
Verifying Erlang Telecommunication Systems
with the Process Algebra μCRL

Qiang Guo1, John Derrick1, and Csaba Hoch2

1 Department of Computer Science,
The University of Sheffield,

Regent Court, 211 Portobello, S1 4DP, UK
{Q.Guo, J.Derrick}@dcs.shef.ac.uk

2 Faculty of Informatics
Eötvös Loránd Tudományegyetem

Pázmány Péter sétány 1/c., 1117 Budapest, Hungary
hoch@inf.elte.hu

Abstract. Verification is an important process in the development of
Erlang systems. A recent strand of work has studied the verification of
Erlang applications using the process algebra μCRL. The general idea
is that Erlang programs are translated into a μCRL specification, upon
which the standard model checkers can be applied for checking the sys-
tem’s properties. In this paper, we pull together some of the existing
work and investigate the verification of an Erlang telecommunication
system in μCRL. This case study uses a server-client structure and in-
corporates timing restrictions and is designed and implemented using a
number of Erlang/OTP components. We show how this system is trans-
lated into a μCRL specification by using the defined rules, after which
system properties are checked via the toolset CADP. Through studying
the verification of such an application, we aim to validate the effective-
ness of the translation rules in an integrated way.

Keywords: Erlang, Telecoms case study, Process Algebras, μCRL,
Translation, Verification.

1 Introduction

Erlang [1] is a concurrent functional programming language with explicit support
for real-time and fault-tolerant distributed systems. It is available under an Open
Source Licence from Ericsson, and since its conception its use and development
has widened to a number of sectors such as TCP/IP programming, etc.

A key feature of Erlang is the Open Telecom Platform (OTP) architecture
where generic components are encapsulated as design patterns, each of which
solves a particular class of problem. These patterns include servers, supervisors,
finite state machines etc. This makes Erlang an ideal programming language for
the development of fault-tolerant systems containing soft real-time requirements.

Verification is an important part of the Erlang system process. Although Er-
lang has many high-level features, verification can be still non-trivial. A number

K. Suzuki et al. (Eds.): FORTE 2008, LNCS 5048, pp. 201–217, 2008.
c© IFIP International Federation for Information Processing 2008

202 Q. Guo, J. Derrick, and C. Hoch

of possible approaches have been explored, including the one we investigate here:
abstract an Erlang application into a formal model, upon which model checking
[9] techniques can be applied. This approach has recently been applied to the
verification of Erlang programs and OTP components [2,3,5,7,14,16] where the
process algebra μCRL [13] has been used as the formal language upon which
verification is carried out.

Arts et al. [2,3] initiated this strand of work and proposed rules for translat-
ing Erlang syntax and the OTP components gen server, supervisor into μCRL.
Benac-Earle [5] continued with the work and developed a toolset, etomcrl, to
automate the process of translation. Guo et al. extended the work by proposing
a model for the translation of the OTP finite state machine gen fsm [14] and
defining rules for coping with Erlang timeout events in μCRL [16].

However, rules for the translation of OTP gen server, supervisor, gen fsm and
Erlang timeout have, so far, only been independently evaluated via some small
examples, and no work has evaluated these rules in an application where the
above components are integrated as a system. One might argue that if all rules
are applied in an integrated way, will they show the similar effects for system
verification as they demonstrated in the existing work? Moreover, will a state
space explosion mean that effective verification is lost?

In this paper, we attempt to look at these questions by investigating the
verification of an Erlang telecommunication system in μCRL. A telecommuni-
cation system of server-client structure and timing restriction for operation is
developed with Erlang/OTP. The system integrates the use of the supervisor,
gen server, gen fsm components and uses explicit timeout events. We show how
the system is then translated into a μCRL specification using the proposed trans-
lation rules. We then verify a number of system’s properties by using the model
checker CADP [8] and investigate the changes of state space when the number
of clients increases. The experimental results suggest that when being applied
in an integrated system, the translation rules show the similar effect for system
verification as being applied independently.

The paper is organized as follows: Section 2 describes a telecommunication
system that is used as a case study in this paper; Section 3 implements the
system with Erlang programming langauge; Section 4 discusses the translation
of the telecoms case study into μCRL; Section 5 looks at the system verification
using the standard model checker CADP; conclusions are drawn in Section 6.

2 Telecommunication System

In this section we give an overview of our case study, which is implemented in
Erlang in Section 3.

2.1 System Infrastructure

Our telecoms case study uses a client-server structure, and comprises of a data-
base server (DBS) that is used to maintain all client’s data and a number of

Verifying Erlang Telecommunication Systems 203

functional servers (FS) that will process clients’ requests. An FS has a capacity
and a user list. The capacity defines the maximum number of clients (mobiles)
that can be connected to a server, while, the user list saves all clients (mobiles)
that have been connected to this server. The telecoms system illustrated in Fig-
ure 1 is designed with one DBS (named as DB), three FSs (named as SV R 1,
SV R 2 and SV R 3) and five clients (named as M 1, M 2, M 3, M 4 and M 5).

