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Abstrad: To attain good reliability of any software product, its
development should begin with a formal specification. This way, it is
very easy to perform corredness verificaion and some performance
evaluation information is aso available. Forma spedficaion of
distributed systems is frequently used for a st-effedive aror
detedion and corredion during the initial phase of the software
development process In order to achieve this goal, several tods have
been developed for program analysis, code generation, simulation,
testing, test data generation. It is important to notice that this kind of
tools and models can be used for general distributed system
applications.
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1. INTRODUCTION

There ae severa types of failures that can occur in a
distributed system: software aashes, disk failures,
and bus errors, network errors, processor errors and
power losses. The first consequence of such a failure
is a data loss, which can lead to an inconsistent
system state. The state of a distributed system
depends on the states of each processin the system.
But due to inter-process communicaion the states of
processes depend on one another. If a component of a
distributed system fails, its failure could propagate to
and affed other components. Espedally for these
systems reliability is a very important issue: it would
be very useful to have the system working even in
the presence of some failures.

1.1. Formal specifications

Forma program verification is the most reliable
technique because it is complete, but it is aso
expensive. There ae severa formalisms propaosed to
describe parallel and distributed systems.

e Model Based Approach that uses
mathematics, logic and set theory (Z and
VDM languages).

e Algebraic Approach.

» Concurrency Approach -
LOTOS, ESTELLE, SDL.

CSP, CCs,

In the ‘80s several hybrid models were propased, but
ISO or ITU-T (former CCITT) has adopted three of
them, cdled Forma Description Tedniques, as
standards. These spedfication languages are
ESTELLE (Extended Finite State Machine
Language), SDL (Spedficaion and Description
Language) and LOTOS (Language Of Temporal
Ordering Spedfication). These languages have some
common feaures. They allow a hierarchicd structure
of models to be spedfied, where subsystems are
running in paralel and are communicaing through
message exchanges. Each spedfication contains a
control part (how does the system read to events?)
and adata part (what kinds of information exist and
how does a message look like?).

ESTELLE is a FDT defined within I1SO for
spedfication of distributed, concurrent information
processng systems (communicaion protocols and
services). An ESTELLE system consists of several
module instances (tasks), with asynchronous



behavior. Each modue has a number of input/output
access points that are wnneded by bi-diredional
links. Messages (interadions) are stored in a FIFO
gueue in ead interadion point allowing for a non-
blocking message sending. Another way to
communicae is by the way of common variables
(restricted to the son - parent communicaion). Two
kinds of task paradlelisn can be epressed in
ESTELLE: asynchronous parall elism and
synchronous parall elism.

SDL is not direded spedficdly to describing
telecommunicaions srvices, but it is a general-
purpose description language for communication
systems. The basis for description of behavior
description is the communicating Extended State
Machines that are represented by processs.
Communication is represented by signals and can
take place between processes or between processes
and the environment of the system model. A process
has an infinite FIFO input queue, where incoming
signals are placal. A processis either waiting in a
state or performing a transiti on between two states. A
trangition is initiated by a signal in the input queue,
from which it is removed. During a transition
variables can be manipulated, dedsions made, new
processinstances creaed, signal sent, etc. Processes
can be aeded staticdly or dynamicdly.

LOTOSisaFDT standardized by 1SO for the design
of distributed systems, and in particular for OSI
services and protocols. Experts of the 1SO FDT
group developed LOTOS from 1981 to 1988 it has
now the status of International Standard [I S8807].
Unlike FDTs based on the state representation of a
system, LOTOS describes a system by defining the
temporal relations between externaly observable
events at so-cdled event gates. LOTOS is composed
of two parts. a process algebraic part based on
Milner's Calculus of Communicaing Systems (CCS)
and on Hoare's Communicaing Sequential Processes
(CSP), and a data dgebraic part based on the astrad
data type language (ACT ONE). These two aspeds
of LOTOS are complementary and independent: the
processagebra is used to model dynamic behaviors
of systems, and ACT ONE is used to model data
structures and value expressons, which alows
handling data without unnecessary implementation
detail s.

