Model-based Design and Verification of Security Protocols
using LOTOS

F. Germeau, G. Leduc!

Research Unit in Networking (RUN)
Institut d’électricité Montefiore B.28, Université de Liége, B-4000 Liége, Belgium
{germeau,leduc} @montefiore.ulg.ac.be

Abstract

We explain how the formal language LOTOS can be used to specify security protocols and
cryptographic operations. We describe how to model security properties as safety properties
and how a model-based verification method can be used to verify the robustness of a protocol
against attacks of an intruder. We illustrate our technique on a concrete registration protocol.
We find a simpler protocol that remains secure, and a more sophisticated protocol that allows
a better distinction between intruder’s attacks and ordinary errors.

1 Introduction

Formal description techniques gain increased consideration due to significant advances and re-
sults recently obtained. A lot of computer systems achieve mission-critical tasks and thus require
an absolute proof that they are working without any errors. Such a proof can be deduced with
formal verifications. The ever growing power of computers and the increasing knowledge of
verification techniques allow one to perform validations on real problems. With the develop-
ment of the Internet and specially with the birth of the electronic commerce, the security of
communications between computers becomes a crucial point. All these new applications require
reliable protocols able to perform secure transactions. The environment of these operations is
very hostile because no transmission channel can be considered safe. Formal descriptions and
verifications can be used to obtain the assurance that a protocol cannot be threatened by an
intruder.

Special modal logics have been designed to verify authentication protocols. The most well-known
such logic is the BAN logic [BAN90], but some others have been proposed to overcome some of
its limitations. Such logics have been used successfully to verify several protocols, but have not
proved very effective in some other circumstances. Another approach consists of using general
purpose formal methods usually applied to more conventional protocols. They are supported
by verification tools, such as theorem provers or model-checkers, which makes it possible to
automate the proof process. Approaches based on theorem proving applicable to a large class
of protocols and to general authentication properties have been proposed [Mea92][Bol96].

Until recently among the different formal methods, the model-checking approach was not felt
adequate to tackle the verification of security protocols. Recent results prove the contrary, this
approach can in fact be very efficient to achieve a real computer aided design of security protocols.
To our knowledge, its first application to the verification of security protocols was achieved in
[Low96] where the Needham-Schroeder protocol [Sch96] was specified in CSP [Hoa85] and model-
checked by the FDR tool. Independently of this work, we specified the Equicrypt protocol

!Maitre de recherches (Senior Research Associate) F.N.R.S. (National Fund for Scientific Research, Belgium)

[LBQY6] in LOTOS and used the Eucalyptus toolbox [Gar96] to verify it [LBK96][GL97]. The
present paper will focus on the method we used to model and verify a security protocol using
LOTOS.

The paper is organized as follow. In section 2, we will show that the LOTOS language is a
very good performer to handle the specification of security protocols. With its flexibility, a
wide range of cryptographic operations can be modelled. We will describe the establishment of
security properties and the associated verification process in section 3. The verification is quite
automatic and allows one to certify that an intruder cannot break a cryptographic protocol with
different kinds of attacks. An application of our method on a concrete protocol will be presented
in section 4. We will also point out that it is possible to tune a protocol in order to obtain new
properties and improve its behaviour.

2 LOTOS specification

The formal specification of a security protocol is written in LOTOS [BB87][ISO89] which is a
standardized language suitable for the description of distributed systems. It is made up of two
components:

e A process algebra, moslty inspired by CCS [Mil89] and CSP [Hoa85], with a structured
operational semantics. It describes the behaviour of processes and their interactions. LO-
TOS has a rich set of operators (multiway synchronization and abstraction like in CSP,
disabling, ...), and an explicit internal action like in CCS.

e An abstract datatype language. ACT ONE [EMS85], with an initial semantics. A type
is defined by its signature (sorts + operation on the sorts) and by equations to give a
meaning to the operations.

The revision of the LOTOS standard is under study in ISO/IEC since 1991. The design of this
enhanced version called E-LOTOS is based on the feedback obtained from practical applications
of LOTOS and will certainly improve its expressive power.

A LOTOS specification is composed of two differents parts. The first one is dedicated to the
description of the abstract data types and the cryptographic operations in particular. The
second part describes the behaviour of the different entities involved in the protocol. We will
firstly deal with this description

2.1 Behaviour

Every security protocol involves several entities called principals. A principal can be any object
that plays a role in the evolution of the protocol. Example of principals are users, hosts or
processes. When we address the verification of the security of the protocol, we must make some
assumptions on the behaviour of the principals. Thus principals are qualified trusted or not. A
trusted principal will always react according to the expected behaviour. A non-trusted principal
can try and break the protocol with an unexpected behaviour though is considered genuine by
the other entities.

Ato B

B to_A

Figure 1: Principals without intruder

System State

A send_B B receive_ A

Intruder

A receive_B

B send_A

Figure 2: Principals with intruder and environment

Principals are linked together with communication channels to exhange messages. These com-
munication channels are generally considered insecure, that is an intruder can act passively or
actively on the transferred information. He can eavesdrop on messages, intercept them, replay
old ones, or create new ones. The goal followed by the intruder ranges from a simple denial of
service to the access to prohibited rights.

The behaviour section of a LOTOS specification is composed of several processes which interact
with each other through interaction points called gates. Each principal involved in the protocol
is modelled by a process that describes its exact behaviour. LOTOS allows the synchronisation
of two or more processes via interactions that can occur at each gate. A one way communication
channel between two principals is modelled by the synchronisation of the transmission gate of
one principal with the reception gate of the other principal. A second synchronisation handles
the other way of the communication channel.

For instance, figure 1 depicts a system with two principals where the communication channel
is modelled by the synchronisation of the gate A_to_B of principal A with the gate A_to_B of
principal B and with the synchronisation of the gate B_to_A of principal A with the according
gate of principal B.

To introduce the intruder that will try to threat the protocol we replace the simple commu-
nication channels by one central process that will act as the intruder. Thus the intruder can
intercept all messages and transmit them or not, with or without modification. We will enter
into the details of the intruder’s behaviour in section 2.3. Back to our example, the principals
are not interacting directly with each others but indirectly through the intruder process (figure
2). The intruder is the only principal considered untrusted. All other principals are trusted.
We model cases where a principal is not trusted by giving enough power to the intruder to act
as a genuine principal.

