition.

3. LOTOS: AN OVERVIEW
LOTOS (Language Of Temporal Ordering Specification) [4]

is a formal description developed within ISO (International
Standards Organization) for the specification of open dis-
tributed systems, especially protocols in OSI standards. LO-
TOS is based on process algebraic methods such as CCS
(Calculus of Communicating Systems) [16].

The LOTOS behaviour operators are summarized in Ta-
ble 3 where G refer to a gate (channel of communication
between processes), X to a variable, P to a process, S to a
sort, V to a value and B a behaviour.

Table 1: LOTOS behaviour operators
Behaviour Operator Meaning

stop inaction
G !V ?X:S ; B Action Prefix

B1 [] B2 Choice
[E] -> B Conditional

B1 ||[G1,...,Gn]| B2 Parallel composition
B1 ||| B2 Interleaving
exit Successful termination

B1 ≫ B2 Sequential composition
P [G1,...,Gn] (V1,...,Vm) Process call

A more detailed introduction to LOTOS can be found
in [3].

In this paper, LOTOS was chosen for the specification of
service composition workflows because of (i) its ISO stan-
dardization, (ii) its high expressiveness and its support for
value passing between processes (iii) its formalism and (iv)
the existence of validation tools that support it such as
CADP [9].

4. WORKFLOW PATTERNS
TRANSLATION

In this section, we address the translation into LOTOS
process algebra for most of the control-flow patterns in the
original set, introduced by Aalst et al. in [24]. We also take
into account their reviewed definition by Russel et al. [21].
These patterns can be used to describe the control flow per-
spective of workflow systems and most of them are sup-
ported by service composition languages such as BPEL [18].
Due to space limitation, we will not consider in this paper
the state-based patterns nor the cancellation patterns that
belong to the original set.

Instead of providing a mapping of BPEL constructs into
LOTOS, we prefer to focus on the translation of generic
workflow constructs. The benefit is that our mapping can
be applied to virtually any workflow language. Being a
standardized formal specification language, LOTOS is an
excellent candidate for checking an verifying service compo-
sition. As a matter of fact, automated validation of LOTOS
specifications can be achieved using existing tools such as
CADP [9].

4.1 LOTOS specific considerations
For reusability purpose, we model each workflow pattern

as an independent LOTOS process. For inter-process syn-
chronization and to realize the desired workflow patterns,
we make use of the value exchange feature in full LOTOS.
Values can be exchanged synchronously at gates. A work-
flow can be seen as a directed graph where each node rep-
resents an activity. Therefore, an intuitive approach would
be to represent each node (activity) as a LOTOS process
and each edge as a gate. However, as explained by Ray-
mond in [20], LOTOS declares gates in static lists both as
parameters to processes and in the parallel composition of
processes. This mechanism does not allow for the number of
gates passed to a process to be dynamic. As a consequence,
by choosing this approach, we would not be able to model
accurately a pattern such as the exclusive choice where a
choice is made between two or more execution branches.
Indeed, the number of possible output branches in an exclu-
sive choice is undetermined, which makes it impossible to
pass a static list of gates (branches) to the exclusive choice
process. The solution to this issue proposed by Raymond
in [20] is to use a single gate to specify all communication
and to use a communication medium constraint process to
ensure that communication only occurs along edges of the
graph. This is the solution that is employed in this paper
and our communication medium process is specified in LO-
TOS in Listing 1. As one can see, we use two gates (SEND
and RECV) instead of one to model the two-way commu-
nication between the bus and the services (processes), as
precognized in [6].

process Bus [SEND , RECV] (B:Buffer ) : noexit :=
SEND ?R:Int ?S:Int ?D:Cmd ?P:Int;

Bus [SEND , RECV] (B + Message (R, S, D,
P))

[]
[not (empty (B))] ->
(let M:Msg = head (B) in

RECV !getrcv (M) !getsnd (M) !getcmd (M)
!getprm (M);

Bus [SEND , RECV] (tail (B))
)

endproc

Listing 1: LOTOS code for communication bus

All services being composed are modeled as LOTOS pro-
cesses, which execute concurrently and communicate through
a software bus, which is also modeled by a LOTOS process
(see Figure 1). The services can send or receive messages
(events) via gates SEND and RECV respectively. The Bus pro-
cess acts an unbounded buffer that is initially empty which
accepts messages on gate SEND and delivers them on gate
RECV. Each service process is assigned with an identifier that
is an integer. When communicating via the bus the services
provide the identifier of the destination service, their iden-



tifier (sender) and a message action. The most common
action we define is RUN, which corresponds to service invo-
cation message. Upon reception of a RUN message, a process
(service) will start its execution.

