
Specification and Validation of a Real-Time Simple
Parallel Kernel for Dependable Distributed Systems

Octavian Ganea, Florin Pop, Ciprian Dobre, Valentin Cristea
Faculty of Automatics and Computer Science, University Politehnica of Bucharest, Romania

Splaiul Independentei 313, Bucharest 060042, Romania
Emails: octavian.ganea@cti.pub.ro, florin.pop@cs.pub.ro, ciprian.dobre@cs.pub.ro, valentin.cristea@cs.pub.ro

Abstract—Software formal verification can provide guarantees
regarding the implementation of complex software systems in
respect to their specifications. Unfortunately, the practical appli-
cations of formal verification techniques are limited in case of
modern systems. The operating system in particular, even though
viewed as a critical component, has never been properly and
formally evaluated in terms of provided functionality. In this
we present and discuss such an experiment, based on a LO-
TOS specification, designed to evaluate a real-time UNIX-based
parallel kernel. The purpose of this specification experiment is
to evaluate the kernel using LOTOS and CADP tool box. Such
instruments provide good capabilities to model and validate real-
time features with realistic and complex industrial products. We
present specification formal verification results validated using
the CADP tool-box for a set of general properties referring
the correctness of the kernel’s functionality. In the end we
discuss limitations and future solutions and contributions of the
formal verification domain to providing correctness guarantees
for complex modern applications.

I. INTRODUCTION

This paper presents and discusses the LOTOS (Language Of
Temporal Ordering Specification) [1] specification of a real-
time simple parallel kernel. The purpose of this specification
exercise has been to evaluate LOTOS and CADP tool box
with respect to their capabilities to model and validate real-
time features with a realistic industrial product [7]. The
specification will be validated using the CADP tool-box - a set
of general properties referring the correctness of the kernel’s
functionality will be formally verified [5].

LOTOS can be successfully applied to the specification of
many kinds of distributed systems since it is based on general
concepts like processes and events. Limitations of LOTOS
are mostly consequences of the interleaving semantics and
of the ill-shaped data type part. Many people are working
nowadays on the enhancement of formal languages for rep-
resenting the real-time properties, namely the definition of
timing constraints on the execution of events. ELOTOS [2],
an improved version of LOTOS allowing the representation
of real-time properties, will become an international standard.
However, language enhancements make the language complex.
This means that it can be helpful to investigate what aspects
of real-time behavior can be expressed in LOTOS and what
aspects require real-time extensions [6].

This paper is further structured as follows: section 2 presents
the necessity for formal models of behavior systems and
especially of real-time kernels; section 3 discusses the LO-
TOS language and its enhancements; section 4 describes the

LOTOS specification of the real-time simple kernel together
with some effective code portions; section 5 discusses the
process of validating the specification and section 6 presents
the conclusion and presents some ideas for further work.

II. BUILDING FORMAL MODELS

A formal specification can serve as a basis for refinement to
code. Moreover, it constitutes a formal model; some important
properties can be proved before any code is written [8]. The
approach has the benefit that a system’s design can be explored
thoroughly without any need for implementation. The risk and
cost of implementation can in this case be avoided. Referring
to operating systems, implementation is in most cases lengthy
and costly and requires the construction of drivers and other
similar “messy” parts.

The approach to operating systems and other software
design requires an implementation so that properties can
be determined empirically. The formal approach will never
obviate empirical methods; instead, it allows the one that
designs the system to determine its properties a priori and to
justify them in clear and unambiguous terms. A formal model
of a system poses the same problems as does a conventional
implementation. However, a formal model has the opportunity
to state the design in an unambiguous form in which properties
can be stated as propositions to be demonstrated in a correct
way. Proofs represent ways of insight into the design, even
if they seem to be proofs of obvious properties. In fact, the
statement of a property as a proposition to be proved makes
that property explicit; otherwise, it will remain implicit.

However, this will not to deny implementation: the final goal
of every software project is the production of working code.
The fact is that formal models use a level of exploration that
is not obtained by a purely empirical approach. In addition,
formal models document the system and its properties, serving
as information, inspiration or warnings to others. A further
advantage of the formal approach is that it always leaves
implementation as an option. With the standard conventional
approach, implementation is a necessity.