Finally, we use an environment to monitor the progress of the protocol. When a principal
reaches a sensitive point, he informs the environment by sending him a message through the

System_State gate. These messages are called special events and will be developed further in
section 3.2. They will be of a great help to perform the formal verification. The environment is
also responsible for the reception of error messages. Figure 2 presents the complete structure of
a typical LOTOS specification that models a security protocol between two principals.

Each process that represents a principal is parameterized with an initial knowledge. This knowl-
edge includes identifiers, keys or whatever information a principal must know before runs of the
prococol can occur. As we will see later, the knowledge is the core of the intruder’s modelling.

2.2 Abstract data types
2.2.1 Principles

The specification of the behaviour only describes the exchange of messages. It does not consider
the data transferred by these messages. Abstract data types define the elements that are handled
by the behavioural part. They define which kind of data are used by the protocol but also
which operations are allowed on these data. Only the defined operations are permitted. With
this restriction, complex cryptographic operations can be abstracted away from mathematical
details. We will see that only a simple description of their characteristics is needed.

With LOTOS, abstract data types are written in ACT ONE. Each LOTOS variable can only
have values of a particular sort defined during the declaration. A LOTOS type is a module
composed of one or several sorts, operations and equations. A sort is the name given to a set of
values that belong to the same domain. Specific operations are defined on the values of each sort
and the semantics of these operations is provided by specific equations. This structure allows
for a great flexibility in the handling of data in LOTOS.

A lot of mechanisms exist in modern cryptography [Sch96], but only a few of them are actually
used in security protocols. We do not intend to make an exhaustive translation of cryptographic
operations in ACT ONE. We just want to show the level of abstraction provided by LOTOS and
the relative simplicity in the definition. Thus we will focus on two examples that represent the
most widely used operations: encryption and signature in public-key cryptography. More subtle
and complex cryptographic operations can be modelled. In section 4 we present a registration
protocol we have specified that uses a zero-knowledge identification scheme.

ACT ONE is not only used to define the data transferred in messages, it is also used to define
the internal database of information of each principal. For instance, a registration principal need
to manage a registration database that will also be defined in ACT ONE as a table of records
with multiple fields. This application is quite common and will not be developed further in this

paper.

Definition of abstract data types can rapidly become very cumbersome to design. Thus our spe-
cification are written using data type language extensions, as offered by the APERO tool [Pec96]
included in the Eucalyptus toolbox. The original text has to be preprocessed by the APERO
translator to get a valid LOTOS specification. This provides for a smaller and more readable
specification and for some level of immunity w.r.t. underlying processing tools. However, some
types were written from scratch, hence, it was necessary to take tools restrictions explicilty into
account. The other parts of the toolset will be explained in section 3.3.

2.2.2 Public-key encryption and signature

The following ACT ONE definition models the public-key encryption operation. It does not rely
on any particular implementation (e.g. RSA) nor on any particular mathematical concept. For
simplicity, we assume the previous definition of the public and the private keys as base values
and the existence of an operation match(public key, private key) that returns true if the
public key corresponds to the private key.

type EncryptedMessage is Message, PublicKey, PrivateKey
sorts EncryptedMessage
opns
E (*! constructor *) : PublicKey, Message -> EncryptedMessage
D : PrivateKey, EncryptedMessage -> Message
eqns
forall msg : Message,
pubkey : PublicKey
prvkey : PrivateKey
ofsort Message
Match (pubkey,prvkey) => D(prvkey,E(pubkey,msg)) = msg;
not (Match(pubkey,prvkey)) => D(prvkey,E(pubkey,msg)) = Message_Junk;
endtype

The encryption function E and the decryption function D are defined as abstract operations that
are the reverse of each other. Decryption with a bad key is handled explicitly and produces a
distinguished value Message_Junk without any meaning. Once encrypted, the only way to access
the message is through the decryption function called with the right private key. Obviously, no
operation allows to read the private key.

The signature operation is defined in the same way with a verification function V that returns
true if the signature is correct (i.e. the verification is performed with the right public key). We
consider that a signed message is the message in clear and an encrypted hash of it. Thus our
model needs the GetMessage operation to access the message without any key.

type SignedMessage is Message, PublicKey, PrivateKey
sorts SignedMessage
opns
S (*! constructor *) : PrivateKey, Message -> SignedMessage
V : PublicKey, SignedMessage -> Message
GetMessage : SignedMessage -> Message
eqns
forall msg : Message,
pubkey : PublicKey
prvkey : PrivateKey
ofsort Message
V(pubkey, S (prvkey,msg)) =
GetMessage (S(prvkey,msg))
endtype

Match (pubkey,prvkey) ;
= msg;

We assume with these definitions that no one can break the public key cryptosystem by getting
the message in clear from the encryted message and the public key, or forging a signed message
from the message in clear and the public key. Note that LOTOS easily provides processes that
transgress this rule, and thus break any cryptosystem. Great care must be taken to avoid this
kind of unrealistic behaviours.

2.3 The intruder
2.3.1 Model

We want to model an intruder as a process that can mimic any attack a real-world intruder can
perform. Thus our intruder process shall be able to:

e Eavesdrop on and/or intercept any message exchanged among the entities.
e Decrypt parts of messages that are encrypted with his own public key and store them.

e Introduce fake messages in the system. A fake message is an old message replayed or a
new one built up from components of old messages including components the intruder was
unable to decrypt.

The intruder merely replaces communication channels linking principals involved in the protocol.
He behaves in such a way that neither the receiver of a fake message, nor the sender of an
intercepted message can notice the intrusion.

The LOTOS process that models the intruder manages a knowledge base. Each time the intruder
catches a message, he tries to decrypt its encrypted parts. Then he stores each part of the
message in separate sets of values. These sets constitute the intruder’s knowledge base that
increases each time a message is received. The intruder tries to collect as much information
as he can with the intercepted messages. His behaviour is simple and repetitive. He does not
deduce anything from his knowledge base. He just stores information for future use.

When one of the trusted principals is ready to receive a message, the intruder analyze his
knowledge base to determine the messages he can create. He builds them with values stored in
his sets. As he tries every combination of these values, the intruder tries to send every message
he can create with his knowledge.

