Science of Computer Programming 77 (2012) 375-392

Contents lists available at SciVerse ScienceDirect

cience of Computer
rogramming

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

A model-extraction approach to verifying concurrent C programs
with CADP*

M.M. Gallardo?, C. Joubert bx P Merino?, D. Sanin?

2 Universidad de Mdlaga, Spain
b prodevelop/Universitat Politécnica de Valéncia, Spain

ARTICLE INFO ABSTRACT
Article history: The development of reliable software for industrial critical systems benefits from the use
Received 13 August 2010 of formal models and verification tools for detecting and correcting errors as early as

Received in revised form 1 October 2011
Accepted 3 October 2011
Available online 19 October 2011

possible. Ideally, with a complete model-based methodology, the formal models should
be the starting point to obtain the final reliable code and the verification step should be
done over the high-level models. However, this is not the case for many projects, especially
when integrating existing code. In this paper, we describe an approach to verify concurrent

g?fx‘l/voaris.model checking C code by automatically extracting a high-level formal model that is suitable for analysis
Data flow analysis with existing tools. The basic components of our approach are: (1) a method to construct
Labeled transition system a labeled transition system from the source code, that takes flow control and interaction
Boolean equation system among processes into account; (2) a modeling scheme of the behavior that is external to
CADP verification toolbox the program, namely the functionality provided by the operating system; (3) the use of

demand-driven static analyses to make a further abstraction of the program, thus saving
time and memory during its verification. The whole proposal has been implemented as an
extension of the CADP toolbox, which already provides a variety of analysis modules for
several input languages using labeled transition systems as the core model. The approach
taken fits well within the existing architecture of CADP which does not need to be altered
to enable C program verification. We illustrate the use of the extended CADP toolbox
by considering examples of the VLTS benchmark suite and C implementations of various
concurrent programs.

Published by Elsevier B.V.

1. Introduction

Static analysis [1] and model-checking [2] techniques have been widely used over the last 30 years to help prove the
correctness of systems and to find critical errors in their design. In recent years, the use of model-checking techniques on
program source code, which is commonly known as software model checking, has become a promising way for the automatic
verification of software, demonstrating that programs are reliable with regard to a specification. Software model checking
aims to make it easy for engineers to use powerful traditional model-checking techniques without needing to manually
convert the source code of a program into a formal high-level specification language such as Petri nets, SDL, or labeled
transition systems (LTSs). Therefore, since it can be used by non-expert users, software model checking appears to be an
excellent way to prove system correctness, especially when the project involves existing code. This paper presents novel
contributions to the combination of static analysis and software model checking for concurrent C programs.

* This work has been supported by the Spanish MICINN under grants TIN2007-68093-C02, TIN2010-21062-C02-02, FEDER, the MICINN INNCORPORA-
PTQ program, and the Generalitat Valenciana under grants Emergentes gv/2009/024 (TAAS) and PROMETE02011/052.
* Corresponding author.
E-mail addresses: gallardo@lcc.uma.es (M.M. Gallardo), joubert@dsic.upv.es (C. Joubert), pedro@lcc.uma.es (P. Merino), sanan@Icc.uma.es (D. Sanan).

0167-6423/$ - see front matter. Published by Elsevier B.V.
doi:10.1016/j.scico.2011.10.003

http://dx.doi.org/10.1016/j.scico.2011.10.003
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:gallardo@lcc.uma.es
mailto:joubert@dsic.upv.es
mailto:pedro@lcc.uma.es
mailto:sanan@lcc.uma.es
http://dx.doi.org/10.1016/j.scico.2011.10.003

376 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Automatic verification of C code has been addressed in many previous proposals. Some of them are based on the
construction of model checkers for C from scratch, like SLAM [3,4], BLAST [5], or COCCINELLE [6]. A different and appealing
approach is to reuse existing model-oriented, model checking tools by constructing model extractors. That approach is
based on producing a high-level model that can benefit from existing tools for verification, simulation, visualization and
other model-based processing capabilities. Some standard examples are MODEX [7], BANDERA [8], or JPF [9].

In the present work, we aim to leverage the capabilities of the Construction and Analysis of Distributed Processes (CADP [10])
toolbox to verify concurrent C programs based on model extraction. CADP plays a unique role in the formal verification
community. It offers an open environment for both on-the-fly, e.g., demand-driven, and global explicit verification of
asynchronous distributed hardware and software systems with interleaving concurrency. Such systems are internally
described by timeless labeled transition systems and modal mu-calculus properties, i.e., branching and linear time logical
properties. Verification runs are carried out using parallel computers as well as either breadth-first or depth-first search
strategies. CADP provides a software framework called OPEN/CASAR [11] to easily connect new languages and compilers
to CADP verification tools and to connect new verification functionalities to all CADP language inputs through an implicit
(only defined by a successor function) language-independent LTS model.

In this paper, we present a way to extend the CADP environment in order to include the C language as an input formalism
in this environment, using model extraction and reusing the model-oriented functionality of all the modules in this toolbox.
However, due to the complexity of large C programs, we should also take care of the state space explosion problem. To this
end, static analysis methods are used to compute program variables that are not needed during the verification of specific
properties. Thus, the model can be optimized by eliminating the program variables from the state vector in order to obtain
reduced state spaces. In summary, the main contributions of the paper are the following:

1. a model-extraction method to generate both an abstract control flow graph (ACFG) and state space as implicit LTSs from
concurrent C programs;

2. an influence analysis framework based on model-checking techniques to optimize the state space generation; and

3. the implementation of both proposals as extensions of the standard CADP distribution.

The model-extraction method relies on two main features. On one hand, the operating system APIs, like the socket API,
are modeled. This means that any program using the API can have one fixed model of the API calls. On the other hand,
an abstract model of the program is built using metamodeling techniques provided by XML. The metamodeling approach
facilitates the generation of various output representations, namely implicit LTSs, to perform verification.

Compared with related works, this paper presents several novel contributions. From the point of view of representing C
code with high level models, LTSs can be used by the wide range of applications which constitutes CADP, and models are
not limited by a single analysis tool, as in the case of SPIN/PROMELA [7]. Moreover, different representations of the same
program can be extracted using the LTS model. For instance, our model-extraction approach can generate both an implicit
ACFG and an implicit program state space. The method applied in this paper to achieve influence analysis using on-the-fly
model checking is also new, and it allows us to present new and well-known data flow analyses in a unified manner in
terms of a local and incremental resolution of boolean equation systems (BESs). This technology is central to various on-
the-fly verification problems on finite-state concurrent systems, like model checking, equivalence checking, partial order
reduction and test generation [12]. On-the-fly techniques aim at solving the analysis problem by dynamically constructing
only those parts of the model that are necessary for computing the results. Because resolution time and memory complexities
of alternation-free BESs are linear in the size of the program model [13], the use of BESs is an appropriate and efficient way
to solve data flow analysis. Section 5 contains a more detailed comparison with related work.

The implementation of model extraction and static analysis is done within the OPEN/CASAR environment of CADP.
This framework presents a modularized architecture that decomposes tools into three main components: graph module,
exploration module, and libraries module. This approach eases the integration of new languages and tools to the CADP
toolbox. To verify C code with CADP, two new modules have been added to it: C.OPEN and ANNOTATOR. On one hand, C.OPEN
uses an interface provided by OPEN/CASAR to generate a graph module that describes both the implicit LTSs for ACFG and
the state space. On the other hand, ANNOTATOR adds a static analysis module to the generic OPEN/CASAR environment,
and it makes use of the generic CASAR_SOLVE library of CADP that is dedicated to local resolution of alternation-free BESs.
Thanks to these two new modules, the different existing CADP tools can now perform bisimulation, reduction, or verification
of C concurrent programs based on well-defined APIs.

This paper is organized as follows: in Section 2, we show the basis of our C model extractor in OPEN/CASAR; Section 3
describes the fundamentals of static analysis within OPEN/CASAR. In Section 4, we present the two new tool components,
namely C.OPEN and ANNOTATOR as well as some experimental results and verification scenarios on two real C concurrent
programs. The comparison with related work is given in Section 5. Finally, Section 6 concludes and considers future
directions of work.

2. OPEN/CASAR-compliant model extractor for the C language
Introducing errors in C concurrent programs is usually very easy (like those using shared memory or message passing

for the communication between processes). Moreover, the detection of these errors with the traditional method of testing
(i.e., the manual execution of the processes trying to detect any error) is a very complex task, and, after many executions,

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 377

we cannot ensure that our programs are free of errors. Therefore, formal techniques like model checking are very suitable
for verifying the correctness of these programs.

CADP (Construction and Analysis of Distributed Processes)' [10] is a toolbox for multiple specification languages (LOTOS,
MCRL, SDL, networks of communicating automata, etc.), step-by-step simulation, rapid prototyping, verification, test
generation, and performance evaluation of concurrent processes with message-passing communication, i.e., asynchronous
systems. For that purpose, CADP provides an extensive set of efficient analysis tools, such as for model checking, testing,
or performance evaluation tools. It has been successfully applied in domains like avionics (Airbus) [14], multiprocessor
architectures (e.g., verification of crucial parts of Tera10 [10], France’s most powerful supercomputer) and bioinformatics
(e.g., verification of genetic, metabolic, and signaling networks [15]). In this section, we provide a method to verify concurrent
software using well-defined APIs with CADP following a model-extraction methodology. These APIs provide access to the
functionalities offered by the operating system through external system calls. Both the behavior of the external call to the
API and the C code using external functions are modeled into a formal description. This formal description is then verified
with CADP.