III. ENHANCEMENTS OF LOTOS SPECIFICATION
LANGUAGE

LOTOS - Language of Temporal Ordering Specification - is
a Formal Description Technique developed within ISO (Inter-
national Standards Organization) for the formal specification

of distributed systems. It was developed by FDT experts from
ISO/TC97/SC21/WG1 ad-hoc group on FDT/Subgroup C dur-
ing the period 1981-1986. The main issue they started from
was that systems can be specified by defining the temporal
relation among the interactions that constitute the externally
observable behavior of a system. There are two versions of
LOTOS: Basic LOTOS - simplified LOTOS without data
types [3] and Full LOTOS - complex that the Basic and
involves data exchange between processes [4].

In LOTOS a process can be described using the following
syntax: ProcessKernel[a, b, c] : noexit := . . . endproc,
where Kernel is the name of the process, [a, b, c] is a list of
gates or interaction points (parameter part), noexit represents
the functionality of the process - a keyword (noexit, exit)
and a list of exit variables types representing the final state of
the process. noexit means that a process cannot exit or finish
and it will get to an inaction point or will cycle infinitely. The
symbol . . . represents the behavior expression: an expression
defining the allowed orderings of events the process can
follow. Is is made of atomic events (gates and value offers)
and basic behavior expressions tied using LOTOS operators.

Basic behavior expressions and Basic LOTOS operators are:
• stop - inaction (process is blocked and cannot perform

any event when it reaches the stop event).
• Action prefix - prefixing a behavior expression by an

event will result in a new behavior expression.
• Choice operator - the choice is non deterministic and is

determined by the environment.
• Recursion - process instantiation: every process can be

instantiated in other process or even in itself.
• Parallel composition without interaction: a process can be

composed of two (or more) processes that run in parallel
without any synchronization.

• Parallel composition with interaction
• Hiding (a1, a2, . . . , an ∈ B): hiding conceals the ob-

servable actions a1, a2, . . . , an present in B from the
environment. These actions are thus made unavailable for
synchronization with other processes.

• Successful termination of a process: no successful termi-
nation; unsuccessful termination (stop); successful termi-
nation (exit).

• Sequential composition: if B is composed of several
subprocesses, B terminates successfully if and only if
all parallel subprocesses terminate successfully.

• Disabling - Disruption.
Full LOTOS operators and basic behavior expressions:
• Extended action-prefix: value declarations and variable

declarations;
• Synchronization between two processes - Interprocess

communication;
• Guarded expressions;
• Sequential composition with value passing.

IV. REAL-TIME SIMPLE KERNEL AND ITS MODEL

The results of this work are, as will be seen, in the
experience gained, not in the written LOTOS code. Thus, this

paper will emphasize the different difficulties encountered and
their possible solutions we discovered and tried to apply.

The first problem was that, due to the unusual nature of the
approach, the goal itself was much less precisely pre-defined
than in a more conventional specification. Usually, a typical
specification covers a well delimited entity with a well under-
stood behavior or interface (for example a protocol entity) and
respects some pre-defined specification style depending on its
future use. However, in my case, the object to be specified
is a complex system made as a result of the combination of
various kinds of interfaces and entities, without pre-determined
instructions about which are to be specified and how. In
addition, formal specification of kernels and operating systems
is a new, barely explored domain. This implied that a few
pieces of information were available in order to find answers
to these questions. This is why the presented specification has
a somewhat empiric character.

Second, in the majority of cases, LOTOS or other modeling
languages are used before implementing anything to check
that the design is correct. Or this was not the case with
the simple kernel model from the beginning because we
had to model it starting from its documentation. The initial
target of this specification and validation was related to a
complex kernel having five main subsystems (as nowadays
kernels): The process scheduler, the memory manager, the
virtual file system, the network interface and the interprocess
communication module (IPC). However, as seen in the next
section, the resulting increase of complexity and the limitation
of computer resources, (in specially RAM memory and CPU)
used at maximum capacity by CADP tools, complicated the
initial tasks. We kept the first ideas in mind and reconsidered
the new targets while advancing in the project. As a result,
we were forced to limit my model to a simple kernel which
will be described further. One of the main purposes became to
evaluate LOTOS and CADP capabilities and limitations when
validating a real industrial product.