The intruder is parameterized with some initial knowledge which gives him a certain amount
of power. Remember that all principals except the intruder are considered trusted. Thus as
we want to cover cases where regular principals are untrusted, the intruder must be able to act
as these principals. So his initial knowledge must comprise enough information to allow this
behaviour. For instance, in a protocol where a user must register with a trusted authority. The
intruder must be able to act as a valid user from the point of view of the trusted autority. But
he must also be able to act as a valid trusted autority from the point of view of the user. This
example will be explained in more details with the example of section 4.

The key point is the power given to the intruder. Security protocols are based on some assump-
tions provided by the mathematical background of cryptographic operations. As we want to be
realistic, our intruder will not be powerful enough to break a cryptosystem. As LOTOS provides
processes that trangress this rule, it would be easy to define an intruder that tries a brute force
attack to guess a private key or a random number. The intruder’s behaviour is thus deliberately
limited in this respect.

2.3.2 Specification of the intruder

The following LOTOS code describes a 3-way exchange between two principals. Its purpose is
to show the intruder’s interactions with trusted principals, and thus data types are simplified.

Principal A interacts through gates A_Send B and A_Receive_B and principal B uses gates
B_Send_A and B_Receive_A. The intruder is synchronized with each gate. His behaviour is
a loop composed of six possible actions: three actions to receive the three messages and three
actions to send them. Each time a message is received, it is inserted in the intruder’s knowledge.
For clarity of this example, the Insert function hides all the analysis of the message. The
choice operator commands the generation of all the possible distinct actions where the message
sent is in the intruder’s knowledge. The structure of the intruder is quite simple and thus can
be guaranteed error free.

behaviour

Principal _A[A_Send_B,A_Receive_B](Initial_Knowledge_of_A)

| [A_Send_B,A_Receive_B] |
Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A] (Initial_Knowledge_of_I)
| [B_Send_A,B_Receive_A] |
Principal_B[B_Send_A,B_Receive_A](Initial_Knowledge_of_B)

where

process Principal A[A_Send_B,A_Receive_B] (Knowledge_of_A :Knowledge) : noexit :
A_Send_B!Message_1;

A_Receive_B7Message_2 :Type_2;

A_Send_B!Message_3;

stop

endproc

process Principal B[A_Send_B,A_Receive_B] (Knowledge_of_B :Knowledge) : noexit :
B_Receive_A7Message_1 :Type_1;

B_Send_A!Message_2;

B_Receive_A7Message_3 :Type_3;

stop

endproc

process Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A]
(Knowledge_of _I :Knowledge) : noexit :=
(A_Send_B7Message_1 : Type_1;
Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A] (Insert(Message_1,Knowledge_of_I))
)
(1
(B_Send_A7Message_2 : Type_2;
Intruder[A_Send _B,A_Receive_B,B_Send_A,B_Receive_A] (Insert (Message_2,Knowledge_of_I))
)
(1
(A_Send_B7Message_3 : Type_3;
Intruder[A_Send B,A_Receive_B,B_Send_A,B_Receive_A] (Insert (Message_3,Knowledge_of_I))
)
(]
(choice Message_1 : Type_1 [] [Message_1 is_in Knowledge_of_I] ->
B_Receive_A!Message_1;
Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A] (Knowledge_of_I)
)
(]
(choice Message_2 : Type_2 [] [Message_2 is_in Knowledge_of_I] ->
A_Receive_B!Message_2;
Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A] (Knowledge_of_I)
)

td

(choice Message_3 : Type_3 [] [Message_3 is_in Knowledge_of_I] ->
B_Receive_A!Message_3;
Intruder[A_Send_B,A_Receive_B,B_Send_A,B_Receive_A] (Knowledge_of_TI)
)

endproc

2.4 Finite model

The LOTOS specification will be translated into a labelled transition system (a graph) where the
nodes are the state of the LOTOS specification and the transitions are labelled by the LOTOS
actions. This labelled transition system (LTS) must comprise all the possible executions of the
protocol. But this graph must be kept finite to be generated.

Some elements like random numbers or time stamps are specific to one run of the protocol
leading to an infinite number of possible messages. This infinity must be controlled by giving
some well chosen properties to these specific elements. Trusted principals will use one specific
element for each run they perform, so we give them a limited set of elements that will be used
during their executions. We also give the intruder one element but which is different from those
of the trusted principals. When the intruder will use his element in a particular message, this
will, in fact, model all the possible messages where the specific elements is not the one expected
by a trusted principal.

Messages with a specific element can be split into messages with a correct specific element and
messages with a wrong specific element. The first ones are limited in number but not the second
ones. With our abstraction we can keep our model finite because a simple message is enough to
represent all the incorrect ones.

In some protocols, we may need to consider an infinity or a big number of possible principals.
As the LTS must be kept finite and also of reasonable size to be managed, the number of trusted
principals must sometimes be drastically limited. The intruder’s knowledge allows him to act as
any other principal in a trusted or untrusted way, but it may not be sufficient to cover all cases.

There exist other ways to prevent the exponential growth of states. An infinite loop in the
behaviour of a principal can be replaced by a limited number of runs adjusted to still cover
all the possible intruder’s attacks. Multiple configurations with multiple specifications can be
planned to address several independant aspects of the protocol.

Great care must be taken with the restrictions imposed by the assumptions we are forced to
make. We do not prove formally the correctness of our abstract finite model with respect to
these assumptions. It would be interesting to consider such proof on the case studies we derive
from this method. Some work in this direction is proposed in [Low96] where the verification
with a limited number of principals is generalized or in [Bol97] where an abstraction function
automates the computation of a correct abstract model. The main difficulty comes from the
complexity of the protocols we want to verify.

Now that we have presented the complete specification, we will enter deeply into the verification
process.

3 Validation process

3.1 Properties to verify

Most security properties rely on the fact that the intruder does not know some secret information
or is not able to construct the expected message. They can be characterize as safety properties.
Informally, safety properties are properties stating “nothing bad will happen”. Authentication,
access control, confidentiality, integrity and non-repudiation are safety properties. Each of these
security services require that a particular situation cannot occur.

The only liveness property is the non-denial of service, which current cryptographic protocols
do not guarantee. Intuitively, liveness properties are properties stating “something good will
happen”. A denial of service happens if an intruder succeeds to get a protocol stuck or make
it fail. Thus when a denial of service arises, the liveness property stating that the protocol will
succeed is not satisfied.

