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Abstract 

This paper presents a generic analytical method to esti-

mate communication latency between a source and a desti-

nation of a given Network-on-Chip. This method is based 

on Markov chain stochastic processes. In order to solve the 

limiting problem of state-space explosion in complex sto-

chastic processes, we propose to construct a reduced Mar-

kov chain model for each node of the path, and to recur-

sively use the local mean latencies to obtain the mean la-

tency of the complete path. Comparison between the analyt-

ical results obtained by our method and those of a corres-

ponding SystemC CABA simulation platform shows the 

accuracy of our method.    

1 Introduction 

Nowadays due to tight time-to-market constraints the 

success of a SoC (System-on-Chip) design flow completely 

relies on its ability to perform fast and exhaustive validation 

and performance evaluation of the full system in the earliest 

stages of the design. Since the interconnect platform affects 

every stages of SoC design, fast and accurate performance 

evaluation of NoCs (Networks-on-Chip) are being increa-

singly important; time-consuming simulation-based me-

thods don’t match anymore with the increasing system 

complexity; they are slow, non-exhaustive, and non-scalable 

with the system size, also they are achieved relatively late in 

the design flow. Novel mathematical and formal methods 

for both validation and performance estimation of Systems-

on-Chip have seemed to be adequate alternatives for tradi-

tional simulation-based methods. 

The introduction of Network-on-Chips (NoCs) [1-4] as a 

new interconnecting solution for communication within 

complex SoCs has led to the definition of many NoC archi-

tectures, implementation strategies, and network perform-

ance evaluation methods [5-9]. NoCs with probabilistic 

communication delays and random time intervals caused by 

resource sharing, contention, and different traffic patterns 

can be regarded as systems with stochastic characteristics. 

In this context various performance issues of NoCs were 

subject of several stochastic and statistical explorations. For 

example authors of [10, 11] analyze the expected deadline 

miss ratio of task graphs by considering stochastic versus 

fixed or worst case task execution times. Authors of [12] 

address the problem of link capacity allocation in NoCs 

through a statistical approach. They approximate the distri-

bution of the load generated by all traffics on each link of 

the NoC with Gaussian distributions and suggest a capacity 

allocation algorithm, with predictable performance guaran-

tees, that illustrates how much capacity is needed to service 

for example 90%, 95% or 100% of all traffics. [13, 14] ad-

dress traffic models of on-chip communications and present 

statistical traffic patterns for on-chip communication versus 

traditional traffic. 

This paper addresses the NoC end-to-end communica-

tion latency (packet latency). The communication latency is 

an essential metric in the NoC performance evaluation and 

provides information to estimate the application runtime. 

Expressed as a function of the load injected to the network, 

communication latency can also determine the maximum 

acceptable load (saturation threshold) of the network. But, 

the definition of latency varies from one work to another. It 

can be measured per data word, header, packet, or message 

transfer (several packets) while including or excluding the 

time at the source queue. [15] provides useful indications 

for evaluating the performance of complex systems and 

explains different definitions of the latency in the literature.  

The term packet latency is interpreted in this work as the 

latency of a tagged-packet traversing the NoC form a given 

source to a given destination. It is counted from the moment 

the tagged packet header arrives to the input port of the 

source router until the instant it gets out of the destination 

router. The basic idea of our method is to compute separate-

ly the mean latency of each node of the tagged-packet’s 

path. To do so we construct a reduced Markov chain model 

for each router of the path, steady state analysis of this 

model gives the mean latency of the router. Since the laten-

cy of a node depends on the latency of its following node 

and so on, computations of node-latencies must follow the 

reverse order of dependencies (beginning from the end of 

dependency backward to its root). We use a recursive algo-

rithm that regarding the NoC topology, routing algorithm 

and traffic pattern finds all latency dependencies and returns 

the node latencies according to the proper computation or-

der. 