In the context of CADP, the model-extraction technique consists of generating an LTS according to the OPEN/CASAR
interface. A program model is generated from the C code, and from the definition of each external function call belonging to
the well-specified API. Two different implicit LTSs can be generated from the program model: an abstract control flow graph
(ACFG) for static data analysis and a program state space, both of which are compliant with the CADP toolbox. An ACFG is
a specialized control flow graph where vertices are the program points and edges correspond to the information needed
for the static analysis, namely the list of program variables used and defined in the program instruction fired between the
program points.

2.1. Concurrent program model

A program model, called process graph, can be defined as an automaton I" = (S, so, L, T, E), where S is the set of states of
the process graph and sy € S is the initial state. L is the set of labels that contain blocks of C code or system calls. T = S xLx S
contains the possible transitions in the graph. As usual, each transition (sq, I, s;) € T represents the execution of the label [
that leads the process from state s; to s,. Finally, E C S is the set of end states.

Fig. 1 shows the algorithm that generates the process graph. Each sentence s in the code is analyzed to establish whether
it is an external API call, a control flow statement, or a procedure call. In the last two cases, each sentence in s is also
analyzed to determine whether it contains API calls. The operational model semantics defined for each API is used to create
a model for each external call. An example of this semantics is given in [16] for a linux device driver. The transformation of
each external API call basically consists of adapting its function parameters to the specification of its model: if the model
contains additional arguments, like control error variables, they will be added in the model, whereas parameters that are not
necessary will be removed. Then, control flow statements and procedure calls have to be unfolded if they contain any API
calls. Otherwise, they are simply treated as a common C statement. Thus, the statement generate s transitionsatline
14 of Fig. 1 studies the type of control flow statement of s (it decides whethersisan if,if .. else,switch-case, for,
whileordo ... while statement),and it creates the necessary nodes and transitions in the process graph to represent the
control flow condition. Moreover, the statement generate s transitions executes the main procedure that generates
the process graph to unfold the body of the control flow statement in a recursive way. The other C statements that do not
contain any external calls are grouped into a single transition in the process graph. These basic blocks are considered to
be atomic: no context switches can occur in the middle of these blocks. They only read and modify local variables. Global
variables are accessed through asynchronous communication, semaphores, or other synchronization mechanisms, and they
can be referenced with the API model for shared memory. Atomic blocks are used to decrease the number of global states
generated in the system. Notice that the source code has to be available to analyze it and manage procedure calls. In
summary, the set L contains two types of labels: atomic blocks of C statements that do not include any external call and
labels that represent a single system call.

The code in Fig. 2 shows an implementation snippet of Peterson’s mutual exclusion (PME) algorithm [17]. The PME
protocol is a well-known concurrent algorithm that is used to avoid two or more processes from simultaneously accessing
common shared data. To prevent data from being in an erroneous and inconsistent state, the PME protocol protects critical
sections of code that accesses shared data so that other processes that read from or write to the data are excluded from
running.

In the case of the PME implementation, for example, some shared memory functions are used. We use the API model
given in Table 1. It defines four basic shared memory functions that are used in the PME code, namely screate, swrite,
sread, and sclose. In the model, the shared memory is organized in regions (denoted as reg. in Table 1) which allocate the
shared variables. Each region is identified by a region name assigned by the screate function which has three arguments:
reg.name, reg .size, and data. If reg.name does not exist in the shared memory, screate adds a new region with the size and
default data indicated by the reg.size and data, and it returns the region identifier reg.id that is associated with this region.
Otherwise, if reg.name was previously added to the shared memory, screate just returns the region identifier reg.id of

1 http://www.inrialpes.fr/vasy/cadp.

378 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

0: Input Array[] of sentences procedure

1: Node next,n=sq; Array[] of sentences chlock
2: for each sentence s in procedure

3: ifsis APl call

4: generate C code transition (n,cblock,next)
5: cblock=empty

6: n=next

7: next=generate API call transition (1,s)

8: n=next

9: else if s is (control flow sentence or procedure call)
10: if s contains API calls

11: next=generate C code transition (n,chlock)
12: cblock=empty

13: n=next;

14: next=generate s transitions (1,s)

15: n=next

16: else

17: add s to chlock

18: endif

19: else

20: adds to chlock

21: endif

22: endfor

23: if cblock not empty

24: next=generate C code transition (n,cblock)
25: cblock=empty

26: endif

27: end=next

Fig. 1. Process graph generation algorithm.

int main (int argc, char **argv){
unsigned int flag0_des, flag1_des, turn_des;
int flag0_value, flag1_value, turn_value;
int flag0_res, flag1_res, turn_res;
int pid, initial_value;

9: pid=(pid+1)%2;

10: while ((*(int *) sread (flag1_des) == 1)

10’: (*(int *) sread (turn_des) == 1)){

11: printf ("Waiting for process %d \n", pid);

/ /
[* Critical section */

12: pid=(pid+1)%2;

13: printf ("Process %d is in critical section \n", pid);
[* end of critical section®/

14: flag0_value=0;

15: ..

Fig. 2. Snippet of Peterson’s mutual exclusion C code.

that region. In addition, each region of the shared memory internally stores the number of processes accessing it. The other
functions use the region identifier reg.id to access some shared variable. Function swrite writes data_size bytes of data in
the region specified by reg.id, and returns an error code if reg.id does not exist or if data_size is greater than the data size
specified during the creation of the region with screate. To read the data from the shared memory, sread takes reg.id
and returns the stored data or returns null if reg.id is not in the shared memory. Finally, sclose decreases the number of

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 379

Table 1

Shared memory API model functions.
Func. screate swrite sread sclose
arg 1 char* reg.name intreg.id int reg.id int reg.id
arg 2 int reg.size void* data
arg 3 void* data int data_size
return intreg.id int code void*data int code

L9:pid=(pid+1)*2

L10:tempO=sread(flagl_des) L11:c_block{

printf("waiting for process %d\n",pid);
}

[tempO0==1&&templ==1]

L10":templ=sread(turn_des)

[{(tempO==1&&templ==1)]
L12:c_block{

pid=(pid+1)%2;
printf("process %d is in criticgl section\n",pid);
flag0_value=0;

} @)
Fig. 3. PME process sub-graph.

references to reg.id, and eliminates region reg.id if the number of references reaches zero. If reg.id does not exist, sclose
returns an error code. Other software model checker tools such as BLAST, which do not focus on the analysis of well defined
APIs, do not employ such elaborate methods for modeling the external call transformation, but they give users the possibility
of implementing dummy functions with the prototype of the original call.

When applied to the PME program, the process graph in Fig. 3 is obtained where each state corresponds to a program
point (numbered in the comments in Fig. 2), and each edge in the graph represents an external function call or an atomic
C code block that is labeled using the algorithm in Fig. 1. It is worth noting that the task of constructing the API model is
feasible with only moderate effort. In practice, the code that is necessary to model each API call is much smaller than the
current implementation in the operating system. Most of the work consists in defining the behavior of a set of related calls
in such a way that these calls can be executed in a closed environment, updating the data structures to be used in our model
graph. As an example, the entire API model described in Table 1 was implemented in 600 lines of C code, whereas a shared
memory library (shm. [c,h] and wutil. [c,h]) which is part of IPC in Linux is about 2 350 lines of code. In [16], we
checked the behavior equivalence of the implementation of external functions with their true implementation.

2.2. Abstract control flow graph (ACFG)

In the context of live variable analyses, a traditional approach to represent the set of used and defined program variables is
the construction of the so-called define-use chain [18,1]. This data structure lists all the read accesses that are associated with
each write access to a program variable. This structure needs to be constructed a priori for the whole program, and it does
not allow the application of demand-driven, graph-based analysis methods. In this paper, we are not only interested in live
variable analyses but also in data flow analysis based on forward or backward computation and set union or set intersection
operators. In order to build a representation of the program behavior that is independent of the program language and type
of data flow analysis, and one that allows graph-based analysis algorithms, we have chosen to construct a labeled transition
system (LTS), whose states correspond to the program points and whose labels only contain the aspects that are relevant to
the program property under analysis [19]. We have identified a list of program elements that can be grouped and labeled
to form a language-independent description of program instructions. Table 2 provides this list of program elements and
their corresponding abstract labels. Hence, all variables modified in a program instruction are listed after the keyword
:MODIFY. The same applies for all variables used in a program instruction; they are listed after the keyword :USE, and
so forth. It is then possible to construct an LTS from the standard control flow graph of the program, where each label
corresponds to an abstract program instruction. This LTS is called an abstract control flow graph (ACFG) and it is defined

380 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Table 2
Translation of program instructions into ab-
stracted labels.