A. The initial approach and difficulties

We encountered some problems from the begging, from the
moment when we started to document and think about the
kernel model. First, there was the problem of the approach -
top-down or bottom-up. The bottom-up type had the advantage
that we could start with the detail levels writing small, black-
box modules. After that we could unify them in bigger black-
boxes using a model similar with the composed buffer one
described in the previous section (hiding operator together
with the parallel composition operators). However, we was
supposed to establish the level of precision or the depth of my
specification from the very beginning. This was impossible due
to the extremely large set of details we should consider. Also,
we considered the unfortunate situations of trying without
success to bind two black-boxes in a bigger one because of
realizing that some vital model details of one of the “atomic”
modules must be changed.

In conclusion, we choose the top-down model which is more
appropriate to the LOTOS style. It implies starting with a big

Fig. 1. The main structure of the operating system

black-box LOTOS process and following a number of steps.
At every step one of the black-boxes processes is broken in
smaller LOTOS processes by detailing the hidden interactions
between them and their communications with the exterior
environment through the big processes’ interfaces. So, we
started with a very simple kernel and a single component that
communicates with it, for example, a scheduler.

Another problem we encountered was that of the abstrac-
tion. The Linux Kernel, for example, is huge and we knew
that we would not reproduce its exact behavior, so we had
to decide, for each component, how to abstract it so that it
fits the level of details we wanted. we found that we would
not be able to check actual code bugs in LOTOS because
it was impossible to model the environment in which the
code is executed or the code itself. What we could check is
whether the design is correct. It meant that we had to retain
the important features. Putting all together we found that there
did not exists a modeling of the whole Linux Kernel and the
only limitation in model checking was the size of the graph
generated from the LOTOS specification (see next section for
details). So, the answer of how far we could go with my
specification was a mystery from the beginning.

B. Requirements for the kernel
The operating system modeled is intended to be suitable for

processing in real-time and possibly in an embedded context.
This kernel should, in addition, be portable and, thus, there
is no need to specify any interrupt service routines or the
hardware clock and its associated driver. In fact, this kernel
will be a non-preemptive one. Devices and the uses of the
clock are considered matters that depend on the particular
instantiation of the kernel.

The kernel will implement a priority based-scheduler. At
the start, all priorities are equal to 0. After that, every process
can change its priority via a specific system call.

The kernel will not contain any storage management mod-
ules. All storage will be allocated statically, off-line, during
the kernel configuration step. In fact, the kernel will imple-
ment the process abstraction, the scheduler and inter-process-
communication. The IPC module will include semaphores.

The kernel will be statically linked with the user processes
that run on it. This simple approach regards kernel as layered

entity: a layer of primitives is defined to execute above
the hardware, providing a collection of abstractions to be
employed by the remainder of the system. The model assumes
that interacting processes, each with their own store, are
executed. Primitives provided are:

• Create a process and enter it into the scheduler’s queue;
• Terminate a process and release its process descriptor

together with any semaphore it owns;
• Change a process priority in order to be scheduled sooner

or later by the scheduler;
• Voluntary yield the processor in order to be used by

other; processes. This is to simulate a behavior closer
to a preemptive kernel

• Create and destroy semaphore structures;
• Use a semaphore - there are several operations like getting

the counter of a semaphore, the Up operation or the Down
operation (that can block the current process if the counter
value is smaller than 1).

C. Overview of the Kernel Structure

The goal of this section is to present the abstract architecture
of the specified kernel emphasizing its hierarchical structure.
LOTOS code from the specification will appear. This kernel
is an independent subpart of the kind of kernel that is amply
documented in the literature. The classical operating system
kernel can be found in most of the systems today: Unix,
Linux, Microsoft’s NT, IBM’s mainframe operating systems
and many real-time kernels (from embedded systems).