This paper is structured as follows: section 2 reviews re-

lated work and describes our contributions. The theory of 

our approach and the proposed Markov chain model of ge-

neric router are presented in section 3. Section 4 explains 

the latency computation order. In section 5 a refinement 

technique is presented. Section 5 includes experimental 

results and the comparison between the analytical and simu-

lation results. Finally section 6 concludes the paper. 
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2 Related Works 

NoC performance evaluation is traditionally based on 

simulation [16-18], however analytical techniques ,using 

queuing theory in the most of the time, have been proposed 

to measure the communication latency of NoCs and parallel 

computer networks (off-chip communication intercon-

nects)[19-25]. Some of them target only a particular net-

work topology such as [22-24] which are restricted to k-ary 

n-cubes network topologies. Some others place limitation 

on buffer or packet size, like [21] which propose an analyti-

cal model for wormhole routing delay but restricted to net-

works with single flit buffer capacity. The method presented 

in this paper is generic in the sense that it supports arbitrary 

network topologies and deadlock-free routing algorithms 

with arbitrary packet length. Concerning the applications, 

we target known traffics with any repartition on the NoC as 

long as it can be approximated with Poisson distributions 

(modeled by mean values). 

Authors of [21] aim to approximate the end-to-end trans-

fer delay for application-specific flows with packets longer 

than the buffers along their path. They ignore link acquisi-

tion time by assuming that there are as many virtual chan-

nels as the number of flows sharing the same physical link 

(so every head flit of any flow can acquire a VC instanta-

neously on every link it traverses). Using queuing models 

they approximate the link transmission time by accounting 

the time attributed to other virtual channels (i.e. other flows) 

which interleave over the same physical link. Actually since 

it focuses on transmission delays, [21] analyzes a “quasi 

circuit switching” case while our work investigates packet 

switching case dominated by both link acquisition delay and 

link transmission delay.  

Authors of [25] present a more general queuing theory 

based model addressing wormhole routing with arbitrary 

size messages and finite buffers under application-specific 

traffic patterns also supporting arbitrary network topology 

and deterministic routing. While the framework of our ap-

proach relies on the same assumptions, our methodology is 

quite different from theirs: our approach is based on a novel 

Markov chain model for router and the obtaining of the 

mean router latency by steady-state analysis of this model, 

whereas [25] relies on the generalization of the single queue 

model to multiple queues in the router. Using that approach 

the backpressure effect due to downstream contention tends 

to be minimized, and thus the saturation effect arises later 

than what can be observed in simulations. 

3 Modeling the NoC as Markov Chain 

The basic idea of this work is to build a generic Conti-

nuous Time Markov chain (CTMC) model by considering 

the probability and delay of contentions between the tagged 

packet and other disrupting packets at each node of the 

path. Steady state analysis of such model can give the mean 

value of the latency between the source and the destination 

of the path. Constructing a single model for the entire path 

confronts with state-space explosion and restricts the scala-

bility and the generality of the method. Because even if we 

stay at a high level of abstraction, the size of Markov chain 

state-space grows exponentially with the number of routers 

per path and the number of input/output ports per router. 

The alternative solution, which enormously reduces the 

complexity of the Markov chain model and is easily genera-

lizable to any path length and any number of I/O ports per 

router, is to build separated models for each router of the 

path and to compute the mean latency of each router and 

finally to obtained the mean latency of entire path from the 

sum of router mean latencies.       

 

 

Fig.1: At each node of the path disrupting packets 

appear probabilistically in front of tag-pkt, occupy its 
output ports and increase its latency. 

Fig.1 shows a generic path that can belong to any NoC 

architecture. Solid arrows demonstrate the tagged packet’s 

path from the source to the destination while dashed arrows 

show disrupting packets competing with the tagged packet. 

Packets are considered atomic (i.e. they cannot be divided 

into shorter pieces by the network) so when the header of a 

packet arrives to a port the packet body arrives immediately 

after it. A generic path is composed of n generic nodes 

which are abstract routers with m input/output ports.  

3.1 Router Markov Chain Model  

However our proposed model is generic and compatible 

with routers with any number of input/output ports, but for 

the reason of simplicity in explanation we focus on routers 

with five I/O ports. Ports are specified by their direction. 

Each output port represents also the link it is connected to. 

The ports to/from the cores are called core-output and core-

input respectively. Supposing that tagged packet has already 

crossed the path up to node Np, fig.2 shows the tagged 

packet waiting at the west input port of this node to obtain 

the east output port. With some probability it has contention 

with disrupting packets coming from the north, the south, 

and the core, waiting for the same output. 