C program instruction Label

Type Example

Assignment y = ..; :MODIFYy
Load =Y ; :USEy
Boolean (..>..) :BOOL
API call read(...); :API
Assertion assert(...); :ASSERT

©

:MODIFY gid:USE pid

C

{_des:BOOL:API

:USE flagl_des tyn_des:BOOL:API
y

:MODIFY [lag0_value

Fig. 4. ACFG of the PME C code snippet prior to influence analysis.

asatuple M = (S, A, T, so), where S represents the set of states of the ACFG (typically the execution points of the program),
A represents the abstract labels of the program statements as defined above, T = (sq, a, s;) with s;,s; € Sanda € A
represents the set of transitions of the ACFG and s is the initial state. The abstract information in the ACFG labels enables
users to verify a specific category of properties about the program. By adding or removing information in the ACFG, different
analyses can be achieved. For example, to perform the influence analysis [20] of the PME C code w.r.t. the shared memory
model presented in Section 2.1, the compiler constructs the implicit ACFG (partly) described in Fig. 4 (the full ACFG contains
20 states and 20 transitions), where the instructions of the PME program are abstracted. For the influence analysis, the only
information necessary is the API calls, boolean expressions, and used/modified program variables. Each state of the ACFG
corresponds to a point in the program, which is indicated in a comment on the left part of the PME C code description in
Fig. 2. Labels show the use and modification of four program variables, namely pid, flag1_des, turn_des, and flag0_des, and
indicate boolean expressions and calls to the shared memory API. The resulting ACFG can be used directly as input by a
static analyzer computing the influence analysis of the program variables. If we wanted to perform a standard analysis like
the very busy expressions analysis, the abstract labels would be enhanced with a list of non-trivial arithmetic and boolean
expressions used in each program instruction [19].

2.3. Implicit program state space

In CADP, an implicit state space is defined by the implementation of an interface provided by the OPEN/CASAR
environment. This interface provides the user with the representation of the state and label that are parts of the underlying
implicit LTS, as well as the necessary primitives to deal with them. States store information about the system environment.
This information, which is known as state vector in model checking, can be global data of the system processes, like channels
in sockets or shared memory structures, as well as local data of each process. In order to minimize the size of the state space,
some techniques like influence analysis are used to store only the relevant data needed in each state to verify the system. It
is worth noting that some information on local and global data is always present in the state vector, namely the number of
running processes, their actual state, pid, and type.

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 381

In an LTS, a label represents the action performed to evolve from one given state to the following one. We can distinguish
between two kinds of actions: the ones executing an external call and the ones executing a block of C statements. The first
group is represented by an index that references each different external call and by the value of the parameters used. The
second group of labels, resulting from executing an atomic block of C code, is represented by the symbol “i”, which indicates
an invisible or internal transition. Transitions “i” are local to a process and do not affect external calls.

Moreover, OPEN/CZASAR provides two special primitives that are related to the transition between states. On one hand,
there is a primitive for initializing the system, which generates the initial state, i.e., it creates processes and it initializes the
data of local processes. On the other hand, there is another primitive that is responsible for generating all the successors
from a given state with its associated label.

Finally, transitions from state to state are constructed in two phases. First, for every system process, all outgoing
transitions are obtained from its process graph. Then, the associated code for each transition obtained is executed, resulting
in an appropriate update of the state vector variables and the production of the corresponding LTS label.

This model-extraction approach allows us to obtain a complete description of the program state space in an implicit LTS,
which is constructed dynamically using the successor function.

3. OPEN/CASAR-compliant data flow analyzer for implicit LTSs

Traditional techniques require an a priori construction of the whole control flow graph before starting the analysis. In
this section, we present demand-driven, also called on-the-fly, static analysis techniques that dynamically construct the
underlying control flow graph during the analysis. We illustrate our approach on an extended version of the live variables (LV)
analysis, called influence analysis (IA), which has recently been used to reduce the state space of a program via the so-called
abstract matching technique [21]. We will show how the boolean equation system formalism enables these demand-driven
analyses and we will illustrate this formalism on the PME C code example.

3.1. Influence analysis

Let M = (S,A, T, sp) be an ACFG, as defined in Section 2.2. Observe that, in this graph, states only represent control
points that the program flow can visit during execution. Therefore, we can define a data flow analysis over M as a function
dfa : S — 2P that attaches a set of denotations, elements of D, which give us safe information about the real data that may
occur at s during any program execution with each program point s € S. The manner in which D is defined depends on the
analysis to be carried out. For instance, in the classic live variable analysis (LV : S — 2P), the goal is to attach each program
point with the set of variables that are alive there, i.e., those variables whose value at this point may be needed later. Thus,
in this case, D must be defined as the set of all program variables, and x € LV (s) means that variable x is alive at point s.

Influence analysis (IA : S — 2P) was developed following the same criteria as classic data flow analysis. However, in
this case, the goal is to compute all influential variables w.r.t. a given set of program sentences that are declared as being
of interest (e.g., API calls) for each program point. Variable v is influential at program point s, if its current value at s may
be needed later either directly or indirectly through the value of other variables in some boolean expression or program
instruction of interest. Basically, IA extracts variables in each program point like LV analysis does but only considering a
subset of interesting instructions or expressions. The objective of this analysis is clear: when a variable does not influence
the expression of interest, it can be safely abstracted which, in many cases, leads to important reductions in the state space.

In [22], we developed different influence analyses, considering different expressions or instructions of interest. The
most precise analysis, denoted as IAreqchaniticy cOnsiders all possible program sentences as interesting. On the other hand,
[Agssertion also takes into account the variables in safety properties described in the code as assertions, which generates sets of
variables bigger than IAeqchabitity- ANalysis 1Az mulq 1S the least precise analysis, but in contrast, it preserves liveness properties
by considering all variables appearing in the temporal formulas to be verified as influential variables. Finally IAapj is an
extension that considers the variables contained in API calls as interesting. Hereinafter, we will use the case of IAppy, which
preserves properties that are related toAPI calls, and we will derive a p-calculus definition for this analysis from the one
that defines analysis LV.

The following alternation-free p-calculus formula [23] defines analysis LV :

¢y (v) = nuY.({a | used(v, a)) true) Vv ({a | —=modified(v, a)) Y)

where a € A, v € D (D being the set of program variables), used(v, a) is true iff variable v is used (i.e., read) in instruction g,
and modified(v, a) is true iff variable v is modified (i.e., defined/assigned) in instruction a.

Observe that formula ¢y (v) is recursive. The semantics of ¢y (v), which is usually denoted as [[¢rv (v)]1]};, is given in
relation to a labeled transition system M (the abstract control graph mentioned above) and an environment e : VAR — 25
that associates formula variables (for example, variable Y used above) with a set of program points. The value of ¢y (v) is
calculated by means of a fixpoint operator. The initial set of states 7y is composed of the states from which it is possible to
evolve through a transition where v is used. The following iteration produces 71, such that r, C 7y, with those states that
can evolve towards a state in 7y, through an instruction where v is not modified, and so on. Clearly, by the Tarski theorem,
the calculation of the fixpoint ends, and it gives us the set of program points where variable v is alive. As a consequence, we
should apply this formula for each program variable v to obtain the expected output of LV.

382 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Formula ¢y (v) can serve us as a guide to construct a temporal formula ¢apy that defines the IAppy analysis given
in [20]. As will be shown later, the correct ¢apj definition requires using value-based extension of the alternation-free
p-calculus [24]. This extension enables specifying data variables without propositional variables (e.g., Y(z)) and
parameterized fixpoints in the temporal formulas. In addition to the used(v, a) and modified(v, a) primitives, we also
introduce bool(a) and api(a), which respectively test whether a is a boolean instruction or an API call. The same construction
applies to the four IA variants presented above. We could define them as u-calculus formulae in [25].

dapr = nY (v :var).({a | used(v, a) A (bool(a) Vv api(a))) true
V {a | =modified(v, a)) Y (v))
V (a | modified(z, a) A used(v, a)) Y (z)

where a € A, and v, z are program variables. Formula ¢4 p; may be read as follows. For each program variable v € var, the
set of program states where v is an influential variable (w.r.t. API calls) is recursively built as the fixpoint of the sequence of
sets of states 1, 1, - - -. The initial set 7 is constructed with the program points from which it is possible to evolve through
a sentence a, such that a uses variable v, and a is a boolean expression or an API call. Observe that boolean expressions
must be taken into account because they define the control flow of programs. Now, the remaining sets are constructed by
applying the other two branches of the formula. Thus, on one hand, a state s belongs to t; if it is possible to evolve from s to
a state in 7;_; by means of an instruction a which does not modify v. On the other hand, variable v influences state s, if it is
possible to evolve from s to another state s’, where another variable z is of influence, through an instruction a that modifies
z and uses v. This last case collects those variables that are indirectly influent. Thus, for instance, if z is an influent variable
at point s, and we can evolve from s to s’ through instruction z = v, then it is evident that the value of v at s is influent and
must be stored. As commented above, this indirect relation can be defined in a relatively simple manner thanks to use of
the value-based extension of the alternation-free p-calculus.

As an example, given the snippet of PME ACFG in Fig. 4, we can evaluate the JApp; MCL formula above to answer the
following question: “Does the program variable pid influence state 9 of the PME ACFG?”. The boolean answer is given by
the computation of the parameterized propositional variable Y (pid), which is evaluated to false since no path exists from
state 9 leading to a state where pid is used directly or transitively in a boolean expression or an API call. This on-the-fly
evaluation of a temporal formula does not require the whole ACFG to be constructed in order to terminate. For instance,
states 8 and below (7, 6, etc.) are not explored in order to obtain the false value of Y (pid). This technique is particularly
adapted to programs that make use of library or third-party code for which it is not always possible to have the source code.