Fig. 1. Telecoms system designed with one DB, three FSs and five clients

Once the system starts up, an FS can communicate with DBS and any other
FSs. A client can communicate with any FSs, and can perform some functional
operations such as calling and top-up. The behaviour of clients is described in
section 2.2. Each client has an account maintained in the DBS, and in order to
make a phone call, a client needs to save enough money in its account.

Before performing any functional operations, a client needs to connect to an
FS. After being connected to an FS, the client’s identity is maintained in the FS’
user list. A client can only be connected to one FS, and if a client has connected
to an FS and tries to connect to another FS, an error message will be returned
and the request is denied. When a client disconnects, the appropriate FS cuts off
the connection and removes this client from the user list to release the resource.
The FS will notify all other FSs about the changes of its clients’ state so that
they can correctly respond to the client’s requests.

2.2 Client Behaviour Modelling

The behaviour of a client (mobile) is modeled as a finite state machine (FSM),
and the initial design is shown in Figure 2. There are four states: idle, connected,
calling and top up, where initially, the system is set to the idle state.

The FSM defines the behaviour of a number of operations: connecting, dis-
connecting, calling, terminating, top up and cancelling. Before performing any
operations, a client FSM needs to connect to an FS through sending the con-
necting request. If the FS replies {ok,connected}, it indicates that the request is
accepted and the connection is set up. The FSM moves to the state connected ;
otherwise, if {error,busy} arrives, it suggests that the server has reached it max-
imum capacity. The client will send the connecting request to another FS. The

204 Q. Guo, J. Derrick, and C. Hoch

Fig. 2. Client behaviour modelled as an FSM

FSM remains in the state idle. The client will iteratively send the connecting
request to each FS until the connection is approved and set up by an FS.

A client can stop the connection by sending the disconnecting request to
the FS. Once the disconnecting request being received, the FS will cut off the
connection and remove the client from its user list to release the resource. A
reply message {ok,disconnected} will be sent to the client, and upon receiving
this reply, the FSM will be reset to the state idle.

When in the state connected, a client can make a phone call through calling
operation or top up it account through top up operation. When the calling re-
quest is sent, if its account has enough money, a client will receive {ok,calling}
from the appropriate FS, enabling the calling process. The FSM then moves
to the state calling; otherwise, {error, low prepaid} will be received, asking the
client to top up its account. The FSM remains in the state connected.

When in the state calling, only the terminating operation can terminate a
calling process. This prevents the calling process from being disrupted by some
unintended actions. When the terminating request is sent, the DBS will reduce
the amount of money from this client’s account. The FS then cuts off the client’s
connection and releases the resource from its user list. Meanwhile, a message
{ok,disconnected} is sent to the client, and on receiving the reply, the FSM is
reset to the state idle.

After being connected to an FS, a client can ask to top up its account by
sending the top up request. If {ok, ready to top up} is received, it indicates that
the top up process is accepted by the FS, and the FSM moves to the state top up.
The client can then transfer money to its account through {top up, Prepaid}
operation where Prepaid is the amount of money that is about to be transfered.
When the transaction succeeds, the FS replies the client with {ok, top up} and
when receiving such a reply, the FSM returns to the state connected.

A client FSM has a timing restriction applicable when in states connected or
top up. Specifically, when the FSM is directed to the state connected or top up,
a timer will be instantiated which enables the timing process. If, within the
predefined time period, no action is performed by the client, a timeout event
will be generated and sent to the FS. By receiving timeout event, the FS cuts

Verifying Erlang Telecommunication Systems 205

off the connection and releases the resource from its user list. The FSM is then
reset to the state idle.

3 Erlang Implementation

Erlang is used to implement the telecoms system, making use of the OTP design
patterns as is common practice.

3.1 Functional Server Implementation

The functional server (FS) is implemented using the Erlang/OTP gen server
module. A generic server is implemented by providing a callback module where
(callback) functions are defined specifying the concrete actions of the server such
as server state handling and response to messages.

In this work, the callback function handle call in the FS module is comprised
of two parts. One (using keyword request) processes client’s requests; the other
(using keyword notify) deals with the notification sent from FSs:

handle call({request,R,M},Fr,Chs)→ : case Request of
{Reply,State}= handle request(R,M,Chs), : connecting →
{reply,Reply,State}; : do connecting(M,Chs);

handle call({notify,M,F},Fr,Chs)→ : disconnecting →
{C,N,MList,SVRList} = Chs, : do disconnecting(M,Chs);
case F of : cancelling →

add → : do cancelling(M,Chs);
{reply,ok,{C,N, : calling →

MList++[M],SVRList}}; : do calling(M,Chs);
remove → : terminating →

{reply,ok, : do terminating(M,Chs);
{C,N,delete(M,MList),SVRList}}: top up →

end. : do top up(M,Chs);
handle request(timeout,M,Chs)→ : {top up, Prepaid} →
do timeout(Mobile,Chs); : top up tranfer(M,Chs)

handle request(Request,M,Chs)→ : end.