N0 N1 N2 N3 N4 

S C1 C2 

2 

C3 D 

Lat-c2e-N0 Lat-w2e-N1 Lat-w2e-N2 Lat-w2e-N3 Lat-w2c-N4 

tag-pkt path from Source to Destination   

Disrupting packets (dsrp-pkt) 



 3 

 

Fig.2: tag-pkt arrives at west input port of Np and waits 

for east output port  

Each time a disrupting packet is granted before the 

tagged packet, it causes a delay so the proposed Markov 

chain is made of probabilistic transitions representing the 

contention probabilities and also delay transitions 

representing the delay caused by contentions. Fig.3 demon-

strates the Markov model, related to the latency of crossing 

Np from the west input to the east output and is abbreviated 

by “Lat-w2e-Np”.  

 

Fig.3: Markov chain underlying the latency of traversing 

router Np from the west input to the east output (Lat-

w2e-Np)  

Contention probabilities are labeled with Pr-i2o or Pr-

!i2o. Pr-i2o expresses the probability of contention with a 

disrupting packet coming from input-port “i” going to out-

put-port “o”. Pr-!i2o expresses the reverse. For example 

“Pr-n2e” is the probability of contention with a disrupting 

packet from north input-port which addresses the east out-

put-port while “Pr-!n2e” indicates the inverse and is equal 

to 1 – Pr-n2e. Stages of probabilistic transitions perform 

combining probabilities related to all possible contentions. 

For instance sequence Pr-!n2ePr-!c2ePr-!s2e depicts 

the probability in which the east output is free and tagged 

packet can passes through Np while Pr-n2ePr-c2ePr-

!s2e represents the probability of contention with both north 

and core input ports.  

Delay transitions represent distributions of stochastic de-

lays caused by contentions and are labeled with Dly-i2o. In 

other words they are the probability distributions of time-

durations, during which tagged packet is stalled. Different 

sequences of delay transitions correspond to different com-

binations of contention probabilities. For example the worst 

case sequence Pr-n2ePr-c2ePr-s2e is followed by the 

sequence Dly-n2eDly-c2eDly-s2e that corresponds to 

the total time duration in which tagged packet is stalled by 

three disrupting packets from north, south and core. Delay 

transition Dly-router-Np, indicates the “router latency” (the 

delay needed for traversing router Np even when the router 

is empty). Sequences of delay transitions converge to a sin-

gle state (filled circle) which denotes that the east output-

port is allocated to the tagged packet. Later (in sections 2.3 

and 2.4) we determine contention probabilities and delays 

on the basis of NoC architectural parameters and traffic 

pattern. In this work we consider a fair arbiter mechanism 

(in the sense that it is symmetric in terms of probability of 

selection of simultaneous packets on the inputs). Other arbi-

ter mechanism however can be modeled by adding more 

stages of probabilities. 

3.2 Steady-state analysis 

While performing a transient analysis of the evolution of 

the state of a continuous time Markov chain would allow to 

obtain the probability distribution to reach the final state 

over the time, it is preferable in terms of computation time, 

to study only the steady state (at the equilibrium) of the con-

tinuous time Markov chain.  There are several tools can be 

used to compute the delays and throughputs of the transi-

tions of a continuous-time Markov chain. We used 

“BCG_steady” of the “CADP” toolbox [26].  Instead of 

computing the delay from the initial state to the final state, 

where the steady state would be the state in which the 

tagged packet is eventually routed (since the arbitration is 

fair), we modify the Markov chain to introduce a loop from 

the final state to the initial state, defining a periodic beha-

viour. The added transition “Epsilon” in our Markov model 

(fig.3) represents a very short time-duration having no im-

pact on the total time-duration of the model. Its throughput 

at the equilibrium is equal to the inverse of the mean delay 

(at equilibrium) from the first state to the last state (the two 

filled states of fig.3), i.e. the mean latency of traversing 

router Np from the west input to the east output. 