Nevertheless, in order to verify the above formula for different program variables and program points, it would be
necessary to realize each computation independently since standard on-the-fly model checkers do not allow the use of
previously computed formulae in the evaluation of additional similar temporal properties. That is why a lower level of
representation is needed, such as the boolean equation systems (BESs) [26,27]. Instead of a high-level translation between
flow equations and temporal formulas like the modal MCL, a low-level connection between a static analysis and a BES
formalism, has the following advantages: (i) persistent computation results between subsequent BES resolution calls can
be used to obtain an efficient overall resolution, since only one structure, the boolean equation system, is computed for a
given analysis; (ii) BESs allow static analyses to be combined with other verification techniques in a highly modular way;
and (iii) the resolution of a BES can benefit from the numerous optimizations developed in the literature and efficiently
implemented in state-of-the-art libraries [13].

3.2. Boolean equation system

In this section, we reformulate the demand-driven resolution of data flow analyses on ACFGs as the local resolution
of alternation-free BESs by generalizing the classical procedures used for the alternation-free fragment of the modal MCL
(L) [26,27]. Each data flow analysis is described by one generic alternation-free BES that can be applied to any program
represented as an ACFG.

Definition (A Boolean Equation System (BES) [26,28]). B is a set of blocks of fixpoint equations whose left-hand-sides are
boolean variables, and whose right-hand-sides are pure disjunctive or conjunctive formulas. Thus, assuming that X is a set
of boolean variables, a BES is a tuple B = (x, My, ..., M,) which defines the value of x € X by means of equation blocks
My, ..., M,. Each block M; contains a finite number (m; > 0) of fixpoint boolean equations M; = {x; = opiiXijljert,m-
Fixpoint operator o; = p (or v) is the same for each equation of block M; and establishes which fixpoint (minimal or
maximal) is defined by the block. Each equation in M; defines the value of a boolean variable x;; (1 < j < m;) through the
conjunction (or disjunction) of a set of boolean variables. Thus, for each equation, x; = op;Xj;, boolean operator op;; € {V, A}
is fixed, and the set at the right side X; € X represents the variables whose value is joined or intersected. For example

xE ¥V w V z could be a fixpoint equation of any block M;, if o; = u, Xj = X, 0p; = v and X;; = {y, w, z}.
Boolean constants false and true abbreviate the empty disjunction V¢ and the empty conjunction A{, respectively. A

variable x; depends upon a variable x, if x4 € Xj;. A block M; depends upon a block M if some variable of M; depends
upon a variable defined in M. A BES is alternation-free if there are no cyclic dependencies between two blocks. The local

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 383

(or on-the-fly) resolution of an alternation-free BES B = (x, M1, ..., M,) consists of computing the value of x by exploring
the right-hand sides of the equations in a demand-driven way, without explicitly constructing the blocks. Several on-the-
fly alternation-free BES resolution algorithms with linear time and space complexity are available in the literature [24,28].
To the best of our knowledge, no encodings of data flow analyses in terms of BES resolution have been proposed in the
literature.

Translation of IA4py analysis in terms of BES. Following the translation from state to Boolean formulas of [13], the encoding
of IAppj analysis in terms of BES is straightforward given the corresponding MCL formula as expressed above. Given an LTS
M = (S, A, T, so) that describes the ACFG, the resulting alternation-free BES is as follows:

X050V v Vo oxdve Vo x)
s—a>s’, s—a>s’, s—a>s/,
(M () 3)
wheres,s’ € S,a € A v,z € D, (1) represents used(v, a) A (bool(a) Vv api(a)), (2) represents modified(z, a) A used(v, a), and
(3) represents —modified(v, a).

The least fixpoint operator is stated explicitly by the boolean equation. The forward possibility modality (...)) operator
translates into disjunction over all successor states. Boolean expressions over states translate into boolean expressions over
actions. The IAp py formula is translated into a BES with single 1 block and variable parameter v of type D defining a variable
X, for each state and variable pair (s,v) € S x D, which expresses that variable v is influential at state s w.r.t. a specific API [25].
This BES can be solved using an optimized resolution algorithm based on a depth-first search for disjunctive equation blocks,
such as algorithm A4 of [13]. Here, the transformation from BES with parameter v into parameterless BES is direct since the
parameter v is part of the boolean variable definition. Hence, at most |D| boolean variables will need to be solved for each
state of the ACFG before the analysis is terminated.

As earlier, given the snippet of PME ACFG in Fig. 4, we can evaluate the above IAp py BES to answer the following question:
“Does the program variable pid influence state 9 of the PME ACFG?”. The boolean answer is given by the computation of the
parameterized boolean variable Xq ,;q, Which is defined as follows:

"
X9, pid = X10,pid
i
X10,pid = X11,pid V X12,pid
N
X11,pid = X10,pid
®
X12,pid = X13,pid
w
X13,pid = X14,pid
n
X14,pid = X15,pid
N
X15,pia = false

Variable xis pig is evaluated to false because state 15 does not have any successor state in the ACFG analyzed (empty
disjunction V). However, Fig. 4 is a snippet of the whole ACFG. Indeed, the real state 15 would have a successor state,
namely 16, which would be connected in turn to state 17, and so forth, up to state 19, the final state of the ACFG. Hence,
the BES construction would eventually also end up in a state without a successor. We considered state 15 as the final state
in the above example in order to make the computation shorter. The false value of variable ;s ;g can be propagated up to
variable xg ,ig, this means that the answer to the question “Does program variable pid influence state 9 of the PME ACFG?”
is negative. Solving the BES returns that variable xq g is false; hence, the program variable pid does not influence state 9
of the ACFG. A simple graph traversal over all states of the ACFG would finally indicate (via an algorithm from [19]) that
variable pid is not influencing any state of the ACFG. This result could be used in the context of abstract matching to reduce
the program state vector by eliminating the variable pid from it.

In the algorithm from [19], every transition in the ACFG is traversed exactly once per program variable or expression.
Furthermore, BES resolutions are linear in the size of the LTS [13]. Since the constructed BES is unique for all states given a
variable or an expression, the resolution of already solved boolean variables is done in constant time. Therefore, each call to
the algorithm has a worst-case time complexity O(|S|+|T|), considering that the number of tested variables and expressions
is significantly smaller than the number of states and transitions. The same bound applies for memory consumption, since,
in the worst case, every state will be stored in a set, taking into account that BES resolution has a linear memory complexity.

Following the same translation approach, we reformulated the demand-driven resolution of LV, VBE, AE, and RD analyses
as well as the four variants of IA analyses on LTSs as the local resolution of alternation-free boolean equation systems
(BESs) [19,25,20]. LV, VBE, AE and RD are perhaps the most famous examples of flow analyses and are meant to portray
backward and forward analyses with least and greatest fixpoint. A novelty of our work is the encoding of forward static
analyses (available expressions and reaching definitions) but in terms of forward operators (i.e., successor information) in
a BES. These analyses are usually defined in the literature using predecessor information. As a consequence, our encoding
enables us to obtain the direct on-the-fly resolution of a large variety of data flow analyses.

384 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Input Explicit LTS Network of
. LOTOS
formalisms (18 formats) LTSs (EXP)

C il CASAR

omprers BCGIO CAESAR.OPEN || EXP.OPEN

(.ADT)
Software . .
Explicit LTS Implicit LTS

env. (BCG) - (OPEN/CZASAR)

Cerifeation N —
. Compositional On-the-fly Partial-order Static

techniques verification verification reduction analysis

——

N

Model checking (XTL) Equivalence checking (BISIMULATOR

Visual checking (BCG-DRAW) Model checking (EVALUATOR)

N

Fig. 5. CADP software environments and functionalities.
4. C.OPEN and ANNOTATOR: CADP components for verifying C programs

CADP is designed in a modular way and puts the emphasis on intermediate formats and programming interfaces, such as
the BCG and OPEN/CASAR software environments, which allow the CADP tools to be combined with other tools and adapted
to various specification languages. Fig. 5 gives an overview of CADP software environments and functionalities.

The toolbox offers compilers for several input formalisms ranging from high-level protocol descriptions written in the ISO
language LOTOS to low-level protocol descriptions specified as finite state machines or networks of finite state machines.
Numerous forms of verification are supported by CADP: model checking (satisfaction of a modal p-calculus (MCL) formula
by an LTS), equivalence checking (comparison of two LTSs w.r.t. some equivalence/preorder relation), visual checking
(graphical inspection of an LTS), performance evaluation (analysis of Interactive Markov Chains represented as LTSs with
relevant delays), etc. CADP functionalities are based on several verification techniques, such as compositional, enumerative,
on-the-fly, symbolic, and massively parallel verification, as well as partial order reduction and static analysis.

Nevertheless, CADP does not yet offer software model-checking capabilities, such as C or language-independent static
analyzers.