The main modules (or LOTOS processes) that define the
operating system are a hardware module, a kernel module and
more real processes that can run in the system and access the
kernel. The real processes can send requests (or system calls)
to the kernel via KERNEL_GATE gate and will receive answers
or signals (like START, PAUSE or DEAD) from the kernel
via the same gate. The KERNEL module can communicate
in the same way with the HARDWARE module through the
HARDWARE_GATE. The arrows on the gates signify that a
module may access the other module’s services. A double
arrow means that the two modules communicate on the same
gate (using dialogs of type: send request and receive answer
for the request). A single arrow means that the communication
is made in a single direction (the request is made on a gate
and the answer is received on another gate (see Figure 1).

To avoid state explosion of the finite automate result-
ing when compiling the specification we used only 4 real-
processes in the operating system. Real processes represent
the main actors of the operating system. A real process is in
an instance of computer program that is being executed. They
are composed of two sub-processes:

• A. UserSpace module that can execute user code or
can access the kernel through several system calls.

• B. System_calls_interface process that imple-
ments every system call coming from UserSpace. This
implementation consists of specific interaction with the
kernel through the KERNEL_GATE gate.

Fig. 2. The structure of a Process module

These two modules communicate through a gate called
SYSCALLS_INTERFACE_GATE in the following way:
UserSpace sends a request for a system call to the
System_calls_interface process and waits for the
answer on the same gate (see Figure 2).

The possible system calls are (S - Semaphore):
1) fork(process pid, child pid) - creates new child process

from current process and, if its priority permits, the child
will execute first;

2) nice(process pid, new prio) - changes the priority of the
current process;

3) sys exit(process pid) - exits from the system;
4) sched yield(process pid) - voluntarily yields the proces-

sor to another process that is ready to run;
5) CreateAndOpenS(process pid, S number, initial value)

- creates and opens a semaphore;
6) CloseAndDeleteS(process pid, S number);
7) GetCounter(process pid, S number) - retrieves the

counter of the semaphore; if the semaphore does not
exists then the process will be killed by the scheduler
(segmentation fault);

8) SemaphoreUp(process pid, S number) - increases the
counter of the semaphore and, if it was negative, frees
one of the processes waiting for it; if the semaphore does
not exists then the process will receive segmentation
fault;

9) SemaphoreDown(process pid, S number) - decreases
the counter of the semaphore and, if it becomes negative,
it blocks on it (is put in the waiting state and is inserted
in the semaphore’s queue); the same situation as above
if the semaphore does not exists.

Other information, such as message queues, storage descrip-
tors, storage of registers and instruction pointer are also asso-
ciated with each process and stored by operations. However,
we did not use those in my model but some of them will
appear in future work.

All these pieces of information must be hold in a structure -
every process has a process descriptor - type PROCESSDESCR
in my specification. All the process descriptors are held in a
process table (of type PROCESSTABLE) maintained in ker-
nel in a sub-process named ProcessTableMaintainer.
This module offers operations related to the process table it

holds, for example, extracting a process descriptor, adding a
process descriptor, deleting a process descriptor or verifying
the existence of a process descriptor.

For the operating system to be complete we modeled the
Hardware through a LOTOS process. It is only a minimal
hardware that maintains the hardware registers. These are
represented by the type HARDWAREREGISTERS and refer
only to the interrupt status (INTERRUPTSTATUS structure)
- a register that permits or not interrupts to hold. Setting this
register to int-on or int-off represent the (hardware) Lock and
Unlock operations necessary when the kernel is executing un-
interruptible operations (schedule_next operation).

The kernel we implemented is formed of four sub-modules:
1) Scheduler - executes different operations related to real

processes (as will be described below). One of its im-
portant functions is to schedule the available processes
on the CPU.

2) ProcessTableMaintainer - maintains a process ta-
ble that is the table with all process descrip-
tors of the existing real processes. The process
table is a vector with maxprocs (variable for
the maximum number of processes defined in the
PREF data type) entries. If process we exists then
process_table[i] is a valid process descriptor of
form new_processdescr(PRIO, PROCSTATUS)
of type PROCESSDESCR.