3.3 Probabilistic transitions  

In a given router N the probability of contention between 

the tagged packet coming from j and a disrupting packet 

coming from i competing for output o is shown with cij(o) 

(equivalent to Pr-i2o in our Markov model) and is equal to: 

joioij PP)o(c         

Where Pio is the probability of the presence of data on 

link i addressing link o. In our method we assume that the 

tagged packet is already present so Pjo = 1 and the conten-

tion probability is equal to Pio: 

tag-pkt tag-pkt 

West-in East-out 

North-in Core-in 
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tag-pkt 

dsrp-pkt 

Dly-s2e Dly-s2e Dly-s2e Dly-s2e 

Pr-!n2e Pr-n2e 

Pr-!c2e Pr-!c2e Pr-c2e Pr-c2e 

Pr- !s2e Pr- !s2e 

Pr-s2e 

Pr- !s2e Pr- !s2e 
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  cij(o) = Pio (at the presence of tagged packet on j)   

The forwarding rate λio (the rate of data traversing the 

router from input i and output o) could be a preliminary 

estimation for Pio as presented in equation (*). This approx-

imation is unrefined and in section 4 we present an iterative 

method to make it more accurate.  

i
i

io
ioio

s

s
P  

  (*) 

Where si denotes the number of (source, destination) 

flows crossing link i, and sio denotes the number of (source, 

destination) flows crossing both link i and o. For a determi-

nistic routing algorithm we have:  

si = #{(p , q) | Rpq(i) = 1} 

sio = #{(p , q) | Rpq(i) = 1, Rpq(o) = 1} 

Where Rpq ( i ) is the indicator function such that Rpq ( i ) 

= 1 if the data sent from the source p to the destination q is 

routed through the link i and Rpq ( i ) = 0 otherwise: 






otherwise0

i through passes flow q  top  theif1
)(iRpq     

In the case of adapting routing algorithms, if we are able 

to determine statistically the percentage of data sent from 

each of possible routes between source p and destination q 

then we are able to use the same formalism and Rpq(i) will 

be equal to the fraction of data from p to q transmitted from 

input port i to output port o. 

i  in (*) is the total (average) traffic rate crossing link i 

of the NoC and is equal to: 

 
p q

pqpqi iRd )(   

Where dpq is the (p , q)
th

 element of distribution traffic 

matrix D: 

























0...

...............

...0

...0

...0

321

33231

22321

11312

nnn

n

n

n

ddd

ddd

ddd

ddd

D  

Traffic matrix determines the distribution of all traffics 

(flows) over the NoC. For a NoC with n nodes the traffic 

matrix is of size n*n and its (p , q)
th

  element (dpq) 

represents the fraction of data generated by core p which 

addresses core q. 

3.4 Delay transitions 

We have two kinds of delay in our Markov model; the 

router latency (Dly-router-Np) which is the router service 

time for the header flit and is a function of router design 

given to the methodology as an input parameter, and the 

delay caused by disrupting packets (Dly-i2o-Np) which in-

cludes two following components: 

1) The link transfer delay (Dly-link-xfr): the time dura-

tion a disrupting packet takes to be transferred through the 

link NpNp+1 and is a function of both packet and link cha-

racteristics such as packet length, link bandwidth, the num-

ber of virtual channels sharing same physical link, etc.  

2) The acquisition delay (Dly-Acq-Np+1): The delay a 

disrupting packet needs for the acquisition of its output port 

at the next node. It is counted from the moment the disrupt-

ing packet header is at input port of Ni+1 until the moment it 

reaches its output port. The computation of this delay de-

pends on the contentions of following nodes. For example 

in fig.4 the tagged packet is blocked at node Np by a dis-

rupting packet coming from the north while the later can be 

stalled at node Np+1 waiting for its output port. According to 

the routing algorithm and the traffic matrix, a disrupting 

packet having crossed Np can be routed to north, south, east 

or core directions of Np+1 while each of them may still be 

occupied by other disrupting packets. So the acquisition of 

each output-port causes a latency similar to lat-w2e-Np and 

can be obtained from a Markov model similar to fig.3.  

 

Fig.4 Tag-pkt is waited at Np by a disrupting packet 
coming from north which causes a delay according to 
its output choice at Np+1. 

Since a disrupting packet can be routed to different out-

put links of Np+1, Dly-acq-Np+1 is equal to the average la-

tency needed for acquiring each of them. If O be the set of 

all possible outputs of NP+1 to which a disrupting packet 

from i may be routed then we have: 




 

io,Oo

1Pio1P N-i2o-latf=   Dly_Acq_N  

 

 

tag-pkt dsrp-
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Where fio, o O  is the forwarding probability that de-

termines the probability that a packet coming from input i of 

NP+1 is forwarded to output o:    

i

io
io

s

s
f 

 

 For example in the case of fig.4 we have: 

Dly-Acq-Np+1 =


1P

CSENo

wo N-w2o-latf 



 
,,,

 

The computation of lat-w2o-Np+1, o {N,E,S,C} is like 

lat-w2e-Np and is obtained from a similar Markov chain 

which depends in the same way on the latencies of the fol-

lowing nodes performing a sequence of dependent latencies. 