Two new tools (named C.OPEN and ANNOTATOR) have been connected to the CADP toolbox [29]. These tools add the
possibility to analyze C programs using the CADP environment. While C.OPEN is a C compiler that generates the implicit LTS
described in Section 2.1 via the functions given by the CADP graph module interface, ANNOTATOR is a static analyzer that
performs on-the-fly data flow analyses (described in Section 3) and program slicing of the ACFGs described in Section 2.2,
which are represented as implicit LTSs via the functions of the OPEN/CASAR library.

4.1. Software architecture

Fig. 6 shows the link between C.OPEN and ANNOTATOR tools within the CADP toolbox. Both tools can be used jointly or
separately.

Jointly. First, COPEN extracts the ACFG of the analyzed C concurrent programs and compiles it into the OPEN/CASAR
intermediate format (i.e., implicit LTS with abstract labels as specified in Section 3). Then, ANNOTATOR statically analyzes
the ACFG and determines, for example, the active program variables w.r.t. well-defined API models.

Separately. C.OPEN can directly generate a program state space in the implicit LTS format or use the result returned by
ANNOTATOR to construct a reduced one. On the resulting implicit LTS, efficient CADP model checkers can be applied, such as
EVALUATOR (evaluation of regular alternation-free p-calculus formulas) and BISIMULATOR (equivalence checking). Hence,
CTL, ACTL, PDL, PDL- A, and regular alternation-free w-calculus properties can be verified on our C input programs, and our
C concurrent program can be compared to determine whether it is bisimilar to its specification.

The proposed tools are publicly available through the SMC project web pages.? Both new tools are rather small, robust,
and mature (in operation for about four years). Detailed manual pages are provided, including more than 25 program
examples and step-by-step small case studies.

2 http://www.gisum.uma.es/tools/smc.

http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc
http://www.gisum.uma.es/tools/smc

4.2. COPEN

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Input B
fpu C program
formalism (+ API model)
Compiler] C.OPEN

Software
Implicit LTS)
env. (OPEN/C/ESARy

/

Verification
Static
technique analysis

PN

Verification

tool ANNOTATOR

Fig. 6. Extension of CADP (Fig. 5) with C.OPEN and ANNOTATOR tools.

Verification .
[
FDTs ‘ PROMELAJ ‘ LTS J
T ‘*
SocketMC C.Open
T Ty
A TIze==Tl_ \
\\ T TN
Model
E2ElEy Pixel Model Vo
Input !
Language L_% L_C;_‘ ;ﬂ_‘

Memory management \

Concurrenc
Communication Files

Fig. 7. Model extractor architecture.

385

C.OPEN (Fig. 8) takes a C program as input and connects it to the OPEN/CASAR environment. Originally, CADP was
designed for the LOTOS and BCG input formalisms. However, many other works have extended the languages and
specifications accepted by CADP, namely the FC2 file exchange format, which is an object-oriented language that is
called BDL (Behavioural Description Language) [30], timed automata [31], genetic regulatory networks [32], and scheduler
specifications based on restrictions [33].

Following the model-extraction approach (Fig. 7), our compiler is composed of two components, called C2XML and
XML2LTS, which are written in JAVA and executed in sequence.

386 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Table 3
C.OPEN C language features not supported by C.OPEN.
Feature Problem Solution
Functions Recursive pointerto Folding not implemented Not addressed not implemented
extern Global access by all processes Code transformation: declare this variable as a shared
Variable modifiers variable
static Permanent variable data when exiting function ~ Code transformation: declare this variable as a global
variable in the state vector
register Low level access not addressed

To simplify the generation of the model, the original code is translated into an intermediate specification called PIXL [34].
PIXL is defined as a group of layered XML schemes, each of which contains a set of the most common characteristics
of languages that extend communicating finite state machines, such as PROMELA, Statecharts, or SDL. Therefore, PIXL
constitutes an intermediate language that represents the model in a consistent way for different analysis tools. C2XML
(2000 lines of JAVA code) performs the translation into the PIXL representation of the C program to be analyzed. It is worth
noting that C2XML uses JAVACC, which is a parser like lex/yacc in JAVA, with a C grammar to convert C to XML. Then, the
XML scheme of the source code generated by C2XML is used as input to XML2LTS(4500 lines of JAVA code) as well as an API
model, represented in XML, which indicates how the program model has to be sliced. This application carries out the steps
described in Section 2 to generate the OPEN/CASAR graph module that describes the implicit LTS, corresponding either to
an ACFG or to a program state space. Finally, C.OPEN executes a C compiler (e.g., cc or gcc) with the resulting graph module
and an OPEN/CASAR application, like ANNOTATOR or EVALUATOR, to generate an executable CADP verification tool.

4.3. Supported C subset and external functions

C.OPEN can manage most of the common C language statements including loop and selection control flow statements,
user functions, castings, arrays, and pointer operators: indirection *, reference &, and accessing to members of objects
pointed to by variables —. Moreover, C.OPEN can also deal with pointer arithmetic, one of the less common features of
current software model-checking tools for the C language. However, note that some C language features are not supported in
C.OPEN like recursive functions or some variable modifiers, like static orregister (see Table 3). One known limitation of
the model-extraction approach, which is also observed in the predicate abstraction paradigm used by the BLAST tool, is that
it only covers recursive functions if they do not contain well-specified API calls. Indeed, since API function calls are inlined in
the model, the inlining process would loop infinitely for recursive calls. Furthermore, recursive API functions would require
a dynamic state management to allocate new variables or to implement a more complex heap model. Another C feature that
is not supported by C.OPEN is function pointers, this is due to the inlining mechanism for managing functions. Moreover, the
current implementation of C.OPEN does not support scope declarations of variables like static and extern operations
that are on register or at a lower level. However this issue can be dealt with using code transformation: static variables
can be turned into global variables and the extern ones can be managed as shared variables. As a requisite, C.OPEN takes
preprocessed files where all pre-processing instructions have been compiled as input. In our tool, an arbitrary number of
variables can be dynamically allocated and heap size is dynamic. However, since the verification framework does not permit
the dynamic creation of processes, the number of processes has to be fixed statically.

To analyze programs that include external functions, such as dynamic memory system calls or socket APIs, a model of the
external functions that replace the original external functions during the verification must be constructed. As mentioned
above, in addition to the behavioral model, it may be necessary to provide an environment abstraction, which models
external elements such as buffers, memory heap, or user behavior. We have modeled various commonly used APIs, like
the well-known socket API in [35]. This model implements the standard functions to work with sockets: socket, bind,
connect, accept, read, write, close, and select. It provides the abstraction for some operating system facilities,
like channels and communication buffers, which are needed to properly model the socket interface. We also provided a
dynamic memory model and its heap representation in [16] to verify C programs that use dynamic memory allocation.
This model provides functions to allocate and dispose memory (malloc and dispose functions) and also functions for
accessing the memory heap model when using pointer operators over variables pointing to the dynamic memory. In [36],
we presented a model of the ARINC 653 interface that models most of the services offered by the interface. Finally, Section 2.1
presents functions for shared memory accesses that create, write, read, and close over shared memory areas for inter-process
communication.

4.4. ANNOTATOR

ANNOTATOR (Fig. 8) consists of two parts: a front-end, which is responsible for encoding the static analysis of LTS as a
parameterized BES resolution; and a back-end, which is responsible for a parameterized BES resolution, playing the role of
the verification engine. The front-end (750 lines of C code on average per analysis) takes as input the LTS that is associated
to the ACFG provided by C.OPEN and the type of analysis to be carried out. In the architecture of C.OPEN and ANNOTATOR,

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 387

API model C program
(.xml)

optional input/output argument
(-bes, -bfs, -formula, -xml, etc.)

C.OPEN J.
analysis [~ Y R
21
result | LTS % E_Q—\
™ exploration —=— .29 5| ar~
program A EEER
(xm % cae) | 2| H £ EE &2
2 <|3|9535/5| 2| & §
= . . S5l 3 ol 28| 8| 5
= static analysis SHEREEEENE
XMLILTS (e encoding 72 = E
2| g EIEE
£ § . (boolean 5 >zl 8
| ; g "y graph) 2
£ ceaesar_grap S 5}
g module 5 BES g
g L » |8 g
g =i
caesar =)
;M: library q: -))
a — J
4 J
5 & T)
Z caesar_solve —C J
m librar
5 | Y ANNOTATOR

Fig. 8. C.OPEN and ANNOTATOR tool architectures.

the flow from LTS exploration to the static analysis encoding is related to the demand-driven static analysis technique
introduced in this paper. Indeed, the implicit LTS description provided by C.OPEN to ANNOTATOR is only a successor function
that enables the successor states of a given state to be constructed in the ACFG under analysis. In order for ANNOTATOR to
locally build the ACFG, several LTS primitives of the C/ESAR library need to be invoked. We implemented modules that
translate each of the four influence analyses and each of the four classical data flow analyses presented in Section 3 into a
BES. BESs are represented implicitly by their successor function, in the same way as LTSs in OPEN/CASAR. The back-end is
obtained by using efficient algorithms of the CASAR_SOLVE library [13], which is part of the OPEN/CASAR environment in
CADP. Globally, the approach to on-the-fly static analysis is to both construct the LTS and the corresponding parameterized
BES on-the-fly and to determine the final value of boolean variables of interest. Only the part of both graphs that needs to
perform the static analysis is explored incrementally.