Figure 1: Architecture of the communication be-
tween LOTOS processes

4.2 Basic Control Flow Patterns
Aalst identified five basic flow control patterns, namely

the sequence, the parallel split, the synchronization,
the exclusive choice and the simple merge. These pat-
terns capture elementary aspects of the process control. This
subsection provides a definition and a rigorous translation
into LOTOS for each of them.

Sequence - An activity identified by id_dst should be
executed after the completion of the activity identified by
id in the workflow. The LOTOS specification is provided
in Listing 2. Our proposal consists in having the current
process (Service1) send a RUN message to the next process
(Service2) via the communication bus. The next process
awaits this message before starting its execution.

process Service1 [SEND , RECV] (Id:Int) : exit
:=

(* Do work *)
Sequence [SEND , RECV] (Id , 2) >> exit
where
process Sequence [SEND , RECV] (Id:Int ,

Id_dst :Int): exit :=
SEND !Id_dst !Id !RUN !void; exit

endproc
endproc

process Service2 [SEND , RECV] (Id:Int) : exit
:=

(* Wait for message *)
RECV !Id ?Sender :Int !RUN !void;
(* Do work *)

endproc

Listing 2: LOTOS translation for sequence pattern

Note that the comments (* Do work *) should be re-
placed by the details of each activity.

Parallel split - Mechanism to execute several execution
branches concurrently. A single branch diverges into two
or more parallel execution branches. Each of these paral-
lel branches contains activities that will be executed at the
same time. We propose the ParallelSplit process provided
in Listing 3 to model this behavior. The identifiers of the
activities (Ids_dst) to be executed in parallel are passed in
parameters to the process as a set of integers (IntSet). The
process needs to iterate over this set and send a RUN message
to each activity identified in the set. However, recursion is
the only way to realize cyclical behavior in LOTOS. As a
consequence, the ParallelSplit process is calling itself re-
cursively and removing already processed Ids from the set
in order to iterate over it.

process ParallelSplit [SEND , RECV] (Id:Int ,
Ids_dst :IntSet ) : exit :=

[empty (Ids_dst )] -> exit
[]
[not (empty (Ids_dst ))] ->

(let Dest:Int=pick(Ids_dst ) in
SEND !Dest !Id !RUN !void;
ParallelSplit[SEND , RECV](Id ,

remove (Dest , Ids_dst ))
)

endproc

Listing 3: LOTOS translation for parallel split
pattern

The pick operation returns an element from the set which
is then stored in Dest variable using the LOTOS let oper-
ator.

Synchronization - Mechanism to merge two or more
execution branches into a single subsequent branch with
synchronization. To clarify, it waits for all input execution
branches to terminate before passing the thread of execution
to the output branch. This pattern is used after a parallel
split in the workflow process. The corresponding LOTOS
specification is given in Listing 4. The Synchronization

process waits for the reception of one RUN message per input
branch before exiting, thus allowing the calling process to
continue its work.

process Synchronization [SEND , RECV]
(Ids_src :IntSet , Id:Int) : exit :=

[empty (Ids_src )] -> exit
[]
[not (empty (Ids_src ))] ->

RECV !Id ?Id_src :Int !RUN !void [Id_src
isin Ids_src ];

Synchronization [SEND , RECV]
(remove (Id_src , Ids_src ), Id)

endproc

Listing 4: LOTOS translation for synchronization
pattern

Exclusive choice - A split in the control flow between
two or more exclusive execution paths. The thread of control
is passed to one (and only one) outgoing branch. In our LO-
TOS specification (Listing 5), the choice between the output
branches is nondeterministic, meaning that there is no eval-
uation criteria to make the decision between the branches
and any one of them may be chosen in a random fashion.
However, our specification guarantees that only one of the
output branches will be executed.