We call it “latency-dependency sequence” and we propose 

a recursive method that first determines the latency-

dependency sequence involved with a desired node and then 

computes the dependent latencies recursively from the tails 

of the sequence back to the desired node.     

4 Latency computation order 

In a formal way the latency-dependency sequence is a 

group of packets that may be blocked waiting on each other 

to release shared resources (buffers, virtual channels, ports 

etc.) and making a sequence or a chain. An appropriate 

formalism for representing the dependency-sequences is the 

so-called “Channel Dependency Graph” (CDGs) [9] which 

is widely used for detecting low-level deadlocks of routing 

algorithms.  

Since this work addresses deadlock-free routing algo-

rithms there is no cycle in the latency-dependency se-

quences and they eventually terminate to cores, where there 

isn’t any following node after. Therefore for a given router, 

the latency between a given input-port and the core output-

port (i.e lat-i2c-Np) can be obtained independently from a 

single Markov chain. So by beginning from cores we com-

pute the mean latency of each node of the sequence and use 

it to compute the mean latency of its backward dependent 

node and continue until the desired latency. Latency depen-

dency sequences and consecutively the latency computing 

order are tightly dependent on NoC topology, routing algo-

rithm, and traffic pattern. The following subsection shows 

how we determine the latency computing order for the ex-

ample of a 2D-mesh NoC using X-First routing algorithm.     

4.1 2D-mesh NoC 

Figs 5 and 6 demonstrate the dependency sequences in-

volved with the latencies between the core input port of N3,5 

and its south and east outputs respectively.  

 

Fig.5 Computing order for mean latency between core and 
south ports of N3,5 (Lat-c2s-N3,5) 

The mean latency from the core to the south of N3,5 (lat-

c2s-N3,5) is involved with a dependency sequence extending 

until N3,1 (lat-n2c-N3,1). According to x-first routing, pack-

ets are routed first on x axis then on y axis. Disrupting 

packets (wide arrows in fig.5) competing with the tagged 

packet for the south output, arrive from north, east or west 

of N3,5 and they address one of the cores C3,4 , C3,3 , C3,2 or 

C3,1. For example a disrupting packet from north of N3,5 

occupying the south output could be routed to either core or 

south ports of N3,4, each of them could be blocked by other 

packets. Therefore both latencies of lat-n2c-N3,4 and lat-

n2s-N3,4 are needed for lat-c2s-N3,5. In the same way lat-

n2s-N3,4 depends on lat-n2c-N3,3 and lat-n2s-N3,3 and so on. 

In the worst case, as shown in fig.5, the sequence of 

blocked packet may extends until the core C3,1 which is the 

end of dependency (there is no other output choice regard-

ing x-first routing). So the latency computation order begins 

with lat-n2c-N3,1 and backs up toward N3,5. 

 

Fig.6 Computing order for mean latency between core 
and south ports of N3,5 (Lat-c2s-N3,5) 

In the case lat-c2e-N3,5, the sequence of blocked packets 

does not only expand to east direction but also to south and 

north directions (such as the example shown in fig.6). La-

tency computing order in this case begins from south and 

north extremities (filled nodes in fig.6) and from east to 

west. 
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5 Iterating Refinement 

As mentioned before each time the output port o at node 

Np is blocked by a disrupting packet, the later causes a delay 

in front of the stalled packet. This delay results in increasing 

the probability of the presence of data passing from link i to 

link o. So, approximating the probability of data presence 

with the data rate (equation *) is only correct in quasi-zero 

loads, where the probability of contention is almost zero. To 

refine this preliminary approximation, we should consider 

the reciprocal impact of different flows which compete for 

the same output, on each other. If lat-i2o-Np is the average 

delay imposed to each packet to traverse node Np, and L is 

the packet length, we have: 

L

N_o2i_LatL
)N_o2i_Lat(FP

p
iopio


   