As output, ANNOTATOR produces static analysis results such as XML or textual files depending on the option selected by
the user. These formats allow post-processing of computed analyses by directly conveying the result as input to compilers
reading these formats, such as C.OPEN, which allows further compilation optimizations.

With respect to static analysis functionalities provided by CADP to date, there is only one static analyzer. It is embedded in
the CESAR compiler [37] and can only treat process algebraic specifications, like LOTOS. ANNOTATOR is the first stand-alone
static analyzer connected to the CADP toolbox that is usable at the CASAR.OPEN level (the LTS model, which is independent
from the input language). The BES transformation mechanism in ANNOTATOR served as the basis for a more advanced
static analyzer connected to CADP, namely the DATALOG_SOLVE tool, which analyzes JAVA programs by context-insensitive
pointer analysis [38,39].

4.5. Experimental results and verification scenarios in CADP

We performed a series of experiments to investigate the effectiveness of our new C.OPEN and ANNOTATOR tools.
Several experiments were devised to compare the results of our data flow analyses in terms of BESs with those observed
in the literature [18]. Twelve classical C program examples showing the value of using a data flow analysis to simplify
the compilation of a program were analyzed. In addition to the PROMELA examples extracted from the literature [22],
ten other C program examples specific to each one of the implemented influence analyses were considered. To show the
scalability of our static analyzer, ANNOTATOR was successfully tested on very large ACFGs that were extracted from the VLTS
benchmark?® with up to 10° program counters and instructions. These ACFGs were extracted from several programs from
the VLTS benchmark, for instance vasy_1112_5290 and vasy_2581_11442, by using the BCG_LABEL tool from CADP.
We defined some renaming rules as regular expressions so that BCG_LABEL could rename all labels of these VLTS into labels
in the use/def format of ACFGs labels. As a result, the generated ACFGs contain as many program counters and instructions
as states and transitions in the VLTS. As an example, the ACFG obtained from the vasy_1112_5290 benchmark contains
1112 000 program counters and 5290 000 program instructions.

Finally, to show the independence from the language input of our ANNOTATOR tool, a LOTOS description of the Dekker
mutual exclusion protocol was also analyzed with the nine currently implemented data flow analyses. All the ACFGs from
the C program examples were extracted by the C.OPEN tool.

3 www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg

388 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

Table 4
Reachability analysis results on the Peterson algorithm with CADP.
Use of C.OPEN and GENERATOR (CADP)
influence analysis ~ States Transitions Time(s) Memory (MB) State size (B)
N 719 1312 0.003 20 124
Y 583 1052 0.003 18 120

Descriptor File Table

)
Lun " File Model ‘
~
/User Model P1 D
10 Model Driver Model
id=open(file,mode /
read(id,buf,size) Device Model”
\close(id) % 1/0 operations
T *open ek ol@V_open
User Model P2 sread *dev_read
*write ~dev_write
id=open(file,node . ooy
write(id,buf,size) Cose dev_close
\close(id)) Semaphore control

Fig. 9. Component models for the device driver case study.

Our first verification scenario was the evaluation of the three fundamental temporal properties of a mutual exclusion
protocol on the C implementation of Peterson’s protocol [29]. The PME ACFG was analyzed considering the API influence
analysis by the ANNOTATOR tool. As shown in Table 4, C.OPEN used the output result of ANNOTATOR to reduce the PME state
space size by 20% (reduction from 719 states and 1312 transitions to 583 states and 1052 transitions). We should mention
that the IA5 py static optimization enabled by ANNOTATOR to decrease the program’s complexity is not just aremoval of dead
variables and the code that computes them (which could be computed by a standard live variable analysis). It removes all
variables that do not affect the a posteriori evaluation correctness of API call related properties. For instance, we successfully
checked one safety (mutual exclusion), one liveness (progress requirement), and one fairness (bounded waiting) property
on the PME reduced state space with the EVALUATOR model checker of CADP. It is worth noting that the minimized implicit
state space resulting from executing C.OPEN and ANNOTATOR can be used as input to other verification tools from CADP
(e.g., bisimulation, simulation, testing, etc.).*

To the best of our knowledge, well-established model checkers for C, like BLAST and SLAM, cannot be compared with
our implemented tools. The analysis of external functions in BLAST requires the user to provide postconditions over the
functions or function stubs that limit their behavior. The advantage of this approach is that the analysis is simpler with
the corresponding benefits of better execution time and memory consumption. However, this approach does not allow
the verification of properties related to the use of external functions, like system calls or functions that depend on the
environment. Indeed, BLAST does not provide complex models, like the sockets API or the shared memory API used in the
PME example with C.OPEN, to enable the verification of their use. In the case of SLAM, their approach is oriented towards the
analysis of drivers for windows systems that use the Windows Driver Model (WDM). Our proposal is oriented towards the
analysis of more general systems that are not restricted to the use of one particular dynamic memory model like in SLAM.
Systems can use other models, like the shared memory model in the PME protocol, which is not supported by SLAM.

Apart from this well-known PME toy example, we considered a second verification scenario inspired by real industrial
problems: a device driver for the Linux operating system [40]. The device driver is represented by a driver model and its C
implementation, which uses a well-specified dynamic memory API model. In order to verify that the driver satisfies a set
of properties, a C program that calls the driver must be designed and verified. Fig. 9 gives the complete model of the case
study composed of two user process models (a writer and a reader) and their C implementation as well as a model of the
well-specified stdio library (I0 model) that enables the user processes to access the driver.

This device driver was already analyzed by the SPIN model checker in [16]. From the models defined in this previous work,
we adapted the C implementations of the models to the OPEN/CASAR environment of CADP. One exception is the dynamic
memory APl model, which has not been modified. This model can be used directly in our C.OPEN tool. In our approach, the
memory model also contains a representation of the heap, whereas in the case of a real implementation, like malloc, it
would use the heap of the operating system. Our API model is implemented in 1300 lines of C code whereas ptmalloc2,
which is the current implementation of malloc in the glibc, is described in about 5 700 lines of code.

4 Full implementation, result details, and a thorough discussion on the Peterson case study are available at http://www.gisum.uma.es/tools/smc.

h

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 389

Table 5
Reachability analysis results on the driver model with CADP.

Elements C.OPEN and GENERATOR (CADP)

States Transitions Time(s) Memory (GB) State size (B)
5 230132 463187 4 0.21 806
10 1314154 2642134 91 13 806
15 3718241 7245286 590 3.8 806

Table 6
Reachability analysis results on the driver model with CADP using influence analysis.

Elements C.OPEN and GENERATOR (CADP)

States Transitions Time(s) Memory (GB) State size (B)
5 213353 424037 3 0.19 768
10 1077164 2146931 74 1.1 768
15 3416068 6817 115 550 35 768
Table 7

Reachability analysis results on the driver model with SPIN.

Elements SPIN

States Time (s) Memory (MB) State size (B)
10 37699 0.3 20,7 424
30 359500 3.15 152.6 424
50 1080041 114 447.5 424
70 2282522 185 939.3 424
100 5171881 473 2100 424

Table 5 gives the results of a reachability analysis of the device driver generated by C.OPEN together with the GENERATOR
tool of CADP. The case study is parameterised by the number of elements (from 5 to 15) to write or read through the device
driver. Table 7 shows the reachability analysis of the device driver generated by SPIN. Note that state spaces generated with
CADP are much larger than the ones generated with the SPIN-based solution. As can be observed in the table, the state space
size directly affects the performance results in terms of time and memory. The difference of state space size and performance
results can be explained by the optimizations that were manually implemented in the SPIN device drive model. As we want
to automatically generate the model in CADP from the C program without any manual implementation, these optimizations
were not directly ported to our CADP-based solution. In particular, we think that the number of states of the CADP model
can be significantly decreased by allowing blocking guards in statements and by grouping pointer sentences into atomic
blocks.

As can be observed, C.OPEN manages device models with up to 15 elements written to or read from the device. It
constructs an LTS with more than 3 million states and 7 million transitions on which safety properties, namely deadlock
freeness, have been evaluated by the EVALUATOR model checker. C.OPEN was also employed to generate an ACFG for each
component pread. c (104 states, 119 transitions) and pwrite.c (108 states, 124 transitions) of the device driver. Then,
ANNOTATOR was used with no modification w.r.t. the version presented in [29] to compute the API influence analysis on
each ACFG (resp. in 3 and 4 seconds). ANNOTATOR detected that 9 (resp. 10) variables out of 50 (resp. 51) analyzed variables
in pread. c (resp. pwrite. c) are not necessary to verify temporal formulas on the use of the device driver API. Tables 5
and 6 show that the size of the state spaces can be reduced by a factor of 10% when these influence analysis results are used
within C.OPEN.

5. Related work

In the last few years, many tools have been developed to verify C programs. They cover different methods and different
features in the input language. Instead of using explicit model checking, SLAM [3,4] and BLAST [5] are software model
checkers based on the counterexample-guided abstraction refinement theory. They have been used to check real device
drivers with respect to API usage rules. COCCINELLE [6] is a transformation tool for C programs. It identifies API protocols
and detects violation of their usage in device-specific code by evaluating CTL properties with standard model checkers.
MODEX [7] uses SPIN [41] in the verification of C code. BANDERA [8] verifies JAVA programs by translating the source code
into a model that can be expressed in the input language of several model checking tools, namely NUSMV [42] or SPIN.
The first version of JPF [9] also models JAVA programs into PROMELA specifications to be verified with SPIN. Other recent
projects, like MPI-SPIN [43], are devoted to MPI, modifying the core of the SPIN model checker to analyze parallel programs.