3) ContextSwitcher - abstracts the operations related to
a context switch: SaveState (saves the current process
information such as hardware registers to the running
process descriptor); RestoreState (restores the current
system information such as hardware registers with val-
ues from the process descriptor of the running process).

4) IPC - inter-process communication represented here by
semaphores.

The above four modules communicate using requests and
answers. For example, the Scheduler process may use both
the ProcessTableMaintainer and the ContextSwitcher when
executing the ScheduleNext function. In general, if module
A offers a function named fA() to the exterior environment
(composed of processes B,C,D, . . .), module B offers fB()
and so on, then the most simple way to implement this
communication is considering every module, say A, as a black
box with two external gates (interfaces): INA for coming
requests and OUTA for leaving messages. But communication
between two processes in LOTOS is based on the parallel
composition with interaction operator (i.e. |[. . .]|) and it
implies full synchronization on the respective gate. Thus, for
example, a fA() call made by B through INA gate must
be accepted by C, D and E at the same time because they
synchronized with A through |[INA, OUTA]| operator. This
is not what we want because B, C, D and E may not want
to take part in simultaneously events on gate INA. Because
of this, two gates for exterior interaction within all the kernel
sub-modules will be insufficient. Moreover, only one or two
gates for communication between a pair of modules is not

desirable as it increases the code (and its understandability)
exponentially when the number of kernel sub-modules grows.

As a result of the above facts we chose to add a virtual
module to the kernel - KernelVirtualCenter LOTOS process.
It does not exists in any real kernel. It is just a module that
has the function of redirecting messages coming from a source
module to its destination module. It is like a router or switch
in an WAN or LAN.

Scheduling is the operation of selecting the next process
that is ready to run. The selection is on the basis of priority
(highest priority process will be preempted first). Processes can
be interrupted when devices are ready to perform input/output
(I/O) operations.

Scheduler determines which process is next to run. It also
holds objects representing processes that are ready to execute;
they are held in some form of queue structure, which will
be referred to as the ready queue - it is a priority queue
implemented by PROCPRIOQUEUE data type. The scheduler
offers the following methods:

1) interrogation of the CurrentProcess value;
2) MakeReady - inserts a process’ id into the ready queue;
3) MakeWaiting - puts a process in the waiting state;

another process is scheduled;
4) MakeTerminated - terminates a process by sending

the signal kernel_gate !dead !pid and deletes
its process descriptor from the process table;

5) SuspendCurrent - the main method - queues the
running process into the ready queue and schedules the
next process from the ready queue to run; if ready queue
is empty the Idle process will be scheduled.

Some of these methods use a defined LOTOS process -
RunNextProcess - that selects a new process from the
ready queue and sets current value so that the new process
can be executed. If the ready queue is empty this method will
select the IdleProcess to run next.

The Scheduler is preemptive only in the following points:
• when calling nice system call that modifies the priority

of the process. If a process sets a lower prior for it, it
will be instantly preempted by the top process from the
priority queue of the scheduler

• when calling sched_yield system call
• when calling fork system call (the child will be scheduled

first)
• when calling exit system call
• when calling SemaphoreDown system call on a

semaphore with non-positive counter
• when calling different system calls on a non-existing

semaphore; this will result in segmentation fault signal
received from the Kernel - the current process will
instantly die.

It can be seen that, in this non-preemptive kernel, if the Idle
process will be scheduled then it will hold the CPU forever.
However, this can be the situation if and only if all the other
processes have blocked waiting on a semaphore or exit from
the system.

For this version the IPC module offers only a Semaphore
Module. However, it can be enriched with other IPC structures
as mailboxes and asynchronous messages.

The structure of the IPC model is similar with that of
Kernel module: there exists a module IPCVirtualCenter for
communication with the rest of the kernel and for inter-
communication between different modules of the IPC module.