1.2. Fault Tolerance

A system failure is a behavior that doesn't follow the
system spedfication (which should be @mplete,
corred and consistent). After a system failure occurs,
the service provided by the system is no longer that
stated in its gedficaion. A computing system is
fault tolerant if it produces corred results, even if
some @mponents are faulty. The basic way to fight
againgt failures has been proposed by Von Neumann:
the use of protective redundancy. There ae some

extra @mponents (hardware, software or time
components), useless for a norma behavior, but
which mask failures after they appea. Eadc
cdculation step is added some extra operations,
performed by different software or hardware antities.
So fault tolerance can be obtained in different ways:
by adding extra procesors, memory or
communicdion links (hardware redundancy), by
adding extra software modules to ded with extra
hardware (software redundancy), by using extra time
to implement several methods (time redundancy).

A distributed system consists of a set of autonomous
loosely coupled nodes, interconneded through a
communicaion network. Communication is made
using a message pasding approad), becaise in
general there is no shared memory. From a fault
tolerance point of view, a very important isaue is the
absence of a global clock. Each node has me
atomic components that can fail (a procesor, alocd
clock, a network interface a stable storage and some
software modules). Links between nodes can also
fall, but this kind of failure wuld be viewed as
procesor falures. The way in which nodes are
linked - the system topology - is another criticd
component: the better the mnnedivity is, the higher
the reliability is. A distributed applicaion consists of
several concurrent proceses (or threals) that
compete or cooperate to provide a service These
proceses communicae using communication
channels that are logicd links. Distributed systems
considered in pradice ae said to be synchronous:
eat adion hes a finite duration. This way one can
figure out if adelay is caused by a processor crash or
it isa communicaion delay.

Error recovery involves restoring an error-free state
from an erroneous one. Error recmvery schemes are
usualy classified as:

e Forward error recovery, when the state that
has just been found to be in error is further
used, in an attempt to generate the wrred
state, using some eror corredion or error
compensation techniques.

e Badkward error rewovery, when some
processes are rolled badk to a previous error
free state, and then the @mputation is
restarted.

Badkward error recovery makes possble to recmover
from an arbitrary fault, thusit can be mnsidered as a
general rewmvery mechanism. It is based on some
recovery points, that allow saving and restoring the
state of a process These remvery points can be
obtained using severa techniques, one of the most
used being checkpointing, in which a set of locd
chedpoints (saved locd states) is determined during
normal computation, such us upon a failure
occurrence, a rolled badk computation can be
resumed from this t. In order to achieve this, the
chedpaints should be consistent. A consistent global



chedkpaint is a set of locd chedkpaoints, one from
ead process if there ae no causal dependencies
between them.

In a consistent checkpaointing algorithm may appea a
stable storage mntention between processes, becaise
they try to save the state on about the same time. To
avoid this arbitrarily staggered consistent checkpoints
could be used.

Checkpainting algorithms are dassified as

e Synchronous (coordinated), where
processes synchronize their checkpointing
adivities, so that a globally consistent set of
chedkpoints is aways maintained. This
involves message overhead and performance
degradation becaise process execution may
be  suspended during  coordination.
Coordinated  chedkpointing  periodicdly
saves the state on stable storage.

e Asynchronous (uncoordinated),  when
proceses do not coordinate with others
when taking a deckpoint. This provides
maximum process autonomy, but some
chedkpoints may be inconsistent. So it is
worth to reduce the number of useless
chedpoints. One method for doing this is a
communicaion-induced chedkpaint, where
some deckpointing adivity is triggered by
the message pattern and knowledge gained

about dependencies. Communication
induced checkpointing uses a lazy
coordination, by piggybacking control

information on application messages. There
are basic chedpoints and forced chedpoints
and two dstinct caegories: model-based
(that assures a deterministic behavior and
domino-free property) and index-based (that
asigns equence numbers to locd
chedkpaints and enforces consistency for the
same sequence number).

Checkpointing algorithms can use a periodic state
saving, an incremental state saving or a hybrid
approach.  Another  posshility is  diskless
chedpoainting, used for long running computations,
without relying on a stable storage. The stable
storage is replaced with memory and processor
redundancy, eliminating the main source of overhead
(but not for free. Rewmvery uses replacement
procesors that cdculate the state of faulty
Processors.

There is another clasdficaion of chedkpoainting
algorithms:

» Blocking agorithms, that force d relevant
processes to block their computation during
chedkpointing.

* Non-blocking algorithms, that use a
sequence number scheme, can be ceantralized
or distributed.

e Combined approach, which forces only a
minimum number of proceses to take
chedkpaints. It involves system messages
and not computation messages.

