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Abstract

We explain how the formal language LOTOS can be used to specify security protocols and
cryptographic operations� We describe how to model security properties as safety properties
and how a model�based veri�cation method can be used to verify the robustness of a protocol
against attacks of an intruder� We illustrate our technique on a concrete registration protocol�
We �nd a simpler protocol that remains secure� and a more sophisticated protocol that allows
a better distinction between intruder�s attacks and ordinary errors�

� Introduction

Formal description techniques gain increased consideration due to signi�cant advances and re�
sults recently obtained� A lot of computer systems achieve mission�critical tasks and thus require
an absolute proof that they are working without any errors� Such a proof can be deduced with
formal veri�cations� The ever growing power of computers and the increasing knowledge of
veri�cation techniques allow one to perform validations on real problems� With the develop�
ment of the Internet and specially with the birth of the electronic commerce� the security of
communications between computers becomes a crucial point� All these new applications require
reliable protocols able to perform secure transactions� The environment of these operations is
very hostile because no transmission channel can be considered safe� Formal descriptions and
veri�cations can be used to obtain the assurance that a protocol cannot be threatened by an
intruder�

Special modal logics have been designed to verify authentication protocols� The most well�known
such logic is the BAN logic �BAN��	� but some others have been proposed to overcome some of
its limitations� Such logics have been used successfully to verify several protocols� but have not
proved very e
ective in some other circumstances� Another approach consists of using general
purpose formal methods usually applied to more conventional protocols� They are supported
by veri�cation tools� such as theorem provers or model�checkers� which makes it possible to
automate the proof process� Approaches based on theorem proving applicable to a large class
of protocols and to general authentication properties have been proposed �Mea��	�Bol��	�

Until recently among the di
erent formal methods� the model�checking approach was not felt
adequate to tackle the veri�cation of security protocols� Recent results prove the contrary� this
approach can in fact be very e
cient to achieve a real computer aided design of security protocols�
To our knowledge� its �rst application to the veri�cation of security protocols was achieved in
�Low��	 where the Needham�Schroeder protocol �Sch��	 was speci�ed in CSP �Hoa��	 and model�
checked by the FDR tool� Independently of this work� we speci�ed the Equicrypt protocol
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�LBQ��	 in LOTOS and used the Eucalyptus toolbox �Gar��	 to verify it �LBK��	�GL��	� The
present paper will focus on the method we used to model and verify a security protocol using
LOTOS�

The paper is organized as follow� In section �� we will show that the LOTOS language is a
very good performer to handle the speci�cation of security protocols� With its �exibility� a
wide range of cryptographic operations can be modelled� We will describe the establishment of
security properties and the associated veri�cation process in section �� The veri�cation is quite
automatic and allows one to certify that an intruder cannot break a cryptographic protocol with
di
erent kinds of attacks� An application of our method on a concrete protocol will be presented
in section �� We will also point out that it is possible to tune a protocol in order to obtain new
properties and improve its behaviour�

� LOTOS speci�cation

The formal speci�cation of a security protocol is written in LOTOS �BB��	�ISO��	 which is a
standardized language suitable for the description of distributed systems� It is made up of two
components �

� A process algebra� moslty inspired by CCS �Mil��	 and CSP �Hoa��	� with a structured
operational semantics� It describes the behaviour of processes and their interactions� LO�
TOS has a rich set of operators �multiway synchronization and abstraction like in CSP�
disabling� ����� and an explicit internal action like in CCS�

� An abstract datatype language� ACT ONE �EM��	� with an initial semantics� A type
is de�ned by its signature �sorts � operation on the sorts� and by equations to give a
meaning to the operations�

The revision of the LOTOS standard is under study in ISO�IEC since ����� The design of this
enhanced version called E�LOTOS is based on the feedback obtained from practical applications
of LOTOS and will certainly improve its expressive power�

A LOTOS speci�cation is composed of two di
erents parts� The �rst one is dedicated to the
description of the abstract data types and the cryptographic operations in particular� The
second part describes the behaviour of the di
erent entities involved in the protocol� We will
�rstly deal with this description

��� Behaviour

Every security protocol involves several entities called principals� A principal can be any object
that plays a role in the evolution of the protocol� Example of principals are users� hosts or
processes� When we address the veri�cation of the security of the protocol� we must make some
assumptions on the behaviour of the principals� Thus principals are quali�ed trusted or not� A
trusted principal will always react according to the expected behaviour� A non�trusted principal
can try and break the protocol with an unexpected behaviour though is considered genuine by
the other entities�
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Figure � � Principals with intruder and environment

Principals are linked together with communication channels to exhange messages� These com�
munication channels are generally considered insecure� that is an intruder can act passively or
actively on the transferred information� He can eavesdrop on messages� intercept them� replay
old ones� or create new ones� The goal followed by the intruder ranges from a simple denial of
service to the access to prohibited rights�

The behaviour section of a LOTOS speci�cation is composed of several processes which interact
with each other through interaction points called gates� Each principal involved in the protocol
is modelled by a process that describes its exact behaviour� LOTOS allows the synchronisation
of two or more processes via interactions that can occur at each gate� A one way communication
channel between two principals is modelled by the synchronisation of the transmission gate of
one principal with the reception gate of the other principal� A second synchronisation handles
the other way of the communication channel�

For instance� �gure � depicts a system with two principals where the communication channel
is modelled by the synchronisation of the gate A�to�B of principal A with the gate A�to�B of
principal B and with the synchronisation of the gate B�to�A of principal A with the according
gate of principal B�

To introduce the intruder that will try to threat the protocol we replace the simple commu�
nication channels by one central process that will act as the intruder� Thus the intruder can
intercept all messages and transmit them or not� with or without modi�cation� We will enter
into the details of the intruder�s behaviour in section ���� Back to our example� the principals
are not interacting directly with each others but indirectly through the intruder process ��gure
��� The intruder is the only principal considered untrusted� All other principals are trusted�
We model cases where a principal is not trusted by giving enough power to the intruder to act
as a genuine principal�

Finally� we use an environment to monitor the progress of the protocol� When a principal
reaches a sensitive point� he informs the environment by sending him a message through the
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System�State gate� These messages are called special events and will be developed further in
section ���� They will be of a great help to perform the formal veri�cation� The environment is
also responsible for the reception of error messages� Figure � presents the complete structure of
a typical LOTOS speci�cation that models a security protocol between two principals�

Each process that represents a principal is parameterized with an initial knowledge� This knowl�
edge includes identi�ers� keys or whatever information a principal must know before runs of the
prococol can occur� As we will see later� the knowledge is the core of the intruder�s modelling�

��� Abstract data types

����� Principles

The speci�cation of the behaviour only describes the exchange of messages� It does not consider
the data transferred by these messages� Abstract data types de�ne the elements that are handled
by the behavioural part� They de�ne which kind of data are used by the protocol but also
which operations are allowed on these data� Only the de�ned operations are permitted� With
this restriction� complex cryptographic operations can be abstracted away from mathematical
details� We will see that only a simple description of their characteristics is needed�

With LOTOS� abstract data types are written in ACT ONE� Each LOTOS variable can only
have values of a particular sort de�ned during the declaration� A LOTOS type is a module
composed of one or several sorts� operations and equations� A sort is the name given to a set of
values that belong to the same domain� Speci�c operations are de�ned on the values of each sort
and the semantics of these operations is provided by speci�c equations� This structure allows
for a great �exibility in the handling of data in LOTOS�

A lot of mechanisms exist in modern cryptography �Sch��	� but only a few of them are actually
used in security protocols� We do not intend to make an exhaustive translation of cryptographic
operations in ACT ONE� We just want to show the level of abstraction provided by LOTOS and
the relative simplicity in the de�nition� Thus we will focus on two examples that represent the
most widely used operations � encryption and signature in public�key cryptography� More subtle
and complex cryptographic operations can be modelled� In section � we present a registration
protocol we have speci�ed that uses a zero�knowledge identi�cation scheme�

ACT ONE is not only used to de�ne the data transferred in messages� it is also used to de�ne
the internal database of information of each principal� For instance� a registration principal need
to manage a registration database that will also be de�ned in ACT ONE as a table of records
with multiple �elds� This application is quite common and will not be developed further in this
paper�

De�nition of abstract data types can rapidly become very cumbersome to design� Thus our spe�
ci�cation are written using data type language extensions� as o
ered by the APERO tool �Pec��	
included in the Eucalyptus toolbox� The original text has to be preprocessed by the APERO
translator to get a valid LOTOS speci�cation� This provides for a smaller and more readable
speci�cation and for some level of immunity w�r�t� underlying processing tools� However� some
types were written from scratch� hence� it was necessary to take tools restrictions explicilty into
account� The other parts of the toolset will be explained in section ����
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����� Public�key encryption and signature

The following ACT ONE de�nition models the public�key encryption operation� It does not rely
on any particular implementation �e�g� RSA� nor on any particular mathematical concept� For
simplicity� we assume the previous de�nition of the public and the private keys as base values
and the existence of an operation match�public key� private key� that returns true if the
public key corresponds to the private key�

type EncryptedMessage is Message� PublicKey� PrivateKey

sorts EncryptedMessage

opns

E ��� constructor �� � PublicKey� Message �� EncryptedMessage

D � PrivateKey� EncryptedMessage �� Message

eqns

forall msg � Message�

pubkey � PublicKey

prvkey � PrivateKey

ofsort Message

Match�pubkey�prvkey� 	� D�prvkey�E�pubkey�msg�� 	 msg


not�Match�pubkey�prvkey�� 	� D�prvkey�E�pubkey�msg�� 	 Message�Junk


endtype

The encryption function E and the decryption function D are de�ned as abstract operations that
are the reverse of each other� Decryption with a bad key is handled explicitly and produces a
distinguished value Message�Junk without any meaning� Once encrypted� the only way to access
the message is through the decryption function called with the right private key� Obviously� no
operation allows to read the private key�

The signature operation is de�ned in the same way with a veri�cation function V that returns
true if the signature is correct �i�e� the veri�cation is performed with the right public key�� We
consider that a signed message is the message in clear and an encrypted hash of it� Thus our
model needs the GetMessage operation to access the message without any key�

type SignedMessage is Message� PublicKey� PrivateKey

sorts SignedMessage

opns

S ��� constructor �� � PrivateKey� Message �� SignedMessage

V � PublicKey� SignedMessage �� Message

GetMessage � SignedMessage �� Message

eqns

forall msg � Message�

pubkey � PublicKey

prvkey � PrivateKey

ofsort Message

V�pubkey�S�prvkey�msg�� 	 Match�pubkey�prvkey�


GetMessage�S�prvkey�msg�� 	 msg


endtype

We assume with these de�nitions that no one can break the public key cryptosystem by getting
the message in clear from the encryted message and the public key� or forging a signed message
from the message in clear and the public key� Note that LOTOS easily provides processes that
transgress this rule� and thus break any cryptosystem� Great care must be taken to avoid this
kind of unrealistic behaviours�
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��� The intruder