In order to provide these security services, protocols implement particular mechanisms. The
LOTOS specification of trusted principals apply them while the intruder process tries to defeat
them. A way to verify the robustness against intruder’s attacks during the execution of the
specification is needed. Thus a formal translation of the properties to be achieved by security
services is required in order to perform the verification.

3.2 Formalizing the properties

During message exchanges of security protocols, critical points are reached where certain security
services are assured. The reception of a well-formed message can trigger a principal into a state
where he trusts some facts. This behaviour needs to be formalized. We must translate the
human idea that the required security service is satisfied into a precise definition of principals
state.

In order to determine these critical points in the specification, we introduce some special events.
Each time a critical point is reached by a trusted principal, he informs the environment by
sending a specific message that gives information about its internal state. The environment
of the LOTOS specification is responsible for the reception of these messages. By executing a
special event, a principal declares that he is confident in a fact.

If we consider an authentication protocol between two principals. The prover must be au-
thenticated by the verifier. There are two critical points in this protocol. The first one is
when the prover starts his authentication and the second one is when the verifier is sure of
the prover’s identity. Thus we introduce two special events PROVER_START_AUTHENTICATION
and VERIFIER_AUTHENTICATION_SUCCESSFUL. A common property required is that “the prover
must have started an authentication with the verifier before the verifier successfully authenti-
cates the prover”. Otherwise, an intruder has been able to be authenticated with the prover’s
identity. This property will be captured by our special events regardless of the particular au-
thentication mechanisms used. We just state that “No VERIFIER_AUTHENTICATION_SUCCESSFUL
event must occur before a PROVER_START_AUTHENTICATION”.

This technique can be applied to a wide range of security properties. Some refinements are
sometimes needed to define more precisely critical points. A special event can be expressed with
parameters that determine the context where the associated critical point occurs. A parameter

Simulation

XSIMULATOR

Editor LOTOS Conversion LTS Generation

a b
APERO CAESAR
c

Labelled Transition Systems

b
L<
c

Figure 3: The Eucalyptus toolbox

Verification

ALDEBARAN

can be a principal’s identity, an authentication token, a particular key or any other relevant
data.

This method allows one to abstract away from all the details of security mechanisms. We can
only focus on the security services achieved. One of the major difficulties is to gain the assurance
that the critical points are well defined and the security properties are translated correctly into
properties on special events. So we need to find the right abstraction level between the simplicity
of the global view of the security services and the complexity of the underlying protocols. Method

to automate the process would be desirable. Some researchs in this direction can be found in
[AGIT].

3.3 The verification toolbox

When the LOTOS specification is written and the properties are formalized, we can perform
the verification itself. We use the CADP package [FGK96] included in the Eucalyptus toolbox
to carry out the verification of the protocol. As figure 3 shows, the LOTOS specification with
datatype language extensions is converted into ISO LOTOS with the APERO tool. The next
step consists of applying the Caesar tool to generate a graph called Labelled Transition System
(LTS) from the LOTOS specification. This graph contains all the possible execution sequences
of the protocol studied. Section 2.4 has addressed the feasibility of the generation. To gain
confidence into the specification, it is simulated with the XSimulator in step-by-step execution
mode.

The Aldebaran tool is the last stage of the processing. It performs the comparison of two labelled
transition systems. The verification requires the comparison of the LTS of the protocol as created
by the Caesar tool with the graphs of our properties. Thus a final step in the formalization is
needed. The properties based on special events must appear like a finite-state graph. The

10

PROVER_START_AUTHENTI CATI ON

C2

>@ PROVER_START_AUTHENTI CATI ON @

VERI FI ER_AUTHENTI CATI ON_SUCCESSFUL

Figure 4: LTS of the authentication property

process can be automated using the Caesar tool: each property is modelled as a reference LTS
generated from a simple LOTOS process containing special events only.

The property discussed in section 3.2 can be specified in LOTOS as follows. The corresponding
LTS generated by the Caesar tool is shown in figure 4.

behaviour
System_State! PROVER_START_AUTHENTICATION;Property[System_Statel
where

process Property[System_State] : noexit

System_State! PROVER_START_AUTHENTICATION;Property[System_State]

(]
System_State! VERIFIER_AUTHENTICATION_SUCCESSFUL;Property[System_Statel
endproc

3.4 The verification

Before any comparison between LTS, they must be minimized to speed up the computations.
The Aldebaran tool can minimize a LTS modulo a particular equivalence. The first minimization
is always done modulo the strong bisimulation equivalence, which preserves all the properties of
the graph.

Consider a LTS = < S, A, T, sp > where S is the set of states, A the alphabet of actions (with 4
denoting the internal action), T" the set of transitions and s the initial state.

A relation R C § x S is a strong bisimulation iff:

If <P,QQ> € R then,Va € A,
whenever P % P’ then 3Q': Q@ % Q' and <P',Q'> € R;
whenever Q = @' then 3 P': P 5 P'and <P',Q'> € R

Two LTS Sysy = <51, A,T1, 801 > and Syse = < Ss, A, Ts, sg2 > are related modulo the strong
bisimulation denoted Sys; ~ Syss, iff there exists a strong bisimulation relation R C 57 X Sy
such that <sp1, 92> € R.

11

Our security properties being all safety properties, the minimization can be further improved
modulo the safety equivalence [BFG91], which preserves all the properties expressible in Branch-
ing time Safety Logic (BSL).

Not all the observable actions are relevant to verify the properties. In particular, our properties
only rely on special events, so that other actions can be hidden. The minimized LTS of our
protocol can be checked against the LTS of a property be verifying the safety preorder relation
[BFG91] between them. Formally, the safety preorder (<y) is the preorder that generates the
safety equivalence (~), and is nothing else than the weak simulation preorder.

Consider again a LTS = < S, A, T, sp> and let’s define L = A — {i}, a relation R C S x S is a
weak simulation iff:

It <P,(Q> € R then,VaclL,
ifP= P then3Q: Q= Q and <P, Q"> €R

A LTS Sys; = <51, A, T, s91 > can be simulated by Syse = <59, A, T5, sg2 >, denoted Sys; <;
Sysa, iff there exists a weak simulation relation R C S7 x Sy such that < sg1,s92 > € R. Two
LTS Sys; and Syso are safety equivalent iff Sys; <, Syss and Syse <; Sysi.