390 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

The closest proposal for verifying concurrent C programs based on well-defined APIs is our own work with the tool SPIN.
The SOCKETMC [35] tool was developed to verify programs based on the socket interface for process communication. We
worked with SPIN further to verify C programs that are connected to the ARINC 653 [36] interface (Avionics Application
Software Standard Interface). Another line of work introduced model abstraction in SPIN in order to reduce the complexity
of large systems [44]. Moreover, we defined a two-level logic (MALTL) that combined the LTL and CTL logics, as well as
LTL and modal mu-calculus, to analyze properties over programs that use dynamic data structures [16,45]. Most of these
previous results in model extraction can be reused in the CADP context, thereby allowing the verification of software with
the previously defined APIs. One example is the dynamic data model used in Section 4 to verify the device driver with
C.OPEN.

With regard to static analysis using on-the-fly model checking, the use of BES introduces new contributions compared
to other approaches. Traditionally, static analysis is done with global methods, as in standard algorithms based on use-
define chains [1,18] and the proposals centered on modal p-calculus logic (MCL) [23]. In contrast, our approach focuses on
demand-driven techniques to solve a considered analysis with no a priori computation of the control flow graph. Recently,
Zheng and Rugina [46] gave a demand-driven algorithm for an alias analysis which compares favorably to an exhaustive
solution, especially in terms of memory consumption. Our technique for data-flow analyses of C programs based on local BES
resolution goes in the same direction and provides a novel approach to demand-driven program analyses almost for free,
by directly using state-of-the-art BES solvers. To work at the BES level also opens new ways of combining static analysis
and model-checking techniques. We could think of combining the BES formulas that represent data flow analyses with
BES formulas that represent verification problems similarly to the combination of reduction techniques into equivalence-
checking problems in [47]. Moreover, on-the-fly methods are of importance when dealing with realistic, complex programs.
Indeed, constructing and handling the program representation becomes a bottleneck for large programs, and dynamic
solutions are useful during the design process. In our approach, both LTS and BES are constructed dynamically, thus saving
the generation of unnecessary parts of both structures for the given analysis. Another contribution of the paper is the
encoding of forward static analyses (e.g., available expressions and reaching definition analyses) only in terms of forward
operators (successor transition), whereas such analyses are defined in the literature using predecessor information. The
different analyses described are illustrated using examples of C programs and very large state spaces (LTSs) extracted from
the VLTS benchmark suite.>

6. Conclusion

Models in software are usually used in the specification/design phase and for code generation. Nevertheless, the use
of models is also convenient in other phases. This paper presents the analysis of C software with the model-extraction
technique. In particular, we use models to support model checking and static analysis. We use two kinds of labeled transition
systems to represent both the control flow and the state space of C programs. In addition, we use boolean equation systems
as the representation to conduct data flow analysis on LTSs. All these models constitute the core representation to perform
efficient verification of C programs with the CADP toolbox.

The experiments carried out using C.OPEN and ANNOTATOR on numerous standard examples assess the functionality
of our model-checking framework for C concurrent programs within CADP. This also demonstrates that the modular
architecture of our tools allows a rapid integration of new compiler optimizations and new static analyses described as
BES resolutions, as well as quick connection to existing compilers and verification tools in CADP. In the PME demonstration,
we successfully checked one safety (mutual exclusion), one liveness (progress requirement), and one fairness (bounded
waiting) property on the C implementation of the protocol, and we also reduced the explicit-state space size by 20% using
API influence analysis results computed by the ANNOTATOR tool. We also verified a realistic driver implementation that
manages dynamic memory by constructing an abstracted environment for the standard input/output functions and two
processes that access the facilities that the driver provides. However, the driver performance can be improved by adding
several optimizations to C.OPEN such as allowing blocking guards in statements or grouping pointer sentences into atomic
blocks to decrease the number of states generated.

With respect to future work, our contributions can be extended in several ways. New analyses have been recently
designed in the context of program verification, such as the reset variable analysis [37]. We could study the adequacy of
the BES formalism to model these analyses. Another line of research would be the integration of the new two-level logic
(MALTL) [16,45] to CADP in order to analyze temporal properties over programs that use dynamic data structures, as in our
Linux device driver example.

References

[1] A.V. Aho, M.S. Lam, R. Sethi,].D. Ullman, Compilers: Principles, Techniques, and Tools, 2nd ed., Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2007.
[2] E. Clarke, O. Grumberg, D. Peled, Model Checking, MIT Press, Cambridge, MA, USA, 2000.

5 www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.

www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg
www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg

M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392 391

[3] T.Ball, S.K. Rajamani, The slam toolkit, in: G. Berry, H. Comon, A. Finkel (Eds.), Proceedings of the 13th International Conference on Computer Aided
Verification CAV'01, Paris, France, in: Lecture Notes in Computer Science, vol. 2102, Springer-Verlag, 2001, pp. 260-264.

[4] T.Ball,E.Bounimova, V. Levin, R. Kumar,]. Lichtenberg, The static driver verifier research platform, in: T. Touili, B. Cook, P. Jackson (Eds.), Proceedings of
the 22nd International Conference on Computer Aided Verification CAV'10, Edinburgh, UK, in: Lecture Notes in Computer Science, vol. 6174, Springer,
2010, pp. 119-122.

[5] T.A. Henzinger, R. Jhala, R. Majumdar, The blast software verification system, in: P. Godefroid (Ed.), Proceedings of the 12th International SPIN
Workshop on Model Checking of Software SPIN’05, San Francisco, CA, USA, in: Lecture Notes in Computer Science, vol. 3639, Springer-Verlag, 2005,
pp. 25-26.

[6] J. Brunel, D. Doligez, R. Hansen, J.L. Lawall, G. Muller, A foundation for flow-based program matching: using temporal logic and model checking,
in: Z. Shao, B.C. Pierce (Eds.), Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages POPL’09,
Savannah, GA, USA, ACM Press, 2009, pp. 114-126.

[7] G.J.Holzmann, M.H. Smith, A practical method for verifying event-driven software, in: B. Boehm (Ed.), Proceedings of the 21st International Conference
on Software Engineering ICSE’99, Los Angeles, CA, USA, ACM Press, 1999, pp. 597-607.

[8] J. Hatcliff, M.B. Dwyer, Using the Bandera tool set to model-check properties of concurrent java software, in: K.G. Larsen, M. Nielsen (Eds.), Proceedings
of the 12th International Conference on Concurrency Theory CONCUR’01, Aalborg, Denmark, in: Lecture Notes in Computer Science, vol. 2154,
Springer-Verlag, 2001, pp. 39-58.

[9] G.Brat, K. Havelund, S. Park, W. Visser, Java pathfinder — a second generation of a java model checker, in: Proceedings of the Post-CAV’'00 Workshop
on Advances in Verification, 2000.

[10] H.Garavel, R. Mateescu, F. Lang, W. Serwe, CADP 2006: A toolbox for the construction and analysis of distributed processes, in: Proceedings of the 19th
International Conference on Computer Aided Verification CAV’07, Berlin, Germany, in: Lecture Notes in Computer Science, vol. 4590, Springer-Verlag,
2007, pp. 158-163.

[11] H.Garavel, Open/casar: An open software architecture for verification, simulation, and testing, in: B. Steffen (Ed.), Proceedings of the First International
Conference on Tools and Algorithms for the Construction and Analysis of Systems TACAS'98, Lisbon, Portugal, in: Lecture Notes in Computer Science,
vol. 1384, Springer-Verlag, Berlin, 1998, pp. 68-84. Full version available as INRIA Research Report RR-3352.

[12] C. Joubert, R. Mateescu, Distributed on-the-fly model checking and test case generation, in: A. Valmari (Ed.), Proceedings of the 13th International
SPIN Workshop on Model Checking of Software SPIN’06, Vienna, Austria, in: Lecture Notes in Computer Science, vol. 3925, Springer-Verlag, 2006,
pp. 126-145. Full version available as INRIA Research Report RR-5880.

[13] R.Mateescu, Caesar_solve: A generic library for on-the-fly resolution of alternation-free boolean equation systems, International Journal on Software
Tools for Technology Transfer 8 (2006) 37-56.

[14] H. Garavel, M. Sighireanu, A proposal for coroutines and suspend/resume in e-lotos, in: ISO/IEC JTC1/SC21/WG7 Meeting on Enhancements to LOTOS
(1.21.20.2.3).

[15] G.Batt, C. Belta, Model checking genetic regulatory networks using gna and cadp, in: Proceedings of the 11th International SPIN Workshop on Model
Checking of Software SPIN2004, Springer, 2004, pp. 158-163.

[16] M.M. Gallardo, P. Merino, D. Sanan, Model checking dynamic memory allocation in operating systems, Journal of Automated Reasoning 42 (2009)
229-264.

[17] M. Raynal, Algorithmique du Parallelisme: le Probleme de I'exclusion Mutuelle, Dunod, Paris, 1984.

[18] F. Nielson, H. Nielson, C. Hankin, Principles of Program Analysis, Springer, 2005.