To compute and refine the reciprocal impact of different 

flows (which address the same output of a router) on each 

other we perform iterations on all of the competing inputs 

of that router. In each iteration, one of the competing inputs 

is marked as the tagged packet input (iTag) and others are 

marked as disrupting packet inputs. For example in fig.8 

four inputs i1, i2, i3 and i4 of router Np compete for the out-

put o. Each iteration aims to compute the latency between 

iTag and o (lat-iTag2o-Np). So the tagged packet arriving from 

iTag is in contention with disrupting packet coming from the 

other inputs. The latency between iTag and o (lat-iTag2o-Np) 

is obtained from our Markov chain model (fig.3), in which 

the probabilities and delays are taken from the previous 

iteration.Table.1 shows five iterations corresponding to 

fig.8. For the first iteration the link transfer delay, caused by 

each disrupting packet is approximated only with the length 

of that disrupting packet and we obtain lat-i12out-

Np(iter_1). The later is then used in the second iteration to 

approximate Dly-link-xfr of a disrupting packet coming 

from i1 (i1 is the tagged packet in iteration 1 while it is con-

sidered as a disrupting packet in iteration 2). As shown in 

table.1 the iterations loops (for example in the fifth iteration 

i1 is again considered as iTag). As soon as two successive 

iterations for the same iTag is less than a constant ε (deter-

mined by the desired accuracy) we can stop the iteration for 

that input. The iteration approach provides the latencies of 

reaching a given output port from all possible input ports of 

a given node. 

 

Fig.8 Iterating calculation on different inputs (i1, i2, i3, 
i4) competing for obtaining the same output (out) 

Figs 4 and 5 demonstrate the accuracy of the iteration 

approach for the router N15 (the upper left router) in a 5x5 

2D-mesh NoC where only two input ports south and east 

compete for the core output port. In iterations 1, 3 and 5 the 

tagged packet arrives from east and disrupting packet from 

south and in iterations 2, 4 and 6 is the inverse. For ε=0.01 

both mean latencies (lat-e2c-N1,5 and lat-s2c-N1,5) converge 

for a total of 6 iterations.

Table 1. Iterations corresponding to fig 8 

Iter 
num 

Tag 
(iTag) 

Disrupting 
input 

Contention probability  
(Pr-i2o-Np) 

MC Result = Computed latency 
(lat_iTag2o_Np) 

1 i1 

i2 Pi2-to-o = F(0) 

Lat_i12o_Np (iter 1) i3 Pi3-to-o= F(0) 

i4 Pi4-to-o= F(0) 

2 i2 

i1 Pi1-to-o = F(Lat_ i12o_Np (iter 1)) 

Lat_i22o_Np (iter 2) i3 Pi3-to-o = F(0) 

i4 Pi4-to-o = F(0) 

3 i3 

i1 Pi1-to-o = F(Lat_ i12o_Np (iter 1)) 

Lat_i32o_Np (iter 3) i2 Pi2-to-o = F(Lat_ i22o_Np (iter 2)) 

i4 Pi4-to-o = F(0) 

4 i4 

i1 Pi1-to-o = F(Lat_ i12o_Np (iter 1)) 

Lat_i42o_Np (iter 4) i2 Pi2-to-o = F(Lat_ i22o_Np (iter 2)) 

i3 Pi3-to-o = F(Lat_ i32o_Np (iter 3)) 

5 i1 

i2 Pi2-to-o = F(Lat_ i22o_Np (iter 2)) 

Lat_i12o_Np (iter 5) i3 Pi3-to-o = F(Lat_ i32o_Np (iter 3)) 

i4 Pi4-to-o = F(Lat_ i42o_Np (iter 4)) 

… … … … … 
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Fig.9 Iterations 1, 3 and 5 for eastcore of N1,5 

 

Fig.10 Iterations 2, 4 and 6 for southcore of N1,5 

6 Experimental results  

In order to experimentally evaluate our analytical method we 

have targeted a NoC architecture arranged in a two dimensional 

mesh (2D-mesh) topology with an x-first routing algorithm (also 

called x-y or dimension-ordered) that sends packets first on x 

then on y axis. X-first algorithm is deterministic, deadlock-free 

and it guarantees the in-order delivery property of the network 

[27]. 2D-mesh topology and x-first routing algorithm are ade-

quate choices for regular and homogeneous NoC architecture. 

DSPIN and ASPIN are two NoCs with such characteristics [8]. 