process ExclusiveChoice [SEND , RECV] (Id:Int ,
Ids_dst :IntSet ): exit :=

(choice Dest:Int []
[Dest isin Ids_dst ] ->

SEND !Dest !Id !RUN !void;
exit)

endproc

Listing 5: LOTOS translation for exclusive choice
pattern

The LOTOS choice operator in combination with the
[Dest isin Ids_dst] guard is used to pick randomly an Id
in the Ids_dst set of possible outgoing activities (branches).

Simple merge - Mechanism to merge two or more exclu-
sive execution branches into one subsequent branch. Only
one of the input execution may be active. As a consequence,



the simple merge pattern is used after an exclusive choice in
the workflow process. The corresponding LOTOS specifica-
tion is defined in Listing 6. The SimpleMerge process awaits
a RUN message from any of the input activities identified in
the Ids_src set. This is achieved through a synchronous RUN
message reception directive whose destination is the current
process (Id) in combination with a guard on the identifier
of the sender (Id_src) to make sure that it belongs to the
Ids_src set.

process SimpleMerge [SEND , RECV]
(Ids_src :IntSet , Id:Int) : exit :=

RECV !Id ?Id_src :Int !RUN !void [Id_src isin
Ids_src ];

exit
endproc

Listing 6: LOTOS translation for simple merge
pattern

4.3 Advanced Branching and Synchronization
Patterns

This subsection provides the LOTOS translation for four
more complex branching and merging concepts that arise in
business processes: themulti-choice, the structured syn-
chronizing merge, the multi-merge and the structured
discriminator.

Multi-choice - A split in the control flow between two
or more execution paths. The thread of control is passed
to one or several outgoing branches. This pattern is essen-
tially an analogue of the exclusive choice pattern in which
multiple outgoing branches can be chosen and executed. In
our LOTOS specification (Listing 7), the choice between the
output branches is nondeterministic.

(* Initially , Nb_active = 0 *)
process MultiChoice [SEND , RECV] (Id:Int ,

Ids_dst :IntSet , Id_merger :Int ,
Nb_active :Int): exit :=

[empty (Ids_dst )] ->
SEND !Id_merger !Id !ACT !Nb_active ; exit

[]
[not (empty(Ids_dst ))] ->

(choice Dest:Int []
[Dest isin Ids_dst ] -> SEND !Dest !Id !RUN

!void;
(MultiChoice [SEND , RECV] (Id,

remove (Dest , Ids_dst ), Id_merger ,
Nb_active +1)
[]
(** Notify which branches are active

for later merging **)
SEND !Id_merger !Id !ACT ! Nb_active +1;

exit)
)

endproc

Listing 7: LOTOS translation for multi-choice
pattern

In this specification, a random branch is chosen the same
way as in the exclusive choice. The difference lies in the
fact that the [] operator is used without guards after the
selection to realize a nondeterministic choice between re-
cursion and exit. If the recursion is chosen, the pattern
will select an additional outgoing branch before reproducing
the same nondeterministic choice. This branching pattern
makes the future merging of the parallel execution branches

difficult, especially when synchronization between the input
branches is required (i.e. structured synchronizing merge).
Indeed, synchronization should only be made on activated
input branches (the branches that were selected by the pre-
vious multi-choice pattern). The branches that have been
activated can only be known at runtime. To solve this is-
sue, our MultiChoice process sends an ACT message to the
process that will merge the branches. This message con-
tains a parameter (Nb_active) which indicates the number
of branches that have been activated.

Structured synchronizing merge -Mechanism to merge
two or more execution branches such that synchronization is
achieved on the activated input branches before passing the
thread of execution to the subsequent branch. This struc-
ture provides a means of merging the branches resulting
from a multi-choice construct earlier in the workflow. A
specification in LOTOS for this pattern is proposed in List-
ing 8. It takes in parameters the identifiers of the activities
(branches) to merge (Ids_sec), the identifier of the current
merging process (Id), the number of active input branches
(Nb_active) and the number of input branches that have
already terminated (Nb_synced).