The notion of consistent global checkpoint is
fundamental to many areas of distributed systems:

e Paradld and distributed debuggng

« Distributed computing

*  Fault tolerance

« Detedion of stable properties

*  Migrating processs between processors

2.  THE FORMAL DESCRIPTION TECHNIQUE
LOTOS

In the past yeas the standardized FDT LOTOS has
recaved a mnsiderable atention from the reseach
community. LOTOS is a Forma Description
Tecdhnique (FDT) standardized by SO for the design
of distributed systems, and in particular for OSI
services and protocols. Experts of the ISO FDT
group developed LOTOS from 1981to 1988, it has
now the status of International Standard [l S8807].
Unlike FDTs based on the state representation of a
system, LOTOS describes a system by defining the
temporal relations between externally observable
events at so-cdled event gates. LOTOS is compaosed
of two parts. a process algebraic part based on
Milner's Calculus of Communicaing Systems (CCS)
and on Hoare's Communicaing Sequential Processes
(CSP), and a data agebraic part based on the
abstrad data type language (ACT ONE). These two
aspeds of LOTOS ae mplementary and
independent: the process algebra is used to model
dynamic behaviors of systems, and ACT ONE is
used to model data structures and value expressons,
which alows handling data without unnecessary
implementation detail s.

LOTOS has been widely used for the spedficaion of
large data mmunicaion systems. It s
mathematicaly well defined and expressive: it alows
the description of concurrency, non-determinism, and
asynchronous communications. It suppats various
levels of abstradion and provides svera
spedficaion styles. In LOTOS a system is viewed as
a hierarchy of (parallel) processs that can interad
with each other or with the environment. In its ealy
ages have no temporal constraints. A process is
described using behavior expressons.
Communication and synchronization are done
through rendezvous, without shared memory. Good
tods exist to suppat spedficaion, verification and
code generation. LOTOS is one of the few process
algebras that have moved out of the theoreticd
community.



LOTOS is currently under revision in 1SO under the
ELOTOS (Enhancements to LOTOS) adivity to
improve the data type language and add feaures such
as amodule system and quantitative time.

Verificaion of the desired properties of a
spedficaion may be divided into several caegories:

e Proof-theoretic (or axiomatic): where
spedficdions are written in or translated into
the notation of a proof system in which
theorems may be proved using, for example,
equational reasoning and term rewriting.
Properties of systems gedfied in process
algebra have been proved using
compasitional proof methods working with a
given mnotion of equivalence a system is
broken into components which are shown to
have cetain properties that are together
strong enough to imply the desred
properties of the overall system.

e Model-checking (state/process based): A
transition system is “captured” in some way
by a machine representation (an automaton
or some other finite state madine), which is
generated by reaursively applying the rules
for transitional semantics. An agorithm,
cdled a model checker, then can establish
automaticdly and exhaustively whether or
not desired properties hold for this
representation (and hence for the transition
system).

e Tedling is dependent upon how the
system's behavior may be observed in its
external interadion. Tests may be derived
from an initia spedficaion, and the
resulting interadion with the implementation
under test (IUT) simulated. This offers
quickly some initia indicaions of whether
an  implementation  sdatisfies  certain
requirements. The types of tests possble
depend upon the language used.

The CADP toolbox is dedicated to the design and
verification of communicaion protocols and
distributed systems. It was initiated in 1986at INRIA
Rhones-Alpes, Grenoble, France and now the CADP
99 beta t version is available. It consists of several
todls, that can be used in a cmmand line style or
through a graphic interface (EUCALYPTUS). The
main tools are:

e CAESAR, CAESARADT ae @mpilers
able to trandate a LOTOS program into a
finite state graph describing its exhaustive
behavior.

« ALDEBARAN is a verification tod able to
either compare or to minimize graphs with
resped to bismulation relations.

¢ TERMINATOR, EXHIBITOR,
XSIMULATOR, EVALUATOR are tods

that operate on the fly, providing
respedively partial deadlock detedion,
incorred exeaution sequence exhibition,
interadive simulation and evaluation of
temporal logic formulas.