Informally, “behaviour <, property” means that the behaviour (exhibited by the protocol) is
allowed (i.e. can be simulated) by the (safety) property.

When a property is not verified, meaning that Aldebaran has not found a safety preorder between
the LTS of protocol and the LTS of the property, it produces a diagnostic sequence of actions.
However, this sequence is usually of little help as such, because it only refers to the few non
hidden actions that were kept for their relevance to express the properties. We call it the abtract
diagnostic sequence.

To circumvent this difficulty and get a detailed sequence with all actions visible, we have to
encode this abstract diagnostic sequence in a format suitable for input to the Exhibitor tool.
This tool is then instructed to find the shortest detailed sequence allowed by the specification
and matching the abstract one. We are then able to clearly identify the scenario that leads to
the undesirable state where the property is not verified. Intruder’s attacks can then be pointed
out very easily. The complete diagnostic sequence shows the order of actions performed by the
intruder and how he was able to acquire enough knowledge to succeed.

The verification process of the properties is then complete. If one or more of them are not
satisfied, our method gives diagnostics of a greatful help to redesign the protocol.

4 An example of verification

To illustrate our method, this section presents an example of verification. We have chosen the
registration part of the Equicrypt protocol, a conditional access protocol under design in the
European ACTS OKAPI project [GBM96]. It allows a user to subscribe to multimedia services
such as video on demand. The user must first register with a Trusted Third Party (TTP) using
a challenge-response exchange. After a successful registration, this TTP issues a public-key
certificate which allows the user to subscribe to a service offered by a service provider.

We concentrate on the verification of the registration protocol. This paper only presents an
overview of the process. Complete details can be found in [GL97] for more interested readers.

12

4.1 The registration protocol

The registration protocol involves a user who wants to access a multimedia service and a TTP
that acts as a notary. The mutual authentication of the user and the TTP must be achieved by
the protocol. The TTP must be sure that the claimed identity of the user is the right one and
the user must be sure that he registers with the right TTP. The TTP must also receive the good
user’s public-key during the procotol to issue a corresponding public-key certificate needed for
the subcription phase.

The authentication of the user by the TTP uses the Guillou-Quisquater (GQ) zero-knowledge
identification scheme [GQ88]. Before registering, the user has received secret personal credentials
derived from its real-life identity. These credentials will help him to prove who he is to the TTP
but without revealing them. The authentication of the TTP by the user uses a challenge based
on a nonce (i.e. a number used once). The user has also received the TTP’s public-key to
perform the required checks on the messages and to authenticate the TTP. The transmission
of the user’s public-key to the TTP is possible with an improved version of the GQ algorithm
[LBQY6]. The registration protocol presented in this paper is, in fact, an enhanced version of
the original one found in [LBQY6].

The GQ identification scheme is based on complex mathematical relations derived from the
user’s identity, the user’s public-key and the secret credentials. It uses a random number issued
by the TTP to challenge the user and a second random number issued by the user to scramble the
public-key and protect the credentials. To specify the algorithm, we have designed an abstract
model which is particulary simple while still capturing the essence of it. The key point of the
authentication are the secret credentials. If we consider them as a secret encryption key and
the user’s identity together with its public key as a corresponding public decryption key, the
GQ algorithm looks like an authentication scheme based on a nonce and works as follows. The
user sends his public decryption key to the TTP and receives back a nonce as a challenge. Then
he returns to the TTP the nonce encrypted by his encryption key. The TTP can then check
that the nonce has been encrypted as expected. This scheme resists to the “man-in-the-middle”
attack because the decryption key is mathematically linked to the user’s identity.

In the remaining of this paper, we will present all the messages with the following structure:
Number : Source — Destination : Message Identifier < Message Fields >

A couple (K%, K¥) will denote the pair of private/public keys of the principal A. Encryption of
data will be written {data} K% while signature will be written {data} K3. F(B,d) will represent
the special encryption of the GQ model where B are the credentials.

The protocol works as follows:
The user generates a random nonce n and sends the message 1.
1:User — TTP : Register Request < UserID, K&, {n}KE,, >

When the TTP receives message 1, he decrypts the nonce n and signs it, generates a random
number d and sends them to the user. The TTP can handle several registrations at a time. So
he maintains an internal table with one entry for each user who has a registration in progress
and he records the tuple < UserID, K{]D, n,d >.

2:TTP — User : Register Challenge < d,{n}K2rp >

13

When the user receives message 2, he checks the signature. If the signature is correct, he
performs the GQ calculation and sends the result to the TTP.

3:User — TTP : Register Response < F(B,d) >

When the TTP receives message 3, he checks the GQ authentication using this message and the
data found in his internal table. Then, he sends a response according to the result. The response
is signed and includes both the user’s identity and the nonce n. The user’s entry in the internal
table is deleted. If the response is positive, the TTP registers the tuple < UserID, K{]D >

4% . TTP — User : Register Acknowledgement < {Yes,UserID,n}K2,p >
47 : TTP — User : Register Acknowledgement < {No, UserID,n}K%TP >

4.2 Procotol specification

Using the framework presented in previous sections, we have specified the protocol in LOTOS.
Abstract data types were designed for all the cryptographic operations involved including the
abstract model of the GQ algorithm. The user and the TTP are two trusted principals and
the intruder is the untrusted one. The user always tries to perform a valid registration. The
intruder’s initial knowledge is adjusted to allow him to act as a second untrusted user and
simultaneously as a second untrusted TTP. It includes:

An identity : IntruderID

Valid credentials: By

A pair of private/public keys: K7 et KF

The public key of the user K [IJD and the public key of the TTP K%DTP

The identity of the user: UserID

Nonces and random numbers different from those of trusted principals.

After the step-by-step simulation stage, the labelled transition system (LTS) of the protocol has
been generated. It is composed of 487446 states and 2944856 transitions and has required one
hour of computation on a SUN Ultra-2 workstation running Solaris 2.5.1 with 2 CPUs and 832
Mb of RAM. The reduction factor of the minimization modulo the strong bisimulation was very
important. The minimized LTS of the protocol is made of 3968 states and 37161 transitions.
The reduction modulo the safety equivalence was not mandatory because the graph was small
enough to carry out the verification.