(* Initially , Nb_active = Nb_synced = 0 *)
process SynchronizingMerge [SEND , RECV]

(Ids_src :IntSet , Id:Int , Nb_active :Int ,
Nb_synced :Int): exit :=

[Nb_active = 0] ->
( RECV !Id ?dummy:Int !ACT ?Nb:Int;

([ Nb_synced = Nb] -> exit
[]
[Nb_synced < Nb] ->

SynchronizingMerge [SEND , RECV]
(Ids_src , Id , Nb, Nb_synced ) )

)
[]
(RECV !Id ?Source :Int !RUN !void [Source

isin Ids_src ];
([ Nb_synced +1 = Nb_active ] -> exit
[]
[Nb_synced +1 <> Nb_active ] ->

SynchronizingMerge [SEND , RECV]
(remove (Source , Ids_src ), Id ,
Nb_active , Nb_synced +1))

)
endproc

Listing 8: LOTOS translation for structured
synchronizing merge pattern

The number of input branches that were activated (Nb_active)
is retrieved from the ACT message that was sent to the merg-
ing process by the earlier multi-choice process. The number
of input branches that have already terminated (Nb_synced)
is incremented on recursion, upon reception of a RUNmessage
from an input branch. To achieve synchronization, the Syn-
chronizingMerge process waits for all active input branches
to terminate (ie. [Nb_synced = Nb_active]) before exiting.
Upon exit, the process that called the synchronizing merge
can continue its execution.

Multi-merge - Mechanism to merge two or more execu-
tion branches without any synchronization. The termination
of each input branch will result in the thread of control being
passed to the subsequent branch. This structure provides a
means of merging the branches resulting from a multi-choice
construct earlier in the workflow. A specification in LOTOS
for this pattern is proposed in Listing 9. The specification
is similar to the one of the structured synchronizing merge.



However, the MultiMerge process takes one more parame-
ter: the identifier of the next process to be executed upon
the completion of an input branch (Id_nxt). To clarity, the
merging process realizes this behavior by sending a RUN mes-
sage to the next process (activity) in the workflow, whenever
it receives a RUNmessage from an incoming process (branch).

(* Initially , Nb_active = Nb_merged = 0 *)
process MultiMerge [SEND , RECV]

(Ids_src :IntSet , Id:Int , Id_nxt :Int ,
Nb_active :Int , Nb_merged :Int): exit :=

[ Nb_active = 0] ->
(RECV !Id ?dummy:Int !ACT ?Nb:Int;

([ Nb_merged = Nb] -> exit
[]
[Nb_merged < Nb] ->

MultiMerge [SEND , RECV] (Ids_src , Id ,
Id_nxt , Nb , Nb_merged ))

)
[]
(
(* Wait for incoming branch to terminate *)
RECV !Id ?Source :Int !RUN !void [Source isin

Ids_src ];
(* Call next activity *)
SEND !Id_nxt !Id !RUN !void;
(* Check if there are more active branches

to merge *)
(
[Nb_merged +1 = Nb_active ] -> exit
[]
[Nb_merged +1 <> Nb_active ] ->

MultiMerge [SEND , RECV] (remove (Source ,
Ids_src ), Id , Id_nxt , Nb_active ,
Nb_merged +1)

)
)

endproc

Listing 9: LOTOS translation for multi-merge
pattern

The number of input branches that were activated by the
earlier multi-choice construct is used in this specification to
detect the end of the merging process resulting in the exit
action.