3. BASIC CHECKPOINTING ALGORITHMS

There ae severa known chedpointing algorithms.
All  of these induce a o©ommunicaion and
computation overhead that can lead to system
performance degradation. This is why a
chedkpainting algorithm should be & smple &
possble. We have cosen to analyze here some
chedpointing agorithms that have (at least at the
first sight) this property. The Sync-and-Stop (SNS)
Algorithm is a representative for the blocking
algorithm class, while the Chandy-Lamport (CL)
algorithm represents the non-blocking class of
algorithms.

1.3.  The Sync-and-Stop (SNS) Algorithm

It isavery smple consistent chedkpaointing algorithm
that basicdly shuts down the gplicaion to define a
consistent cut and take aglobal checkpaint. There is
a spedal, coordinating processor (P that has the
role to start and stop chedkpoints. When it is time to
start a cedkpoint (on a periodicd basis) the
coordinator first stops the gplicaion and then
broadcasts a speda marker message to al other
procesors. When a regular procesor P receves the
marker message it stops running its program and
waits for al sent application messagesto be recaved.
After that it sends the marker message back to P..
After recaving the marker from al processs, P,
rebroadcasts it and takes its locd chedkpoint. After
recaving the second marker, ead regular process
takes its locd checkpoint and resends the marker to
P.. When P, recaves the message from ead process
the dheckpoint is complete. It has to rebroadcast the
marker to let other proceses know that the
chedkpoint is done. Before restarting the gplicaion,
ead processcould perform some garbage-colledtion
adivity by removing old chedkpoints.

1.4.  The Chandi-Lamport (CL) Algorithm

It is more complex than the SNS agorithm and its
main fedure is that the gplication is not stopped: it
interferes with the chedkpointing algorithm. It aso
has a cordinating procesor and it takes into acmunt
the @mmunication links between procesors. P
starts the dheckpoint by broadcasting a spedal
message to al its neighbors. When a processor
recaves the speda message and has not taken its
locd chedkpoint yet, it broadcasts the speda
message to al its neighbors and right after that it
takes its locd checkpoint. Afterwards, if the same
processreceaves an appli caion message on a channel



on which it has not received the special message yet,
it must log the message because it is a cross-cut
message. When there are no more cross-cut messages
(al processors have received the special message on
all their incoming channels) the local checkpoint is
finished. Each process now notifies P, by sending an
acknowledgement. When P, receives al
acknowledgements it rebroadcast the message and
when this last message is received the checkpoint is
done and the garbage-collection operation could be
performed.

4. FORMAL SPECIFICATION OF
CHECKPOINTING ALGORITHMS

To obtain the formal specification for the
checkpointing algorithms we considered that several
interconnected processes cooperates by message
passing for a long running finite, distributed
computation The processes can access a stable
storage, on which the checkpoints and message logs
are stored. The system architecture is depicted in
Figure 1, where each box stands for a LOTOS

jprocess.
Interconnection Stahle Storage
Network

Distrib uted System

Controller

Checkpoint
Controller

Application
Controller

Figure 1. The system architecture.

The Network process models the interconnection
network; it is in fact a buffer with a controllable
capacity. The network topology resides in the data
part, several topologies have been implemented: star,
ring, bi-directional ring, and full connectivity.
Messages are identified by asender ID, areceiver ID,
atag and a body. A message can be send only if the
network is not full. The Storage process models the
stable storage. The Proc process is the actual
application process, the core of the specification. The
Controller process is the decision center; it decides
when a message has to be sent and when a
checkpoint is to be dstarted; it has two distinct
components, one that controls the distributed
application and one that controls the checkpointing
algorithm. The Proc and Controller processes model
the distributed application. A process can send /
receive an application message, perform an internal
computation, participate to the checkpoint algorithm,
fail and detect that another process has failed. Each

process terminates after a finite number of exchanged
messages. In the SNS algorithm, because of the sharp
separation between application and checkpointing,
we used a distinct LOTOS process for the
checkpointing part, while in the CL case there is a
single LOTOS process. Each of these components is
implemented as some finite state machines.

The way in which the broadcast is performed is
essential for an efficient checkpointing algorithm, so
we have used broadcast agorithms that are
congtructed taking into account the network
topology. This way we reduced the number of
exchanged messages and simplified the specification.
If a faillure does occur, the recovery mechanism
should be activated using a timeout technique.
Because there is no explicit time in actual LOTOS,
the timeout is modeled using a rendezvous. Another
available one replaces the affected process. The state
of the new processis read from the stable storage and
then the computation is resumed. If a process fails,
the others have to roll back to the previous recorded
state, before resuming the computation.