4.3 Formalizing the properties

Among the five safety properties we have verified, we only present one of a particular interest.
This property is necessary (but not sufficient) to the authentication of the TTP by the user and
we will see later that the current protocol does not satisfy it.

e P4: The verdict of the registration given by the TTP (i.e. registered or failed) must always
be correct and consistent with the acknowledgement received by the user.

14

®

TTP_REG_SUCCEEDED TTP_REG_FAI LED

TTP_REG FAI LED @ @ TTP_REG _SUCCEEDED @ Q TTP_REG FAI LED

USER_REG_SUCCEEDED
USER_REG _FAI LED

@ Q TTP_REG FAI LED

USER_REG FAI LED

Figure 5: Labelled transition system modelling property P4

Four special events are required to formalize this property. Two events are related to the verdict
given by the TTP and two other events to the verdict received by the user. A critical point
is reached when the TTP decides whether or not the registration is successful. This decision
depends on the correctness of message 3. Before the TTP sends his positive or negative ac-
knowledgement, he generates a special event. The TTP_REG_SUCCEEDED event corresponds to
the positive acknowledgement and the TTP_REG_FAILED event corresponds to the negative ac-
knowledgement. When the user receives the TTP’s response, he also reaches a critical point.
Thus, he generates a USER_REG_SUCCEEDED event or a USER_REG_FAILED according to the re-
sponse received.

Property P4 can be expressed by the graph shown on figure 5. It shows the temporal orderings
that we authorize among the TTP_REG_SUCCEEDED, TTP_REG_FAILED, USER_REG_SUCCEEDED and
USER_REG_FAILED events. In particular, a USER_REG_SUCCEEDED must always be preceded by
one TTP_REG_SUCCEEDED because, when the user learns that he has successfully registered, the
TTP must have successfully registered him. A USER_REG_FAILED must always be preceded
by at least one TTP_REG_FAILED and no TTP_REG_SUCCEEDED because, when the user learns
that his registration failed, the TTP must have refused to register him at least once and the
TTP must not have registered that user successfully. A USER_REG_FAILED must never follow a
TTP_REG_SUCCEEDED.

4.4 A flaw

Aldebaran has discovered that the property P4 was not satisfied. The behaviour of the registra-
tion protocol cannot be simulated by the graph of the property regarding the relevant special
events. It has found a sequence where a USER_REG_FAILED occurs before a TTP_REG_SUCCEEDED.
The TTP successfully registers the user after the user has learned that his registration failed.

15

USER INTRUDER TTP

UserID, K{, {n)Kp UserID, K{, {n)K5p
d1, {n}KFre
F(B, d1)
{No, UserD, njkS., | T-RF
UserID, K{, {n)K5p
S S
d2, {n}K7rp d2, {n}K7rp
F(B, d2)
{No, UserID, n}K >, F(B, d2)
URF TRS

Figure 6: Scenario of the intruder’s attack

We use the Exhibitor tool to produce a diagnostic sequence that immediately shows us how the
intruder has built his attack. The scenario is exhibited in figure 6.

When the intruder receives a registration request message from the user, he fowards it to the TTP
and makes the first challenge fail with a fake response to obtain a negative acknowledgement from
the TTP. Then the intruder follows on by replaying the registration request message previously
recorded. Upon reception, the TTP starts a second registration with the user and sends a second
challenge. This time, the intruder forwards the challenge to the user who is still waiting for his
first challenge. The user replies with a valid message and waits for an acknowledgement. The
intruder replays the negative one previously received. This acknowledgement is valid and thus
the user declares that the registration failed. Meanwhile the intruder fowards the valid response
of the user to the TTP who declares the registration successful. Both parties have finished their
exchange but they do not have the same point of view of the situation.

For this attack to succeed, the intruder only needs to create a fake response to the first challenge.
The strengh of our technique is that the analysis of the diagnostic sequence immediately brings
us the reason of the failure. The acknowledgement of the TTP is too general because it can be
considered valid in two distinct registrations.

4.5 Corrected protocol

A way to prevent the attack is to add to the acknowledgement a unique identifier of the regis-
tration. The random number used in the GQ verification is the right candidate. This number is
meant to be different at each registration. Its integration into the signature of the fourth mes-
sage will allow the user to check its freshness. Here is the corrected version of our registration
protocol :

16

1:User — TTP : Register Request < UserID, K&, {n}KE,, >

2:TTP — User : Register Challenge < d,{n}K2rp >

3:User — TTP : Register Response < F(B,d) >

41 . TTP — User : Register Acknowledgement < {Yes,UserID,n,d}Kz3rp >
47 : TTP — User : Register Acknowledgement < {No,UserID,n,d}K5rp >

Aldebaran states that all the properties, including P4, are fulfilled with this version. Hence, the
mutual authentication and the transmission of the public key succeed despite the attempts of
the intruder.

4.6 Enhancements of the protocol

This section deals with two improvements of the protocol. Firstly, we will try to obtain the
simplest protocol. Encryptions and signatures were used to have the assurance that the intruder
could not alter messages or parts of them. The formal description we made will help us to
establish which cryptographic operations are really essential. Our guideline is to minimize
cryptographic operations because public key cryptography has a very high computational cost.

Secondly, we will modify the protocol to help the entities to make the distinction between a
failure and an error. When an entity receives a message, it performs several checks. If one of
them fails, a message indicating the reason of the error is sent to the environment. It is very
important to understand the difference between the two kinds of interruptions a registration
can encounter. The registration can fail because the TTP has decided that the user does not
own good credentials. That is what we will call a failure. The other cases are errors. An error
occurs when the registration protocol stops due to a badly formed message: wrong signature,
wrong nonce, ... We obviously focus on failures because we want to defeat the intruder when
he generates good messages. An intruder can always create errors by sending garbage in the
transmission channel. This separation between failures and errors helps to determine whether
an intruder is disturbing the registration or not.

4.6.1 The simplest protocol

We have found that the addition of the random number d in the signature of the fourth message
makes the nonce n useless. It was used at first for the user to authenticate the TTP. The
TTP’s signature of the acknowledgement is sufficient to perform this authentication. The user
knows the TTP’s public key so that he can verify that this message originates from the TTP.
The random number d ensures that it belongs to the current registration and has not been
replayed by the intruder. Thus, the user has the guarantee that he is talking to the TTP for
the registration presently in progress.