Structured discriminator -Mechanism to merge two or
more parallel execution branches so that the thread of execu-
tion is passed to the subsequent branch when the first input
branch is complete. The termination of other input branches
does not result in the thread of control being passed on.
The structured discriminator resets once all input branches
are complete. This pattern can only be used after a parallel
split pattern. Its LOTOS specification is given in Listing 10.
The Discriminator process takes the identifier of the next
process in the workflow to be executed (Id_nxt) upon the
completion of the first (fastest) input branch. Once the first
input branch is complete, the Discriminator process calls
the Synchronization process in order to wait from the other
input branches to complete before exiting.

process Discriminator [SEND , RECV]
(Ids_src :IntSet , Id:Int , Id_nxt :Int): exit
:=

(* Wait for first branch to complete *)
RECV !Id ?Id_src :Int !RUN !void [Id_src isin

Ids_src ];
(* Call next process *)
SEND !Id_nxt !Id !RUN !void;
(* Wait for other branches to complete and

ignore them *)

Synchronization [SEND , RECV] (remove (Id_src ,
Ids_src ), Id)

>> exit
endproc

Listing 10: LOTOS translation for structured
discriminator pattern

4.4 Structural Patterns
Structural patterns show restrictions on workflow languages,

for example that arbitrary loops are not allowed. LOTOS
easily handles both of the following patterns.

Arbitrary cycles - The ability to represent cycles (loops)
that have more than one entry or exit point. This is also
referred to as an iteration pattern. In LOTOS, arbitrary
cycles can be achieved using an exclusive choice together
with a simple merge.

Implicit termination - A given process instance should
terminate when there is no remaining work to do either now
or at any time in the future and the process instance is not in
deadlock. This is also referred to as a termination pattern.
In LOTOS, a process simply executes the exit action once
it finishes its work.

4.5 Multiple Instance Patterns
Multiple instance patterns describe situations where there

are multiple threads of execution active in a process model
which relate to the same activity (and hence share the same
implementation definition). LOTOS only provides a partial
support for these patterns because it cannot create a dy-
namic number of new instances of an activity. The number
of instances needs to be specified at design time.

Multiple instances without synchronization -Within
a given process instance, multiple instances of a task can be
created. These instances are independent from each other
and run concurrently. There is no requirement to synchro-
nize them upon completion. LOTOS can instantiate several
instances of the same process and have them run concur-
rently using the ||| operator, provided that the number of
instances is known at design time. LOTOS does not require
these instances to be synchronized upon exit.

Multiple instances with a priori design time knowl-
edge - Within a given process instance, multiple instances
of a task can be created. The required number of instances
is known at design time. These instances are independent
from each other and run concurrently. It is necessary to syn-
chronize the task instances at completion before any subse-
quent tasks can be triggered. As explained for the previous
pattern, LOTOS supports such behavior and the Synchro-

nization specification can easily be adapted to synchronize
the instances at completion.

Multiple Instances with a priori Run-Time Knowl-
edge - This pattern is similar to the previous one, except
that the number of instances is not at run-time only. As
explained earlier in this subsection, LOTOS does not sup-
port such behavior because the number of instances must be
specified at design time.

Multiple Instances without a priori Run-Time Knowl-
edge - This pattern is also similar to the previous ones ex-
cept that the number of instances is not known a priori.
At any time, whilst instances are running, it is possible for
additional instances to be initiated, based on a number of
run-time factors. This behavior is not supported by LOTOS



either.

5. CASE STUDY
In this section, a working scenario is studied to show how

to use the workflow patterns specifications to translate a
workflow into LOTOS in order to verify and validate the
service composition using CADP.

5.1 Field Emergency Response
This case study consists in an field emergency response

process where a user can report an emergency. First, the
system will check if the accident was already reported. If
it is not the case, it will find the closest hospital to the ac-
cident. Then, it will concurrently send paramedics and a
police patrol, before marking the accident as reported. This
service composition workflow is depicted in a UML activ-
ity diagram in Figure 2. It is worth noting that traditional
UML is used here to model the considered scenario. Such
model is not exhaustive enough to support full and auto-
matic BPEL code generation. However, we are currently
working on an open source framework1 that allows the de-
veloper to import existing services, specify the composition
using UML and generate the BPEL code. To be able to
generate the whole code for the composite Web service, the
framework uses a specific UML profile called UML-S [7] or
UML for Services that customizes UML 2.x for the spe-
cific purpose of Web service composition. UML-S has the
same metamodel as standard UML, it merely defines specific
stereotypes, tagged values and constraints to increase UML
models expressiveness in the context of service composition.