����� Model

We want to model an intruder as a process that can mimic any attack a real�world intruder can
perform� Thus our intruder process shall be able to �

� Eavesdrop on and�or intercept any message exchanged among the entities�

� Decrypt parts of messages that are encrypted with his own public key and store them�

� Introduce fake messages in the system� A fake message is an old message replayed or a
new one built up from components of old messages including components the intruder was
unable to decrypt�

The intruder merely replaces communication channels linking principals involved in the protocol�
He behaves in such a way that neither the receiver of a fake message� nor the sender of an
intercepted message can notice the intrusion�

The LOTOS process that models the intruder manages a knowledge base� Each time the intruder
catches a message� he tries to decrypt its encrypted parts� Then he stores each part of the
message in separate sets of values� These sets constitute the intruder�s knowledge base that
increases each time a message is received� The intruder tries to collect as much information
as he can with the intercepted messages� His behaviour is simple and repetitive� He does not
deduce anything from his knowledge base� He just stores information for future use�

When one of the trusted principals is ready to receive a message� the intruder analyze his
knowledge base to determine the messages he can create� He builds them with values stored in
his sets� As he tries every combination of these values� the intruder tries to send every message
he can create with his knowledge�

The intruder is parameterized with some initial knowledge which gives him a certain amount
of power� Remember that all principals except the intruder are considered trusted� Thus as
we want to cover cases where regular principals are untrusted� the intruder must be able to act
as these principals� So his initial knowledge must comprise enough information to allow this
behaviour� For instance� in a protocol where a user must register with a trusted authority� The
intruder must be able to act as a valid user from the point of view of the trusted autority� But
he must also be able to act as a valid trusted autority from the point of view of the user� This
example will be explained in more details with the example of section ��

The key point is the power given to the intruder� Security protocols are based on some assump�
tions provided by the mathematical background of cryptographic operations� As we want to be
realistic� our intruder will not be powerful enough to break a cryptosystem� As LOTOS provides
processes that trangress this rule� it would be easy to de�ne an intruder that tries a brute force
attack to guess a private key or a random number� The intruder�s behaviour is thus deliberately
limited in this respect�

����� Speci�cation of the intruder

The following LOTOS code describes a ��way exchange between two principals� Its purpose is
to show the intruder�s interactions with trusted principals� and thus data types are simpli�ed�
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Principal A interacts through gates A�Send�B and A�Receive�B and principal B uses gates
B�Send�A and B�Receive�A� The intruder is synchronized with each gate� His behaviour is
a loop composed of six possible actions � three actions to receive the three messages and three
actions to send them� Each time a message is received� it is inserted in the intruder�s knowledge�
For clarity of this example� the Insert function hides all the analysis of the message� The
choice operator commands the generation of all the possible distinct actions where the message
sent is in the intruder�s knowledge� The structure of the intruder is quite simple and thus can
be guaranteed error free�

behaviour

Principal�A�A�Send�B�A�Receive�B
�Initial�Knowledge�of�A�

��A�Send�B�A�Receive�B
�

Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Initial�Knowledge�of�I�

��B�Send�A�B�Receive�A
�

Principal�B�B�Send�A�B�Receive�A
�Initial�Knowledge�of�B�

where

process Principal�A�A�Send�B�A�Receive�B
�Knowledge�of�A �Knowledge� � noexit �	

A�Send�B�Message��


A�Receive�B�Message�� �Type��


A�Send�B�Message��


stop

endproc

process Principal�B�A�Send�B�A�Receive�B
�Knowledge�of�B �Knowledge� � noexit �	

B�Receive�A�Message�� �Type��


B�Send�A�Message��


B�Receive�A�Message�� �Type��


stop

endproc

process Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A


�Knowledge�of�I �Knowledge� � noexit �	

�A�Send�B�Message�� � Type��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Insert�Message���Knowledge�of�I��

�

�


�B�Send�A�Message�� � Type��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Insert�Message���Knowledge�of�I��

�

�


�A�Send�B�Message�� � Type��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Insert�Message���Knowledge�of�I��

�

�


�choice Message�� � Type�� �
 �Message�� is�in Knowledge�of�I
 ��

B�Receive�A�Message��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Knowledge�of�I�

�

�


�choice Message�� � Type�� �
 �Message�� is�in Knowledge�of�I
 ��

A�Receive�B�Message��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Knowledge�of�I�

�
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�choice Message�� � Type�� �
 �Message�� is�in Knowledge�of�I
 ��

B�Receive�A�Message��


Intruder�A�Send�B�A�Receive�B�B�Send�A�B�Receive�A
�Knowledge�of�I�

�

endproc

��� Finite model

The LOTOS speci�cation will be translated into a labelled transition system �a graph� where the
nodes are the state of the LOTOS speci�cation and the transitions are labelled by the LOTOS
actions� This labelled transition system �LTS� must comprise all the possible executions of the
protocol� But this graph must be kept �nite to be generated�

Some elements like random numbers or time stamps are speci�c to one run of the protocol
leading to an in�nite number of possible messages� This in�nity must be controlled by giving
some well chosen properties to these speci�c elements� Trusted principals will use one speci�c
element for each run they perform� so we give them a limited set of elements that will be used
during their executions� We also give the intruder one element but which is di
erent from those
of the trusted principals� When the intruder will use his element in a particular message� this
will� in fact� model all the possible messages where the speci�c elements is not the one expected
by a trusted principal�

Messages with a speci�c element can be split into messages with a correct speci�c element and
messages with a wrong speci�c element� The �rst ones are limited in number but not the second
ones� With our abstraction we can keep our model �nite because a simple message is enough to
represent all the incorrect ones�

In some protocols� we may need to consider an in�nity or a big number of possible principals�
As the LTS must be kept �nite and also of reasonable size to be managed� the number of trusted
principals must sometimes be drastically limited� The intruder�s knowledge allows him to act as
any other principal in a trusted or untrusted way� but it may not be su
cient to cover all cases�

There exist other ways to prevent the exponential growth of states� An in�nite loop in the
behaviour of a principal can be replaced by a limited number of runs adjusted to still cover
all the possible intruder�s attacks� Multiple con�gurations with multiple speci�cations can be
planned to address several independant aspects of the protocol�

Great care must be taken with the restrictions imposed by the assumptions we are forced to
make� We do not prove formally the correctness of our abstract �nite model with respect to
these assumptions� It would be interesting to consider such proof on the case studies we derive
from this method� Some work in this direction is proposed in �Low��	 where the veri�cation
with a limited number of principals is generalized or in �Bol��	 where an abstraction function
automates the computation of a correct abstract model� The main di
culty comes from the
complexity of the protocols we want to verify�

Now that we have presented the complete speci�cation� we will enter deeply into the veri�cation
process�
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� Validation process

��� Properties to verify

Most security properties rely on the fact that the intruder does not know some secret information
or is not able to construct the expected message� They can be characterize as safety properties�
Informally� safety properties are properties stating �nothing bad will happen�� Authentication�
access control� con�dentiality� integrity and non�repudiation are safety properties� Each of these
security services require that a particular situation cannot occur�

The only liveness property is the non�denial of service� which current cryptographic protocols
do not guarantee� Intuitively� liveness properties are properties stating �something good will
happen�� A denial of service happens if an intruder succeeds to get a protocol stuck or make
it fail� Thus when a denial of service arises� the liveness property stating that the protocol will
succeed is not satis�ed�

In order to provide these security services� protocols implement particular mechanisms� The
LOTOS speci�cation of trusted principals apply them while the intruder process tries to defeat
them� A way to verify the robustness against intruder�s attacks during the execution of the
speci�cation is needed� Thus a formal translation of the properties to be achieved by security
services is required in order to perform the veri�cation�

��� Formalizing the properties

During message exchanges of security protocols� critical points are reached where certain security
services are assured� The reception of a well�formed message can trigger a principal into a state
where he trusts some facts� This behaviour needs to be formalized� We must translate the
human idea that the required security service is satis�ed into a precise de�nition of principals
state�

In order to determine these critical points in the speci�cation� we introduce some special events�
Each time a critical point is reached by a trusted principal� he informs the environment by
sending a speci�c message that gives information about its internal state� The environment
of the LOTOS speci�cation is responsible for the reception of these messages� By executing a
special event� a principal declares that he is con�dent in a fact�

If we consider an authentication protocol between two principals� The prover must be au�
thenticated by the veri�er� There are two critical points in this protocol� The �rst one is
when the prover starts his authentication and the second one is when the veri�er is sure of
the prover�s identity� Thus we introduce two special events PROVER�START�AUTHENTICATION

and VERIFIER�AUTHENTICATION�SUCCESSFUL� A common property required is that �the prover
must have started an authentication with the veri�er before the veri�er successfully authenti�
cates the prover�� Otherwise� an intruder has been able to be authenticated with the prover�s
identity� This property will be captured by our special events regardless of the particular au�
thentication mechanisms used� We just state that �No VERIFIER�AUTHENTICATION�SUCCESSFUL
event must occur before a PROVER�START�AUTHENTICATION��

This technique can be applied to a wide range of security properties� Some re�nements are
sometimes needed to de�ne more precisely critical points� A special event can be expressed with
parameters that determine the context where the associated critical point occurs� A parameter
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Figure � � The Eucalyptus toolbox

can be a principal�s identity� an authentication token� a particular key or any other relevant
data�

This method allows one to abstract away from all the details of security mechanisms� We can
only focus on the security services achieved� One of the major di
culties is to gain the assurance
that the critical points are well de�ned and the security properties are translated correctly into
properties on special events� So we need to �nd the right abstraction level between the simplicity
of the global view of the security services and the complexity of the underlying protocols� Method
to automate the process would be desirable� Some researchs in this direction can be found in
�AG��	�

��� The veri�cation toolbox

When the LOTOS speci�cation is written and the properties are formalized� we can perform
the veri�cation itself� We use the CADP package �FGK��	 included in the Eucalyptus toolbox
to carry out the veri�cation of the protocol� As �gure � shows� the LOTOS speci�cation with
datatype language extensions is converted into ISO LOTOS with the APERO tool� The next
step consists of applying the Caesar tool to generate a graph called Labelled Transition System
�LTS� from the LOTOS speci�cation� This graph contains all the possible execution sequences
of the protocol studied� Section ��� has addressed the feasibility of the generation� To gain
con�dence into the speci�cation� it is simulated with the XSimulator in step�by�step execution
mode�

The Aldebaran tool is the last stage of the processing� It performs the comparison of two labelled
transition systems� The veri�cation requires the comparison of the LTS of the protocol as created
by the Caesar tool with the graphs of our properties� Thus a �nal step in the formalization is
needed� The properties based on special events must appear like a �nite�state graph� The
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process can be automated using the Caesar tool � each property is modelled as a reference LTS
generated from a simple LOTOS process containing special events only�

The property discussed in section ��� can be speci�ed in LOTOS as follows� The corresponding
LTS generated by the Caesar tool is shown in �gure ��

behaviour

System�State� PROVER�START�AUTHENTICATION
Property�System�State


where

process Property�System�State
 � noexit

�	

System�State� PROVER�START�AUTHENTICATION
Property�System�State


�


System�State� VERIFIER�AUTHENTICATION�SUCCESSFUL
Property�System�State


endproc

��� The veri�cation

Before any comparison between LTS� they must be minimized to speed up the computations�
The Aldebaran tool can minimize a LTS modulo a particular equivalence� The �rst minimization
is always done modulo the strong bisimulation equivalence� which preserves all the properties of
the graph�

Consider a LTS � �S�A� T� s�� where S is the set of states� A the alphabet of actions �with i

denoting the internal action�� T the set of transitions and s� the initial state�

A relation R � S � S is a strong bisimulation i
 �

If �P�Q� � R then� � a � A�
whenever P

a
� P � then � Q� � Q

a
� Q� and �P �� Q�� � R�

whenever Q
a
� Q� then � P � � P

a
� P � and �P �� Q�� � R

Two LTS Sys� � �S�� A� T�� s��� and Sys� � �S�� A� T�� s��� are related modulo the strong
bisimulation denoted Sys� � Sys�� i
 there exists a strong bisimulation relation R � S� � S�
such that �s��� s��� � R�
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Our security properties being all safety properties� the minimization can be further improved
modulo the safety equivalence �BFG��	� which preserves all the properties expressible in Branch�
ing time Safety Logic �BSL��

Not all the observable actions are relevant to verify the properties� In particular� our properties
only rely on special events� so that other actions can be hidden� The minimized LTS of our
protocol can be checked against the LTS of a property be verifying the safety preorder relation
�BFG��	 between them� Formally� the safety preorder �	s� is the preorder that generates the
safety equivalence ��s�� and is nothing else than the weak simulation preorder�

Consider again a LTS � �S�A� T� s�� and let�s de�ne L � A
 fig� a relation R � S � S is a
weak simulation i
 �

If �P�Q� � R then� � a � L�

if P
i�a
� P �� then � Q� � Q

i�a
� Q� and �P �� Q�� � R

A LTS Sys� � �S�� A� T�� s��� can be simulated by Sys� � �S�� A� T�� s���� denoted Sys� 	s

Sys�� i
 there exists a weak simulation relation R � S� � S� such that �s��� s��� � R� Two
LTS Sys� and Sys� are safety equivalent i
 Sys� 	s Sys� and Sys� 	s Sys��

Informally� �behaviour 	s property� means that the behaviour �exhibited by the protocol� is
allowed �i�e� can be simulated� by the �safety� property�

When a property is not veri�ed� meaning that Aldebaran has not found a safety preorder between
the LTS of protocol and the LTS of the property� it produces a diagnostic sequence of actions�
However� this sequence is usually of little help as such� because it only refers to the few non
hidden actions that were kept for their relevance to express the properties� We call it the abtract
diagnostic sequence�

To circumvent this di
culty and get a detailed sequence with all actions visible� we have to
encode this abstract diagnostic sequence in a format suitable for input to the Exhibitor tool�
This tool is then instructed to �nd the shortest detailed sequence allowed by the speci�cation
and matching the abstract one� We are then able to clearly identify the scenario that leads to
the undesirable state where the property is not veri�ed� Intruder�s attacks can then be pointed
out very easily� The complete diagnostic sequence shows the order of actions performed by the
intruder and how he was able to acquire enough knowledge to succeed�

The veri�cation process of the properties is then complete� If one or more of them are not
satis�ed� our method gives diagnostics of a greatful help to redesign the protocol�

� An example of veri�cation

To illustrate our method� this section presents an example of veri�cation� We have chosen the
registration part of the Equicrypt protocol� a conditional access protocol under design in the
European ACTS OKAPI project �GBM��	� It allows a user to subscribe to multimedia services
such as video on demand� The user must �rst register with a Trusted Third Party �TTP� using
a challenge�response exchange� After a successful registration� this TTP issues a public�key
certi�cate which allows the user to subscribe to a service o
ered by a service provider�

We concentrate on the veri�cation of the registration protocol� This paper only presents an
overview of the process� Complete details can be found in �GL��	 for more interested readers�
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��� The registration protocol

The registration protocol involves a user who wants to access a multimedia service and a TTP
that acts as a notary� The mutual authentication of the user and the TTP must be achieved by
the protocol� The TTP must be sure that the claimed identity of the user is the right one and
the user must be sure that he registers with the right TTP� The TTP must also receive the good
user�s public�key during the procotol to issue a corresponding public�key certi�cate needed for
the subcription phase�

The authentication of the user by the TTP uses the Guillou�Quisquater �GQ� zero�knowledge
identi�cation scheme �GQ��	� Before registering� the user has received secret personal credentials
derived from its real�life identity� These credentials will help him to prove who he is to the TTP
but without revealing them� The authentication of the TTP by the user uses a challenge based
on a nonce �i�e� a number used once�� The user has also received the TTP�s public�key to
perform the required checks on the messages and to authenticate the TTP� The transmission
of the user�s public�key to the TTP is possible with an improved version of the GQ algorithm
�LBQ��	� The registration protocol presented in this paper is� in fact� an enhanced version of
the original one found in �LBQ��	�

The GQ identi�cation scheme is based on complex mathematical relations derived from the
user�s identity� the user�s public�key and the secret credentials� It uses a random number issued
by the TTP to challenge the user and a second random number issued by the user to scramble the
public�key and protect the credentials� To specify the algorithm� we have designed an abstract
model which is particulary simple while still capturing the essence of it� The key point of the
authentication are the secret credentials� If we consider them as a secret encryption key and
the user�s identity together with its public key as a corresponding public decryption key� the
GQ algorithm looks like an authentication scheme based on a nonce and works as follows� The
user sends his public decryption key to the TTP and receives back a nonce as a challenge� Then
he returns to the TTP the nonce encrypted by his encryption key� The TTP can then check
that the nonce has been encrypted as expected� This scheme resists to the �man�in�the�middle�
attack because the decryption key is mathematically linked to the user�s identity�

In the remaining of this paper� we will present all the messages with the following structure �

Number � Source� Destination � Message Identifier � Message F ields �

A couple �KS
A
�KP

A
� will denote the pair of private�public keys of the principal A� Encryption of

data will be written fdatagKP
A

while signature will be written fdatagKS
A
� F �B� d� will represent

the special encryption of the GQ model where B are the credentials�

The protocol works as follows �

The user generates a random nonce n and sends the message ��

� � User � TTP � Register Request � UserID�KP
U
� fngKP

TTP
�

When the TTP receives message �� he decrypts the nonce n and signs it� generates a random
number d and sends them to the user� The TTP can handle several registrations at a time� So
he maintains an internal table with one entry for each user who has a registration in progress
and he records the tuple � UserID�KP

U
� n� d ��

� � TTP � User � Register Challenge � d� fngKS
TTP

�
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When the user receives message �� he checks the signature� If the signature is correct� he
performs the GQ calculation and sends the result to the TTP�

� � User � TTP � Register Response � F �B� d� �

When the TTP receives message �� he checks the GQ authentication using this message and the
data found in his internal table� Then� he sends a response according to the result� The response
is signed and includes both the user�s identity and the nonce n� The user�s entry in the internal
table is deleted� If the response is positive� the TTP registers the tuple � UserID�KP

U
�

�� � TTP � User � Register Acknowledgement � fY es� UserID� ngKS
TTP

�

�� � TTP � User � Register Acknowledgement � fNo�UserID� ngKS
TTP

�

��� Procotol speci�cation

Using the framework presented in previous sections� we have speci�ed the protocol in LOTOS�
Abstract data types were designed for all the cryptographic operations involved including the
abstract model of the GQ algorithm� The user and the TTP are two trusted principals and
the intruder is the untrusted one� The user always tries to perform a valid registration� The
intruder�s initial knowledge is adjusted to allow him to act as a second untrusted user and
simultaneously as a second untrusted TTP� It includes �

� An identity � IntruderID

� Valid credentials � BI

� A pair of private�public keys � KS
I
et KP

I

� The public key of the user KP
U

and the public key of the TTP KP
TTP

� The identity of the user � UserID

� Nonces and random numbers di
erent from those of trusted principals�

After the step�by�step simulation stage� the labelled transition system �LTS� of the protocol has
been generated� It is composed of ������ states and ������� transitions and has required one
hour of computation on a SUN Ultra�� workstation running Solaris ����� with � CPUs and ���
Mb of RAM� The reduction factor of the minimization modulo the strong bisimulation was very
important� The minimized LTS of the protocol is made of ���� states and ����� transitions�
The reduction modulo the safety equivalence was not mandatory because the graph was small
enough to carry out the veri�cation�

��� Formalizing the properties

Among the �ve safety properties we have veri�ed� we only present one of a particular interest�
This property is necessary �but not su
cient� to the authentication of the TTP by the user and
we will see later that the current protocol does not satisfy it�

� P� � The verdict of the registration given by the TTP �i�e� registered or failed� must always
be correct and consistent with the acknowledgement received by the user�
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USER_REG_SUCCEEDED

Figure � � Labelled transition system modelling property P�

Four special events are required to formalize this property� Two events are related to the verdict
given by the TTP and two other events to the verdict received by the user� A critical point
is reached when the TTP decides whether or not the registration is successful� This decision
depends on the correctness of message �� Before the TTP sends his positive or negative ac�
knowledgement� he generates a special event� The TTP�REG�SUCCEEDED event corresponds to
the positive acknowledgement and the TTP�REG�FAILED event corresponds to the negative ac�
knowledgement� When the user receives the TTP�s response� he also reaches a critical point�
Thus� he generates a USER�REG�SUCCEEDED event or a USER�REG�FAILED according to the re�
sponse received�

Property P� can be expressed by the graph shown on �gure �� It shows the temporal orderings
that we authorize among the TTP�REG�SUCCEEDED� TTP�REG�FAILED� USER�REG�SUCCEEDED and
USER�REG�FAILED events� In particular� a USER�REG�SUCCEEDED must always be preceded by
one TTP�REG�SUCCEEDED because� when the user learns that he has successfully registered� the
TTP must have successfully registered him� A USER�REG�FAILED must always be preceded
by at least one TTP�REG�FAILED and no TTP�REG�SUCCEEDED because� when the user learns
that his registration failed� the TTP must have refused to register him at least once and the
TTP must not have registered that user successfully� A USER�REG�FAILED must never follow a
TTP�REG�SUCCEEDED�

��� A �aw

Aldebaran has discovered that the property P� was not satis�ed� The behaviour of the registra�
tion protocol cannot be simulated by the graph of the property regarding the relevant special
events� It has found a sequence where a USER�REG�FAILED occurs before a TTP�REG�SUCCEEDED�
The TTP successfully registers the user after the user has learned that his registration failed�
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Figure � � Scenario of the intruder�s attack

We use the Exhibitor tool to produce a diagnostic sequence that immediately shows us how the
intruder has built his attack� The scenario is exhibited in �gure ��

When the intruder receives a registration request message from the user� he fowards it to the TTP
and makes the �rst challenge fail with a fake response to obtain a negative acknowledgement from
the TTP� Then the intruder follows on by replaying the registration request message previously
recorded� Upon reception� the TTP starts a second registration with the user and sends a second
challenge� This time� the intruder forwards the challenge to the user who is still waiting for his
�rst challenge� The user replies with a valid message and waits for an acknowledgement� The
intruder replays the negative one previously received� This acknowledgement is valid and thus
the user declares that the registration failed� Meanwhile the intruder fowards the valid response
of the user to the TTP who declares the registration successful� Both parties have �nished their
exchange but they do not have the same point of view of the situation�

For this attack to succeed� the intruder only needs to create a fake response to the �rst challenge�
The strengh of our technique is that the analysis of the diagnostic sequence immediately brings
us the reason of the failure� The acknowledgement of the TTP is too general because it can be
considered valid in two distinct registrations�

��� Corrected protocol

A way to prevent the attack is to add to the acknowledgement a unique identi�er of the regis�
tration� The random number used in the GQ veri�cation is the right candidate� This number is
meant to be di
erent at each registration� Its integration into the signature of the fourth mes�
sage will allow the user to check its freshness� Here is the corrected version of our registration
protocol �
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� � User � TTP � Register Request � UserID�KP
U
� fngKP

TTP
�

� � TTP � User � Register Challenge � d� fngKS
TTP

�

� � User � TTP � Register Response � F �B� d� �
�� � TTP � User � Register Acknowledgement � fY es� UserID� n� dgKS

TTP
�

�� � TTP � User � Register Acknowledgement � fNo�UserID� n� dgKS
TTP

�

Aldebaran states that all the properties� including P�� are ful�lled with this version� Hence� the
mutual authentication and the transmission of the public key succeed despite the attempts of
the intruder�

��	 Enhancements of the protocol

This section deals with two improvements of the protocol� Firstly� we will try to obtain the
simplest protocol� Encryptions and signatures were used to have the assurance that the intruder
could not alter messages or parts of them� The formal description we made will help us to
establish which cryptographic operations are really essential� Our guideline is to minimize
cryptographic operations because public key cryptography has a very high computational cost�

Secondly� we will modify the protocol to help the entities to make the distinction between a
failure and an error� When an entity receives a message� it performs several checks� If one of
them fails� a message indicating the reason of the error is sent to the environment� It is very
important to understand the di
erence between the two kinds of interruptions a registration
can encounter� The registration can fail because the TTP has decided that the user does not
own good credentials� That is what we will call a failure� The other cases are errors� An error
occurs when the registration protocol stops due to a badly formed message� wrong signature�
wrong nonce� ��� We obviously focus on failures because we want to defeat the intruder when
he generates good messages� An intruder can always create errors by sending garbage in the
transmission channel� This separation between failures and errors helps to determine whether
an intruder is disturbing the registration or not�

����� The simplest protocol

We have found that the addition of the random number d in the signature of the fourth message
makes the nonce n useless� It was used at �rst for the user to authenticate the TTP� The
TTP�s signature of the acknowledgement is su
cient to perform this authentication� The user
knows the TTP�s public key so that he can verify that this message originates from the TTP�
The random number d ensures that it belongs to the current registration and has not been
replayed by the intruder� Thus� the user has the guarantee that he is talking to the TTP for
the registration presently in progress�

Section ��� demonstrates that the signature of the registration acknowledgement message is
very important� It can certainly not be removed as it performs the authentication of the whole
registration� The message � is composed of the TTP�s response� the user�s identity and the
random number d� So the authentication of d with a signature in the registration challenge
message is not necessary� Only the �nal check of the acknowledgement is mandatory�
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Figure � � A failure of the user generated by the intruder

These two simpli�cations lead to a very simple protocol with only one signature �

� � User � TTP � Register Request � UserID�KP
U
�

� � TTP � User � Register Challenge � d �

� � User � TTP � Register Response � F �B� d� �
�� � TTP � User � Register Acknowledgement � fY es� UserID� dgKS

TTP
�

�� � TTP � User � Register Acknowledgement � fNo�UserID� dgKS
TTP

�

All the �ve properties are satis�ed� This version is as robust as the previous one from the
point of view of the mutual authentication� Obviously� the intruder can more easily disturb
the registration� The only di
erence is that the intruder�s actions will be discovered later in
the protocol� Regarding the special events only� a safety preorder exists between the corrected
version of the protocol and this simpli�ed version� Hence� all safety properties� expressible on
the special events� veri�ed on the latter are veri�ed on the former�

����� Distinction between failures and errors

With this second improvement� we want to give the entities the ability to know exactly why a
registration does not complete� This additional requirement will introduce complexity in the
protocol� The simpli�cation described in ����� brought us in the opposite direction but now we
can build our strategy on solid bases�

In our speci�cation� the special events only happened when neither the user nor the TTP
meet an erroneous message otherwise� they declare an error and stop the protocol� By adding
cryptographic operations and checks to the processing of the messages� we reduce the cases
where a special event can take place� The model of our user owns valid credentials and always
performs a correct registration but he still declares failures with USER�REG�FAILED events� This
behaviour can only result from intruder�s actions and shows that the user cannot completely
distinguish errors from failures� In other words� some errors are interpreted as failures� Normally�
the user must never meet a failure with our assumptions� meaning that the user�s registration
must always �nish with a positive answer from the TTP or an error� The �gure � exhibits a
scenario that leads to such a failure with the simpli�ed version of the protocol�

The user starts his registration and the protocol progresses normally until the intruder replaces
the register response message of the user with another one� This new message is wrong because
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the intruder does not own credentials the TTP is waiting for and thus� a failure is declared and
the TTP sends a negative acknowledgement� The user also declares a failure upon its reception�

This scenario is not related to the authentication properties of safety we have previously veri�ed�
The TTP refuses to authenticate the user due to an intruder�s action but is not authenticating the
user incorrectly� The reason of the failure is linked to the integrity of the messages transmitted
during the protocol� In this particular case� the register response message has been changed by
the intruder�

To achieve the user�s distinction of errors from failures� we will strengthen the requirements on
the protocol and add a new property�

� P� � The user must never learn that his registration has been refused by the TTP�

or expressed with special events �

� P� � No USER�REG�FAILED event is allowed in the LTS of the system�

From the point of view of the TTP� he would also make a complete distinction between failures
and errors if he never declares a failure of the user because the user always tries to perform a
valid registration� All disturbing elements must come from the intruder and must lead to errors
�or possibly to a TTP�REG�FAILEDwith the intruder�s identity�� We model this case with another
new property called P� that does not allow the TTP to refuse to register the user� Formally�
no TTP�REG�FAILED event with the user�s identity �TTP�REG�FAILED �USERID�A� is permitted
in the LTS of the system�

We check for the presence of USER�REG�FAILED and TTP�REG�FAILED �USERID�A events using
the Exhibitor tool� If the veri�cation does not �nd any of these events� our new properties are
satis�ed� The simplest protocol cannot guarantee P� nor P� because the parameters used in
the GQ algorithm are not checked before the GQ veri�cation �see the previous scenario�� So we
propose a new solution with two new signatures�

� � User � TTP � Register Request � UserID�KP
U
�

� � TTP � User � Register Challenge � fUserID�KP
U
� dgKS

TTP
�

� � User � TTP � Register Response � fUserID� F �B� d�gKS
U
�

�� � TTP � User � Register Acknowledgement � fY es� UserID� dgKS
TTP

�

�� � TTP � User � Register Acknowledgement � fNo�UserID� dgKS
TTP

�

The main di
culty to solve comes from the GQ veri�cation� The protocol must provide a way
to �nd why the GQ calculation is not correct� If the problem is due to the use of bad credentials�
the TTP must declare a failure� otherwise he must declare an error�

The signature of the register challenge message allows the user to verify that the data transmitted
in the �rst message were correctly received� This could not be achieved by signing the register
request because the TTP does not know the user�s public key yet� If and only if the user agrees
with the register challenge� he generates a response F �B� d�� signed with his private key� When
the TTP receives this third message� he can use the recently received public key to check the
signature� If the signature is incorrect� the TTP declares an error� Otherwise� if the result of
the GQ computation is correct� that means that the user has received a valid register challenge
message and thus agrees with the public key used in this message� Hence the TTP owns the
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Figure � � A failure of the TTP generated by the intruder

real public key of the user� Both the GQ computation and the signature must be correct� One
of them is not enough to make a good veri�cation�

From the TTP�s point of view� nothing distinguishes the received result of the function F from a
random number before the GQ veri�cation� So we have added the user�s identity in the register
response message to allow the TTP to check the user�s signature�

With this version of the protocol the transmission of the user�s public key does no longer need to
be associated with the computations of the GQ veri�cation� Our model of the GQ identi�cation
scheme states that the function F acts as a signature veri�ed by the user�s identity and the
user�s public key� In fact� this new version of the registration protocol can be used with a GQ
algorithm in which B is only linked to user�s identity and not to its public key� This is because
the two new signatures in messages � and � allow the certi�cation of the user�s public key� This
simpli�ed GQ is in fact the original one �GQ��	�

Property P� is satis�ed with this version� There is no possible USER�REG�FAILED event� All the
intruder�s actions are detected by the various checks involved in the cryptographic operations�
Nevertheless� it was not possible to suppress all the TTP�REG�FAILED events� Property P� is thus
not satis�ed� Indeed� the complete removal of these events would imply a kind of authentication
before the authentication itself� and therefore constitutes an unreachable goal� The �gure � will
further clarify this� It exhibits a possible attack where the intruder replaces the user�s public
key with its own� Without knowing the right user�s public key before the beginning of the
registration� the TTP cannot detect the falsi�cation�

� Conclusion

This paper presents a formal veri�cation process for security protocols using LOTOS� We have
shown how to specify a protocol with the concept of trusted and untrusted principals� The �ex�
ibility of abstract data types allows the description of a wide range of cryptographic operations�
We have shown the modelling of the classical public�key scheme but also a more complex one �
the Guillou�Quisquater algorithm�

We have shown how intrusion can be taken into account by adding an intruder process replacing
the communication channels� Our model of this intruder is very simple and powerful� He
can mimic very easily all reasonable real�world attacks� that is all non cryptographic and non
repetitive attacks�
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We have explained the validation process and the formalization of security properties� They can
be modelled as safety properties with the help of special events triggered when crucial states are
reached� The veri�cation is based on the safety preorder which should hold between the system
and the property�

Our method is illustrated with a registration protocol where we have found a subtle �aw that
could probably not have been discovered� at least so early� by a human�being� The veri�cation
is quite automatic and allows one to make e
cient corrections and improvements� Some as�
sumptions on the model were required and formal proofs of their correctness are an interesting
future work� Nevertheless� this example demonstrates that LOTOS is suitable to verify complex
cryptographic protocols that can enforce a wide variety of security properties�
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