Section 4.5 demonstrates that the signature of the registration acknowledgement message is
very important. It can certainly not be removed as it performs the authentication of the whole
registration. The message 4 is composed of the TTP’s response, the user’s identity and the
random number d. So the authentication of d with a signature in the registration challenge
message is not necessary. Only the final check of the acknowledgement is mandatory.

17

USER INTRUDER TTP

UserID, K, UserID, K,
d d
F(B, d) F(B, d)
{No, UserID, d}KS., {No, UserD, A}k, | T-RF
URF

Figure 7: A failure of the user generated by the intruder

These two simplifications lead to a very simple protocol with only one signature :

1:User — TTP : Register Request < UserlD, K[IJD >

2:TTP — User : Register Challenge < d >

3:User — TTP : Register Response < F(B,d) >

47 : TTP — User : Register Acknowledgement < {Yes,UserlID, d}K%TP >
4= : TTP — User : Register Acknowledgement < {No,UserID,d}K?yp >

All the five properties are satisfied. This version is as robust as the previous one from the
point of view of the mutual authentication. Obviously, the intruder can more easily disturb
the registration. The only difference is that the intruder’s actions will be discovered later in
the protocol. Regarding the special events only, a safety preorder exists between the corrected
version of the protocol and this simplified version. Hence, all safety properties, expressible on
the special events, verified on the latter are verified on the former.

4.6.2 Distinction between failures and errors

With this second improvement, we want to give the entities the ability to know exactly why a
registration does not complete. This additional requirement will introduce complexity in the
protocol. The simplification described in 4.6.1 brought us in the opposite direction but now we
can build our strategy on solid bases.

In our specification, the special events only happened when neither the user nor the TTP
meet an erroneous message otherwise, they declare an error and stop the protocol. By adding
cryptographic operations and checks to the processing of the messages, we reduce the cases
where a special event can take place. The model of our user owns valid credentials and always
performs a correct registration but he still declares failures with USER_REG_FAILED events. This
behaviour can only result from intruder’s actions and shows that the user cannot completely
distinguish errors from failures. In other words, some errors are interpreted as failures. Normally,
the user must never meet a failure with our assumptions, meaning that the user’s registration
must always finish with a positive answer from the TTP or an error. The figure 7 exhibits a
scenario that leads to such a failure with the simplified version of the protocol.

The user starts his registration and the protocol progresses normally until the intruder replaces
the register response message of the user with another one. This new message is wrong because

18

the intruder does not own credentials the TTP is waiting for and thus, a failure is declared and
the TTP sends a negative acknowledgement. The user also declares a failure upon its reception.

This scenario is not related to the authentication properties of safety we have previously verified.
The TTP refuses to authenticate the user due to an intruder’s action but is not authenticating the
user incorrectly. The reason of the failure is linked to the integrity of the messages transmitted
during the protocol. In this particular case, the register response message has been changed by
the intruder.

To achieve the user’s distinction of errors from failures, we will strengthen the requirements on
the protocol and add a new property.

e P6: The user must never learn that his registration has been refused by the TTP.
or expressed with special events :
e P6: No USER_REG_FAILED event is allowed in the LTS of the system.

From the point of view of the TTP, he would also make a complete distinction between failures
and errors if he never declares a failure of the user because the user always tries to perform a
valid registration. All disturbing elements must come from the intruder and must lead to errors
(or possibly to a TTP_REG_FAILED with the intruder’s identity). We model this case with another
new property called P7 that does not allow the TTP to refuse to register the user. Formally,
no TTP_REG_FAILED event with the user’s identity (TTP_REG_FAILED !USERID_A) is permitted
in the LTS of the system.

We check for the presence of USER_REG_FAILED and TTP_REG_FAILED !USERID_A events using
the Exhibitor tool. If the verification does not find any of these events, our new properties are
satisfied. The simplest protocol cannot guarantee P6 nor P7 because the parameters used in
the GQ algorithm are not checked before the GQ verification (see the previous scenario). So we
propose a new solution with two new signatures.

1:User — TTP : Register Request < UserID,K} >

2:TTP — User : Register Challenge < {UserID, K dYKzrp >

3:User — TTP : Register Response < {UserID,F(B,d)}K >

4% . TTP — User : Register Acknowledgement < {Yes,UserID,d}K3yp >
4= : TTP — User : Register Acknowledgement < {No,UserID, d}K%TP >

The main difficulty to solve comes from the GQ verification. The protocol must provide a way
to find why the GQ calculation is not correct. If the problem is due to the use of bad credentials,
the TTP must declare a failure, otherwise he must declare an error.

The signature of the register challenge message allows the user to verify that the data transmitted
in the first message were correctly received. This could not be achieved by signing the register
request because the TTP does not know the user’s public key yet. If and only if the user agrees
with the register challenge, he generates a response F'(B,d), signed with his private key. When
the TTP receives this third message, he can use the recently received public key to check the
signature. If the signature is incorrect, the TTP declares an error. Otherwise, if the result of
the GQ computation is correct, that means that the user has received a valid register challenge
message and thus agrees with the public key used in this message. Hence the TTP owns the

19

INTRUDER TTP
UserID, K

{UserID, K, d}K3p

{UserID, F(B,, d)}K >

Figure 8: A failure of the TTP generated by the intruder

real public key of the user. Both the GQ computation and the signature must be correct. One
of them is not enough to make a good verification.

From the TTP’s point of view, nothing distinguishes the received result of the function F' from a
random number before the GQ verification. So we have added the user’s identity in the register
response message to allow the TTP to check the user’s signature.

With this version of the protocol the transmission of the user’s public key does no longer need to
be associated with the computations of the GQ verification. Our model of the GQ identification
scheme states that the function F' acts as a signature verified by the user’s identity and the
user’s public key. In fact, this new version of the registration protocol can be used with a GQ
algorithm in which B is only linked to user’s identity and not to its public key. This is because
the two new signatures in messages 2 and 3 allow the certification of the user’s public key. This
simplified GQ is in fact the original one [GQ88].