Figure 2: Emergency response workflow

This scenario composes 4 existing services:

• HospitalLocator: A service to find the closest hos-
pital to the location.

• Paramedics: A service to send paramedics to a loca-
tion.

• PoliceDispatch: A service to send a police patrol to
a location.

• ReportsDatabase: A service to check if an emer-
gency was already reported and to mark an emergency
as reported (two methods).

5.2 Corresponding LOTOS Model
In this subsection, a LOTOS specification for the field

emergency response, based on the control-flow patterns pre-
sented in this paper, is provided. The first step to translate

1http://sourceforge.net/projects/uml-s/

the activity diagram depicted in Figure 2 into LOTOS in or-
der to create a process for each step of the activity (including
initial and final nodes) and to assign an identifier (integer)
to each of them. The identifiers are already specified in Fig-
ure 2 for a better understanding. The instantiation of these
processes in LOTOS is provided in Listing 11. All service
processes are executed concurrently using the ||| operator,
which means that they are independent and they do not
communicate directly with each other. Note however that
the |[SEND, RECV]| operator is used the synchronize the ser-
vices with the Bus process through the gates SEND and RECV.

specification EmergencyResponse [SEND , RECV ]:
noexit

behaviour
(
Init [SEND , RECV ](0)
|||
CheckIfReported [SEND , RECV ](1)
|||
FindHospital [SEND , RECV] (2)
|||
SendParamedics [SEND , RECV ](3)
|||
SendPolice [SEND , RECV ](4)
|||
MarkAsReported [SEND , RECV ](5)
|||
Final [SEND , RECV ](6)
)
|[SEND ,RECV]|
BUS [SEND ,RECV] (<>)

where
(* Processes definition *)

endspec

Listing 11: Processes instantiation in LOTOS

The next step in the translation into LOTOS is to identify
the control-flow patterns in the workflow in order to provide
a definition (implementation) for each process. The Init

process (Id:0 ) merely starts the CheckIfReported process
(Id:1 ). As a consequence, it uses the sequence pattern before
exiting, as defined in Listing 12.

process Init [SEND , RECV] (Id:Int) : exit :=
Sequence [SEND , RECV] (Id , 1)
>> exit

endproc

Listing 12: LOTOS specification for Init process

The CheckIfReported process waits for a RUN message
from Init before starting. After that, it realizes an exclusive
choice between FindHospital (Id:2 ) and the Final process
(Id:6 ), as defined in Listing 13.

process CheckIfReported [SEND , RECV]
(Id:Int ) : exit :=

RECV !Id !0 !RUN !void;
ExclusiveChoice [SEND , RECV] (Id,

insert (6, insert (2, {})))
>> exit

endproc

Listing 13: LOTOS specification for
CheckIfReported process

The FindHospital process waits for a RUNmessage from the
CheckIfReported process before starting concurrently the
SendParamedics (Id:3 ) and SendPolice (Id:4 ) processes,



thus realizing a parallel split pattern. The corresponding
specification is provided in Listing 14.

process FindHospital [SEND , RECV] (Id:Int ) :
exit :=

RECV !Id !1 !RUN !void;
ParallelSplit [SEND , RECV] (Id , insert (4,

insert (3, {})))
>> exit

endproc

Listing 14: LOTOS specification for FindHospital
process

The SendParamedics and SendPolice processes both await
a RUN message from the FindHospital process (Id:2 ) before
executing and finally starting the MarkAsReported process
(Id:5 ). Only the definition for SendParamedics is given in
Listing 15 since SendPolice has the exact same implemen-
tation.

process SendParamedics [SEND , RECV] (Id:Int)
: exit :=

RECV !Id !2 !RUN !void;
Sequence [SEND , RECV] (Id, 5) >> exit

endproc

Listing 15: LOTOS specification for
SendParamedics process

The MarkAsReported process synchronizes its two incom-
ing branches (paramedics and police calls) before executing
and finally start the Final process. This behavior is defined
in Listing 16.