Considering an n*m two-dimensional mesh, distribution traf-

fic matrix D has n
2
*m

2
 elements. According to the uniform traf-

fic pattern each source p sends uniformly the same fraction of its 

generated load (offered-load) to any of the other (n*m)-1 desti-

nation q. Also all cores generate data with the same offered-

load, so the total load sent from the source p to the destination q 

i.e. the (p , q)
th

  element of distribution matrix D is: 












qp0

qp
1m*n

adoffered_lo
d pq  

For a given router the average rate of data crossing link i is: 

λi = si* offered_load / (n*m-1) 

In this experiment we stay at the network layer, and cores 

(local subsystems) are considered as sinks (i.e. the cores are 

always ready to accept the incoming packets with the constant 

rate of one flit per cycle). Thus the transfer delay to cores is 

approximated with the mean-value of packet-length. Generating 

and steady-state analysis of Markov chains has been done by 

using CADP toolbox [26]. Different paths of a 5x5 2D-mesh 

NoC were examined for several offered-loads. Latency versus 

offered-load curves for the paths N5,3N3,5, N1,5 N5,1, 

N3,1N3,5, and N5,3N1,3 are presented in figs. 11, 12, 13 and 14 

respectively. We remind that these paths are analyzed separately 

while all nodes send packets to all other nodes according to a 

uniform pattern. Results obtained by our analytical method are 

compared with results of a corresponding SystemC CABA simu-

lation platform. Mean packet length for all cores is equal to 10 

flits. According to the simulation models router latency (Dly-

router-N) is 3 cycles. Offered-load is expressed with the average 

number of flits per 100 cycles.  

In the simulations for each path and for each offered-load we 

have taken the average latency of 1000 received packets. Model-

ing an infinite source buffer between each traffic generator and 

the network, indispensable during latency-load measurements 

[15, 27], enable us to observe the NoC saturation threshold. 

Without such buffers, generator stops the data injection every 

now and then and the real offered-load does not match the ex-

pected [15]. Once the NoC gets saturated, the source queues and 

consequently the average latency start growing exponentially. 

As can be observed, the inaccuracy of our approach (compared 

with the simulation results) is less than 5% for offered-loads less 

than 40%. After the offered-load 35% the NoC begins to be sa-

turated and the latency tends to infinity. Our method predicts a 

saturation threshold of 37% for this NoC architecture. 

7 Conclusion 

In this paper a novel method based on a simple Markov 

chain model has been proposed in order to compute the mean 

latency between two nodes of a given Network-on-Chip. It can 

determine as well the saturation threshold of the network within 

a good accuracy (comparing to simulation). Our method has 

been experimentally evaluated through different paths in a 5x5 

2D-mesh NoC and the results has been compared with the re-

sults of the corresponding SystemC simulations. 

The methodology is almost generic and adaptable to arbi-

trary NoC topology and deadlock free routing algorithms. It 

basically addresses deterministic routing algorithms, but also 

those adaptive algorithms in which the fraction of total data sent 

through each of the possible paths between a source and a desti-

nation can be determined, with the hypothesis that the actual 

choice remains probabilistic. It works for applications that could 

be formalized into the form of a distribution traffic matrix, indi-

cating the data rate each core sends to the others. The method 

covers the output allocation arbitration mechanisms in which the 

selection between simultaneous packets on the inputs is “fair” in 

the sense that the arbitration is starvation-free so in the long run 

it gives equal probability to all inputs for acquiring the shared 

output. Concerning the high level (end-to-end) flow control, we 

should mention that it is initially out of the scope of this work 

since the packet latency is considered from when its header ar-

rives into the network layer until the moment it gets out of the 

network, while end-to-end flow control is implemented either in 

network interface or application layers. Although currently we 

do not cover the case of several VCs, we believe that if the dis-

tribution of traffic on each virtual network is specified (to have 

one traffic-matrix and one routing function per virtual network) 

then it is possible to extend our method to several stages of arbi-

tration within each router. A comprehensive study of this possi-

bility is left for future work. 



 8 

 

Fig.11 latency/load curve for N5,3N3,5 

 

Fig.12 latency/load curve for N5,1N1,5 

 

Fig.13 latency/load curve for N3,1N3,5 

 

Fig.14 latency/load curve for N5,3N1,3 
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