[19] M.M. Gallardo, C. Joubert, P. Merino, On-the-fly data flow analysis based on verification technology, in: R. Drechsler, S. Glesner, J. Knoop (Eds.),
Proceedings of the 6th International Workshop on Compiler Optimization meets Compiler Verification COCV’07, Braga, Portugal, in: Electronic Notes
in Theoretical Computer Science, vol. 190, Elsevier, 2007, pp. 33-48.

[20] M.M. Gallardo, C. Joubert, P. Merino, D. Sanan, On-the-fly API influence analysis of software, in: P. Merino, M. Bakkali (Eds.), Proceedings of the 2nd
International Conference on Science and Technology JICT'07, Malaga, Spain, Spicum, 2007.

[21] GJ. Holzmann, R. Joshi, Model-driven software verification, in: S. Graf, L. Mounier (Eds.), Proceedings of the 11th International SPIN Workshop on
Model Checking of Software SPIN’04, Barcelona, Spain, in: Lecture Notes in Computer Science, vol. 2989, Springer-Verlag, 2004, pp. 76-91.

[22] P. de la Camara, M.M. Gallardo, P. Merino, Abstract matching for software model checking, in: A. Valmari (Ed.), Proceedings of the 13th International
SPIN Workshop on Model Checking of Software SPIN’06, Vienna, Austria, in: Lecture Notes in Computer Science, vol. 3925, Springer-Verlag, 2006,
pp. 182-200.

[23] B. Steffen, Data flow analysis as model checking, in: T. Ito, A.R. Meyer (Eds.), Proceedings of the International Conference on Theoretical Aspects of
Computer Software TACS'91, Sendai, Japan, in: Lecture Notes in Computer Science, vol. 526, Springer-Verlag, 1991, pp. 346-365.

[24] R.Mateescu, Local model-checking of an alternation-free value-based modal mu-calculus, in: A. Bossi, A. Cortesi, F. Levi (Eds.), Proceedings of the 2nd
International Workshop on Verication, Model Checking and Abstract Interpretation VMCAI'98, Pisa, Italy, University Ca’ Foscari of Venice.

[25] M.M. Gallardo, C. Joubert, P. Merino, Implementing influence analysis using parameterised boolean equation systems, in: Proceedings of the 2nd
International Symposium on Leveraging Applications of Formal Methods, Verification and Validation ISOLA’06, Paphos, Cyprus, IEEE Computer Society
Press, 2006, pp. 321-329.

[26] H.R. Andersen, Model checking and boolean graphs, Theoretical Computer Science 126 (1994) 3-30.

[27] B.Vergauwen, J. Lewi, A linear algorithm for solving fixed-point equations on transition systems, in: Proceedings of the 17th Colloquium on Trees in
Algebra and Programming CAAP '92, Rennes, France, in: Lecture Notes in Computer Science, vol. 581, Springer-Verlag, Berlin, 1992, pp. 322-341.

[28] A.Mader, Verification of Modal Properties Using Boolean Equation Systems, VERSAL 8, Bertz-Verlag, Berlin, 1997.

[29] M. Gallardo, C. Joubert, P. Merino, D. Sanan, C.open and annotator: Tools for on-the-fly model checking c programs, in: D. Bosnacki, S. Edelkamp (Eds.),
Proceedings of the 14th International SPIN Workshop on Model Checking of Software SPIN'07, Berlin, Germany, in: Lecture Notes in Computer Science,
vol. 4595, Springer-Verlag, 2007, pp. 268-273.

[30] J.-P. Talpin, A. Benveniste, B. Caillaud, C. Jard, Z. Bouziane, H. Canon, BDL, a language of distributed reactive objects, in: K. Kim, K. Mori, E. Nett (Eds.),
Proceedings of the 1st International Symposium on Object-Oriented Real-Time Distributed Computing ISORC'98, Kyoto, Japan, IEEE Computer Society,
1998, pp. 196-205.

[31] J. Julliand, H. Mountassir, E. Oudot, VeSTA: A tool to verify the correct integration of a component in a composite timed system, in: Proceedings of
the 9th International Conference on Formal Engineering Methods ICFEM'07, Florida, USA, in: Lecture Notes in Computer Science, vol. 4789, Springer,
2007, pp. 116-135.

[32] G. Batt, D. Bergamini, H. de Jong, H. Garavel, R. Mateescu, Model checking genetic regulatory networks using GNA and CADP, in: S. Graf, L. Mounier
(Eds.), Proceedings of the 11th International SPIN Workshop on Model Checking of Software SPIN’07, Barcelona, Spain, in: Lecture Notes in Computer
Science, vol. 2989, Springer, 2004, pp. 158-163.

[33] JJ.S. Penas, T. Arts, VoDkaV tool: model checking for extracting global scheduler properties from local restrictions, in: J. Lilius, F. Balarin (Eds.),
Proceedings of the 3rd International Conference on Application of Concurrency to System Design ACSD’03, Guimaraes, Portugal, IEEE Computer
Society, 2003, pp. 247-248.

[34] M.M. Gallardo, J. Martinez, P. Merino, P. Nuilez, E. Pimentel, Pixl: Applying XML standards to support the integration of analysis tools for protocols,
Science of Computer Programming 65 (2007) 57-69.

[35] M.M. Gallardo, P.de la Cimara, P. Merino, D. Sanan, Checking the reliability of socket based communication software, International Journal on Software
Tools for Technology Transfer 11 (2009) 359-374.

[36] P.de la Camara, M.M. Gallardo, P. Merino, Model extraction for ARINC 653 based avionics software, in: D. Bosnacki, S. Edelkamp (Eds.), Proceedings
of the 14th International SPIN Workshop on Model checking of Software SPIN'07, Barcelona, Spain, in: Lecture Notes in Computer Science, vol. 4595,
Springer, 2007, pp. 243-262.

392 M.M. Gallardo et al. / Science of Computer Programming 77 (2012) 375-392

[37] H. Garavel, W. Serwe, State space reduction for processing algebraic specifications, Theoretical Computer Science 351 (2006) 131-145.

[38] M. Alpuente, M. Feli, C. Joubert, A. Villanueva, Datalog-based program analysis with BES and RWL, in: Proceedings of the 1st International Workshop,
Datalog 2.0, Oxford, UK, March 16-19, 2010. Datalog 2.0, in: Lecture Notes in Computer Science, State-of-the-Art Surveys, vol. 6702, Springer, 2011.

[39] M. Alpuente, M. Felig, C. Joubert, A. Villanueva, Using datalog and boolean equation systems for program analysis, in: D. Cofer, A. Fantechi (Eds.),
Proceedings of the 13th International Workshop on Formal Methods for Industrial Critical Systems FMICS’08, L'Aquila, Italy, in: Lecture Notes in
Computer Science, vol. 5596, Springer-Verlag, 2009, pp. 215-231.

[40]]. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device Drivers, 3rd ed., O'Reilly Media, Inc., 2005.

[41] G.Holzmann, The model checker SPIN, IEEE Transactions on Software Engineering 23 (1997) 279-295.

[42] A.Cimatti, E. Clarke, F. Giunchiglia, M. Roveri, Nusmv: a new symbolic model checker, International Journal on Software Tools for Technology Transfer
2(2000) 410-425.

[43] S.F.Siegel, Verifying parallel programs with MPI-spin, in: F. Cappello, T. Hérault, J. Dongarra (Eds.), Proceedings of the 14th European Parallel Virtual
Machine and Message Passing Interface User’s Group Meeting PVM/MPI'07, Paris, France, in: Lecture Notes in Computer Science, vol. 4757, Springer,
2007, pp. 13-14.

[44] M.M. Gallardo,]. Martinez, P. Merino, E. Pimentel, «SPIN: A tool for abstraction in model checking, International Journal on Software Tools for
Technology Transfer 5 (2004) 165-184.

[45] M.M. Gallardo, D. Sanan, Verification of dynamic data tree with mu-calculus extended with separation, in: Proceedings of the 8th International
Conference on Software Engineering and Formal Methods SEFM'10, Pisa, Italy, IEEE Computer Society Press, 2010, pp. 211-221.

[46] X.Zheng, R. Rugina, Demand-driven alias analysis for C, in: Proc. 35th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages POPL’08,
ACM Press, 2008, pp. 197-208.

[47] R. Mateescu, E. Oudot, Bisimulator 2.0: An on-the-fly equivalence checker based on boolean equation systems, in: Proceedings of the 6th ACM & IEEE
International Conference on Formal Methods and Models for Co-Design MEMOCODE’08, Anaheim, CA, USA, IEEE Computer Society, 2008, pp. 73-74.

	A model-extraction approach to verifying concurrent C programs with CADP
	Introduction
	OPEN/CÆSAR-compliant model extractor for the C language
	Concurrent program model
	Abstract control flow graph (ACFG)
	Implicit program state space

	OPEN/CÆSAR-compliant data flow analyzer for implicit LTSs
	Influence analysis
	Boolean equation system

	C.OPEN and ANNOTATOR: CADP components for verifying C programs
	Software architecture
	C.OPEN
	Supported C subset and external functions
	ANNOTATOR
	Experimental results and verification scenarios in CADP

	Related work
	Conclusion
	References