Property P6 is satisfied with this version. There is no possible USER_REG_FAILED event. All the
intruder’s actions are detected by the various checks involved in the cryptographic operations.
Nevertheless, it was not possible to suppress all the TTP_REG_FAILED events. Property P7 is thus
not satisfied. Indeed, the complete removal of these events would imply a kind of authentication
before the authentication itself, and therefore constitutes an unreachable goal. The figure 8 will
further clarify this. It exhibits a possible attack where the intruder replaces the user’s public
key with its own. Without knowing the right user’s public key before the beginning of the
registration, the TTP cannot detect the falsification.

5 Conclusion

This paper presents a formal verification process for security protocols using LOTOS. We have
shown how to specify a protocol with the concept of trusted and untrusted principals. The flex-
ibility of abstract data types allows the description of a wide range of cryptographic operations.
We have shown the modelling of the classical public-key scheme but also a more complex one:
the Guillou-Quisquater algorithm.

We have shown how intrusion can be taken into account by adding an intruder process replacing
the communication channels. Our model of this intruder is very simple and powerful. He
can mimic very easily all reasonable real-world attacks, that is all non cryptographic and non
repetitive attacks.

20

We have explained the validation process and the formalization of security properties. They can
be modelled as safety properties with the help of special events triggered when crucial states are
reached. The verification is based on the safety preorder which should hold between the system
and the property.

Our method is illustrated with a registration protocol where we have found a subtle flaw that
could probably not have been discovered, at least so early, by a human-being. The verification
is quite automatic and allows one to make efficient corrections and improvements. Some as-
sumptions on the model were required and formal proofs of their correctness are an interesting
future work. Nevertheless, this example demonstrates that LOTOS is suitable to verify complex
cryptographic protocols that can enforce a wide variety of security properties.

6 Acknowledgements

This work has been partially supported by the Commission of the European Union (DG XIII)
under the ACTS ACO051 project OKAPI: ”Open Kernel for Access to Protected Interoperable
Interactive Services”.

References

[AG97] M. Abadi and A.D. Gordon: “A Calculus for Cryptographic Protocols The Spi Cal-
culus”, Proceedings of the 4th ACM Conference on Computer and Communication
Security, 1997.

[Bol96] D. Bolignano: “Formal Verification of Cryptographic Protocols”, Proceedings of the
3rd ACM Conference on Computer and Communication Security, 1996.

[Bol97] D. Bolignano: “Towards a Mechanization of Cryptographic Protocol Verification”,
Proceedings of CAV 97, LNCS 1254, Springer-Verlag, June 1997.

[BB87] T. Bolognesi and E. Brinksma: “Introduction to the ISO Specification Language
LOTOS”, Computer Networks and ISDN Systems 14, pp. 25-59, 1987.

[BFG91] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez and J. Sifakis: “Safety for
Branching Time Semantics”, 18th ICALP, Springer-Verlag, July 1991.

[BAN90] M. Burrow, M. Abadi and R. Needham: “A Logic of Authentication”, ACM Trans-
actions on Computer Systems, 8, 1990.

[EM85] H. Ehrig and B. Mahr: “Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics”, In: W. Brauer, B. Rozenberg, A. Salomaa, Eds, EATCS, Mono-
graphs on Theorical Computer Science, Springer-Verlag, 1985.

[FGK96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M. Sighireanu:
“CAESAR/ALDEBARAN Development Package: A Protocol Validation and Verifica-
tion Toolboz”, Proceedings of the 8th Conference on Computer-Aided Verification, R.
Alur & T. Henzinger Eds, August 1996.

[Gar96] H. Garavel: “An Overview of the Eucalyptus Toolboz”, Proceedings of COST247
workshop, June 1996.

21

[GLYT]

[GQ8S]

F. Germeau, G. Leduc: “A Computer Aided Design of a Secure Registration Protocol”,
Proceedings of FORTE/PSTV 97, Chapman & Hall, 1997, to appear.

L. Guillou, J.-J. Quisquater: “A Practical Zero-knowledge Protocol Fitted to Se-
curity Microprocessor Minimizing both Transmission and Memory”, Proceedings of
Eurocrypt 88, Springer-Verlag Eds, pp. 123-128, 1988.

[GBM96] J. Guimaraes, J.-M. Boucqueau and B. Macq: “OKAPI: a Kernel for Access Control

[Hoa85]

[1SO89)

[LBQYE]

[LBK96]

[Low96]

[Mea92]

[Mil89]

[Pec96]

[Sch96]

to Multimedia Services based on Trusted Third Parties”, Proceedings of ECMAST 96,
pp. 783-798, Louvain-la-Neuve, Belgium, May 1996.

C.A.R. Hoare: “Communicating Sequential Processes”, Prentice-Hall International,
1985.
ISO/IEC. Information Processing Systems - Open Systems Interconnection: “LO-

TOS, a Formal Description Technique Based on the Temporal Ordering of Observa-
tional Behaviour”, IS 8807, February 1989.

S. Lacroix, J.-M. Boucqueau, J.-J. Quisquater and B. Macq: “Providing Equitable
Conditional Access by Use of Trusted Third Parties”, Proceedings of ECMAST 96, pp.
763-782, Louvain-la-Neuve, Belgium, May 1996.

G. Leduc, O. Bonaventure, E. Koerner, L. Léonard, C. Pecheur, D. Zanetti: “Speci-
fication and Verification of a TTP Protocol for the Conditional Access to Services.”,
Proceedings of 12th J. Cartier Workshop on Formal Methods and their Applications :
Telecommunications, VLSI and Real-Time Computerized Control System, Montreal,
Canada, October 1996.

G. Lowe: “Breaking and Fixing the Needham-Schroeder Public-Key Authentication
Protocol using FDR”, T. Margaria and B. Steffen Eds, Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 1055, Springer-Verlag, 1996.

C. Meadows: “Applying Formal Methods to the Analysis of a Key Management
Protocol”, Journal of Computer Security, 1992.

R. Milner: “Communication and Concurrency”, Prentice-Hall International, 1989.

C. Pecheur: “Improving the Specification of Data Types in LOTOS”, Doctoral dis-
sertation, University of Liege, November 1996.

B. Schneier: “Applied Cryptography”, Second Edition, John Wiley & Sons Eds, 1996.

22