The SemaphoreModule is formed of two different modules:
• SemaphoreCommands - receives requests for different

semaphore operations
• SemaphoreTableMaintainer - is responsible for the table

that holds the semaphore structures in memory
A semaphore contains a process queue (waiters) to hold its

waiting processes; the waiters queue is not related to other
queues. The other semaphore component is the counter which
has type Integer. The semaphore causes processes to be sched-
uled and suspended. Thus, the IPC module needs to access
the Scheduler and the ProcessTableMaintainer (via KernelVir-
tualCenter). Semaphores work by updating the counter as an
atomic operation. To do this, the semaphore uses the hardware
Lock to exclude all processes except the calling one from the
counter.

As a concluding remark, the IPC operations are the repre-
sentatives of blocking system calls in this small kernel. Their
influence in the kernel’s behavior will be studied next section.

V. PROCESS OF SPECIFICATION VALIDATION

Formal verification is essential in order to ensure reliability
of critical applications such as communication protocols and
distributed systems. A state-of-the-art verification technique is
the so-called model-checking. In this approach, the specifica-
tion is first described using LOTOS. This description is sub-
sequently translated into a (finite) Labeled Transition System
(LTS), over which the desired correctness properties, expressed
as temporal logic formulas, are verified using appropriate
model-checking algorithms. Model-checking is a successful
technique for automatically verifying concurrent finite-state
systems.

One of the first problems we encountered after writing the
LOTOS specification was how to find out if it was correct
and did not have any impossible randez-vous. Compilation
error messages were not helpful enough in finding deadlocks
so we used other tools. First of all, we tested a part of my
specification, namely that not containing the IPC module.
we used OCIS - Open/Caesar Interactive Simulation - an
interactive, graphical simulator for the CADP toolbox. It
enables visualization and error detection during the design
phase of a specification. It permits manual navigation through
the LTSs even it has not been generated. We could, thus,
test and simulate different scenarios and found and repair
many deadlocks. For this first part of my specification, it was
sufficient. Next, after adding all the final details to the LOTOS
specification of the Kernel, we could not use OCIS anymore
because the sequences of transitions leading to a deadlock
were too long and subtle to be found using manual exploration.
we used terminator and exhibitor tools. These are programs

that detect deadlock states and display diagnostic sequences
leading from the initial state to the deadlock states using the
simple SEQUENCE format.

This was the moment we started to find specification details
that could lead to an infinite LTS We modified the following:

1) SemaphoreUp operation could be made only if the
counter of the semaphore was at most 1;

2) we limited the SemaphoreTable size to 1;
3) we limited the ProcessTable size to maxprocs (3

or 4) - however, this was made from the beginning;
4) we verified that the ready queue of the scheduler and

the waiters queue of the semaphore could not have more
than maxprocs elements at any moment of time.

We found that codifying data structures as linked lists
(as we did with PROCESSTABLE, PROCPRIOQUEUE,
SEMAPHORETABLE and PROCQUEUE) is memory-
consuming when concerning with model checking. This
was because every operation that modifies a list produces
“garbage” cells that accumulate in the memory without
being freed. One solution was to use specific “.gc” option
within CAESAR compiler to link it with a garbage collector.
However, a more efficient solution was to codify lists under a
canonical form in the sense that every list cell will be inserted
into a hash-code table only once and, after that, the pointer
to the respective cell would be used whenever it is needed.

VI. CONCLUSIONS AND FUTURE WORK

The kernel modeled and described in this paper is a simple
one. It is not so simple that it cannot be used. It is of
complexity not far from that of the small kernels for embedded
real-time systems.

The kernel is minimal because it does not contain facilities
for performing device operations and does not contain any
clock process. This implies that the considered kernel is a
non-preemptive one. If the kernel would be used in a real case,
these operations would have to be modeled and implemented
(although this is not a particularly difficult operation because
all necessary modules have been provided by model).

The kernel does not contain security enhancements, network
modules or virtual file system models. These are parts that
must be further developed. The kernel is a fairly static affair.
Processes are statically linked to the kernel via a library of
system calls. Their number is limited to a small value (3 or
4). They are free to change their priority, to yield the processor,
to exit the system or to create new processes when they are
running, but this is constrained by the fact that all processes
must always be resident in main store. Main store itself is
partitioned statically as a configuration operation when user
code is linked to kernel.