process MarkAsReported [SEND , RECV] (Id:Int)
: exit :=

Synchronization [SEND , RECV] (insert (4,
insert (3, {})), Id) >>

Sequence [SEND , RECV] (Id, 6) >> exit
endproc

Listing 16: LOTOS specification for
MarkAsReported process

Finally, the Final process (corresponding the final node
of the activity diagram) will simply merge its two incom-
ing branches that were earlier split by an exclusive choice.
As a consequence, and as stated in Listing 17, it realizes a
simple merge between the branches of MarkAsReported and
CheckIfReported processes.

process Final [SEND , RECV] (Id:Int) : exit :=
SimpleMerge [SEND , RECV] (insert (5,

insert (1, {})), id)
>> exit

endproc
endspec

Listing 17: LOTOS specification for Final process

5.3 Properties Verification
CADP toolkit provides an on-the-fly model checker for

regular alternation-free µ-calculus formulas on Labelled Tran-
sition Systems. The temporal logical used as input language
is an extension of the alternation-free µ-calculus [8,14] with
boolean formulas over actions and regular expressions over
action sequences.

As a consequence, once the service composition scenario
has been specified in LOTOS, the developer can describe

properties on the composition using µ-calculus and proceed
with their automatic verification using CADP evaluator.
The evaluator will not only tell if the property is verified
or not but it will also construct examples (or counter exam-
ples) to understand why.

CADP evaluator input language can be extended via macro-
expansion in order to improve readability. In Listing 18, we
provide a few macros that will be used to validate our service
composition workflow. The first macro takes two actions in
parameters (A and B) and verifies that action A necessary
leads to action B.

macro A_inev_B (A, B) =
[ true* . (A) ] mu X . (< true > true and

[ not (B) ] X)
end_macro

macro ACC_REPORT () = ’SEND !POS (1) !POS (0)
!RUN .*’ end_macro

macro ALREADY_REPORTED() = ’SEND !POS (6) !POS
(1) !RUN .*’ end_macro

macro SEND_PARAMEDICS() = ’SEND !POS (3) !POS
(2) !RUN .*’ end_macro

macro SEND_POLICE () = ’SEND !POS (4) !POS (2)
!RUN .*’ end_macro

Listing 18: Verification macros definition

The last four macros correspond to actions in the workflow.
For example, the SEND_PARAMEDICS macro refers to Send-

Paramedics activity execution. These action macros use
UNIX regular expressions in order to match the RUN mes-
sages corresponding to each activity. Note that in these
macros, POS merely refers to the constructor for a positive
integer.

Using the previously defined macros, it is now possible to
define properties of the composition and verify them. One
of the properties to check is that the process never sends
the paramedics nor the police if the emergency was already
reported. This properties can be expressed in temporal logic
as follows:

([ ALREADY_REPORTED . SEND_PARAMEDICS ] false)
and ([ ALREADY_REPORTED . SEND_POLICE ]
false)

Another important property to verify is that whenever an
accident is reported, the process always sends the paramedics,
unless the emergency was already previously reported. This
translates into temporal logic as follows:

A_inev_B (ACC_REPORT , SEND_PARAMEDICS or
ALREADY_REPORTED)

Both these properties were automatically verified using
CADP evaluator and evaluated to TRUE, meaning that they
are verified.

6. CONCLUSION AND FUTURE WORK
The formal verification of Web service composition is an

important task that is not supported by current business
process modeling approaches, due to their lack of well-defined
formal semantics. This issue can be addressed using formal
methods such as Petri net or process algebra.

In this paper, we presented an approach based on LOTOS
formal specification language to verify and validate service
composition expressed as a workflow. A mapping into LO-
TOS for each of the 20 original workflow control-flow pat-



terns was provided to translate virtually any business pro-
cess modeling language into LOTOS. A working example re-
garding field emergency response was also studied in order to
show both how to translate it into LOTOS and then validate
it. This validation was achieved through the verification of
important behavioral properties expressed in temporal logic,
using CADP toolkit.

Future work will involve the development of a tool for
automating the translation of UML activity diagrams into
LOTOS.
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