5. RESULTS

First the ideal distributed system / application has
been implemented, without any errors. Then the
checkpointing algorithm has been added. Findly, the
failure possibility and the recovery mechanism have
been introduced. This gradually specification growth
has lead from a system with tens of states to a system
with millions of states, hardly to analyze. Thisis why
the direct approach has been used only for simple
systems, the complex ones being analyzed using a
compositional approach (each system component has
been individualy minimized, and then all these
intermediate results have been gathered).

The main analyzed cases are depicted in Table 1 and
some results are presented in Table 2. However,
more than 140 intermediate specifications have been
analyzed. From these we can say that the ring version
and the SN S algorithm have fewer states.

Table 1. Cases under study.

Ring Star

Distributed system, no Distributed system, no
faults faults

Distributed system, SNS  Distributed system, SNS
Distributed system, CL Distributed system, CL
Distributed system, SNS,  Distributed system, SNS,
faults, recovery faults, recovery
Distributed system, CL, Distributed system, CL,
faults, recovery faults, recovery

The use of LOTOS disabling operator ‘[>* operator is
prohibitive, because it leads to a state explosions, that
can hardly be ontrolled. The smallest resulted graph
(for ring topdogy, without faults) has 2776 states and



12639 transitions (527/1428 after minimization). The
biggest resulted graph (for star topology, with
checkpoint) has 166761 states and 17100248
transitions.

100000

OsStar, ideal
OsStar, with checkpointing
10000 — O Star, 4 processes, period 3
O Star, 4 processes, period 8
1000 4+—
100 4+
10 4+
1 T

Figure 2. Number of states for star topology.

Table 2. Some results.

e There is no RECEIVE operation without a
corresponding SEND (the corresponding
predicate is shown below).

[((not "SEND!0 |1 | SNRO/ | AP)* |
"REHVE 110 | NRY/ | AP) |
((not "SEND!112 | SNRO/ | AFP)*
"REEVE 12 11 1 NRY/ | AP) |
(( ot "SEND!12 13 | RO/ | AFP')* .
"REH\E 13 12 | RO/ | AFP')
(( not "SEND!3 10 ! RO/ | AFP')*
"REHVE !0 |3 | NRY/ | AP)] fdse

Case States Trans BF
Initial

Ring, ideal 2776 12639 4,55
Ring, with 13368 46927 351
checkpointing

Star, ideal 7449 16960 2.27
Star, with 30779 77334 2.56

checkpointing

Fully connected, ideal 588661 2857854 4.80

Ring, 4 processes, 21144 61057 2.89
period 3

Star, 4 processes, 27104 71859 2.65
period 3

Star, 4 processes, 43670 182718 4.18
period 8

Star, 8 processes, 500000 2500000 5.00
period 3

Minimised

Ring, ideal 527 1428 271
Ring, with 732 1418 1.94
checkpointing

Star, ideal 238 433 1.82
Star, with 532 899 1.69
checkpointing

Ring, 4 processes, 301 498 1.65
period 3

Star, 4 processes, 458 808 1.76
period 3

Star, 4 processes, 613 1018 1.66
period 8

The following properties has been verified using the
CADP toolbox:

*  All graphs are deadlock free.

* All graphsarelivelock free.

»  Each process terminates.

» Each SEND operation has a corresponding
RECEIVE.

Figure 3. The predicate that check that "Thereis no
RECEIVE without a corresponding SEND".

o  Safety and liveness of the checkpointing.

e Cut consistency.

 After a fault each process eventualy
terminates.

6. CONCLUSIONS AND FUTURE WORK

We can say that CADP is a very useful toolbox,
comparing with other similar tools. It has several
components that allow the formal specification and
verification of distributed systems. It is available for
SOLARIS, LINUX and Windows platforms, its
portability being a great advantage. However, it
requires many resources (especially memory). Thisis
not a very big problem, because there is the
compositional approach and memory becomes

cheaper.

Formal specification is a promising issue for
checkpointing, the resulting software being more
reliable. However modeling faults and using dynamic
data determine a state explosion, but this is a
reasonabl e price paid.

This work will be continued by further refining the
LOTOS specifications and by focusing on other
interesting checkpointing algorithms and finally will
lead to areal implementation.
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