There does not exist any storage-management functions
in this kernel, so the creation primitives are of limited use.
However, this specification proves that it is possible to define
a formal model of an operating system and to formally prove
some of its properties. This is made using one of the best
existing tools - CADP toolbox - after generating the huge, but

finite, automate of states and transitions that keeps track of all
possible paths of execution in the operating system. We have
seen that this generation is very costly (it needs a lot of RAM
memory) and of very long duration.

However, it is, eventually, a success for formal validation
and verification of a complete small operating system. This
paper was also meant to discover some of the capabilities and
limits of the LOTOS language and CADP tools (compilers,
model-checkers and advanced functionalities such as visual
checking) when dealing with a relative large LOTOS specifi-
cation.

We could conclude that, with nowadays techniques, a com-
plete formal specification, verification and validation of the
Linux Kernel is impossible at this moment.

ACKNOWLEDGMENT

The research presented in this paper is supported by national
projects: ”SORMSYS - Resource Management Optimization
in Self-Organizing Large Scale Distributes Systems”, Project
CNCSIS-PN-II-RU-PD ID: 201 (5/28.07.2010) and ”DEP-
SYS - Models and Techniques for ensuring reliability, safety,
availability and security of Large Scale Distributes Systems”,
Project CNCSIS-IDEI ID: 1710 (618/15.01.2009). The work
has been co-funded by the Sectorial Operational Program
Human Resources Development 2007-2013 of the Romanian
Ministry of Labor, Family and Social Protection through the
Financial Agreement POSDRU/89/1.5/S/62557.

REFERENCES

[1] ISO, LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behavior, ISO 8807. In: ISO - Information
Processing Systems - Open Systems Interconnection

[2] ISO/IEC, Enhancements to LOTOS (E-LOTOS), ISO/IEC 15437. 2001.
[3] Mark A. Ardis. 1994. Lessons from using basic LOTOS. In Proceedings

of the 16th international conference on Software engineering (ICSE ’94).
IEEE Computer Society Press, Los Alamitos, CA, USA, 5-14.

[4] Marco Ajmone Marsan, Andrea Bianco, Luigi Ciminiera, Riccardo Sisto,
and Adriano Valenzano. 1994. A LOTOS extension for the performance
analysis of distributed systems. IEEE/ACM Trans. Netw. 2, 2 (April
1994), 151-165.

[5] Nicolas Coste, Hubert Garavel, Holger Hermanns, Frederic Lang, Radu
Mateescu, and Wendelin Serwe. 2010. Ten years of performance eval-
uation for concurrent systems using CADP. In Proceedings of the 4th
international conference on Leveraging applications of formal methods,
verification, and validation - Volume Part II (ISoLA’10), Tiziana Mar-
garia and Bernhard Steffen (Eds.), Vol. Part II. Springer-Verlag, Berlin,
Heidelberg, 128-142.

[6] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin
Serwe. 2009. Verification of an industrial systemC/TLM model using LO-
TOS and CADP. In Proceedings of the 7th IEEE/ACM international con-
ference on Formal Methods and Models for Codesign (MEMOCODE’09).
IEEE Press, Piscataway, NJ, USA, 46-55.

[7] Jan Stocker, Frederic Lang, and Hubert Garavel. 2009. Parallel Processes
with Real-Time and Data: The ATLANTIF Intermediate Format. In
Proceedings of the 7th International Conference on Integrated Formal
Methods (IFM ’09), Michael Leuschel and Heike Wehrheim (Eds.).
Springer-Verlag, Berlin, Heidelberg, 88-102.

[8] Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman,
Kalpesh Kapoor, Paul Krause, Gerald Luttgen, Anthony J. H. Simons,
Sergiy Vilkomir, Martin R. Woodward, and Hussein Zedan. 2009. Using
formal specifications to support testing. ACM Comput. Surv. 41, 2, Article
9 (February 2009), 76 pages.