The internal variable Chs (defined by the Erlang system for saving values) is defined
with the form of {C, N, MList, SVRList} where C defines the FS’ capacity, N counts
for the number of clients that has been connected to this FS, MList saves clients that
have connected to this FS and SVRList saves all FS servers running in the system.

The function handle request(Request,Mobile,Chs) is defined where a list of do func-
tions is called to process client’s requests. The function do connecting is defined to set
up connection between the FS and a client. It first examines whether the FS reaches
its maximum capacity. If the FS is full, {error, busy} will be returned to the client;
otherwise, the connection is set up. The client is then registered in MList and N is
increased by 1. The function do disconnecting is defined to disconnect a client from the
FS. When the disconnecting request arrives, the FS cuts off the connection and then,
by calling the function notify servers, notifies other FSs (saved in SVRList) to release
the resource (removes the client from MList).

206 Q. Guo, J. Derrick, and C. Hoch

The do calling function monitors the calling process. When the calling request is
received, the function reads the client’s data from the DBS and checks whether it
has enough money for making a call. If so, the calling process is enabled; otherwise,
{error, low prepaid} is replied, asking the client to top up its account. When the client
finishes calling, it sends the terminating request to the FS. Upon receiving the request,
the FS enables the do terminating function to subtract amount of money from the
client’s account, and then cut off the connection through disconnecting operation. The
function do top up and top up tranfer are defined to top up client’s account. When
the top up request is received, the FS enables the process by replying the client with
{ok,ready to top up}. Once the client’s money is received, the top up tranfer function
is enabled to complete the transaction.

3.2 Client Implementation

The client behaviour is implemented using the OTP gen fsm module, and the state
transition rules are defined conforming to the following convention:

StateName(Event, StateData) →
... code for actions ...;
{next state,StateName′ ,StateData′,Timer}.

where the state function returns a tuple that contains the name of the next state,
StateName′, and an updated state data, StateData′. Timer is an optional element,
if it is set to a value, a timer is instantiated, and a timeout event will be generated
when the time-up occurs. The function send event is defined to trigger a transition.
When send event is executed, the gen fsm module automatically calls the current state
function.

In accordance with the design given above, four state functions are defined in the
client module: idle, connected, calling and top up. The state function idle initiates a
connecting request to the FS SVR. If the FS SVR replies the FSM with {ok,connected},
the request is accepted and the connection is set up. The FSM moves to the state
connected ; otherwise, the request is denied and the FSM remains unchanged.

idle([Act,SVR],{M, RSVR,SVRList})→ : {error,busy}→
case member(SVR,SVRList) of : display(server,busy),

true → : {next state,idle,
F=gen server:call(SVR,{request,Act,M}),: {M,nil,SVRList}}
case F of : end;

{ok,connected}→ : false →
display(connected), : display(server,invalid)
{next state,connected, : {next state,idle,{M,nil,SVRList}}

{M,SVR,SVRList},20000}; :end.

Once the client is connected to an FS, an event will trigger the state function
connected, which evaluates the request and then makes decisions for the consequent
actions. For example, if a calling request is made, the function will call the FS to
evaluate the client’s state. If the client has enough money in its account, {ok,calling}
will be returned to approve the calling process, and upon receiving the reply, the FSM
moves to the state calling.

Verifying Erlang Telecommunication Systems 207

connected(timeout,{M,SVR,SVRList})→ : display(client,calling),
gen server:call(SVR,{request,timeout,M}), : {next state,calling,
display(M,timeout), : {M,SVR,SVRList}};
{next state,idle,{M,nil,SVRList}}; : {error,low prepaid}→

connected([Act, SVR],{M,SVR,SVRList})→ : display(low prepaid),
case Act==terminating of : {next state,connected,
true → : {M,SVR,SVRList},20000};

display(action,invalid), : {ok,ready to top up}→
{next state,connected, : display(ready to top up),

{M,SVR,SVRList},20000}; : {next state,top up,
false → : {M,SVR,SVRList},20000};

F=gen server:call(SVR,{request,Act,M}): Other →
case F of : display(action,invalid),

{ok,disconnected}→ : {next state,connected,
display(disconnected), : {M,SVR,SVRList},20000}
{next state,idle, : end

{M,SVR,SVRList}}; : end.
{ok,calling}→ :

When in the state calling, only the terminating action can stop the calling process.
This prevents the calling process from being disrupted by any unintended actions.

calling([Act, SVR],{M,SVR,SVRList})→ : {M,nil,SVRList}};
case Act of : false →

terminating → : display(server,invalid),
gen server:call(SVR,{request,Act,M}),: {next state,calling,
display(call,terminating), : {M,SVR,SVRList}}
{next state,idle, : end.

When being connected to an FS, the client can ask to top up its account by sending
the top up request to the FS. If {ok,ready to top up} is replied, the top up process
is enabled, and the FSM moves to the state top up. An action will trigger the state
function top up to either start the transaction by {top up, Prepaid} operation (Prepaid
is the amount of money the client is about to transfer), or cancel the process by sending
the cancelling request.

top up(timeout,{M,SVR,SVRList})→ : {ok,cancelled} →
gen server:call(SVR,{request,timeout,M}), : display(top up,cancelled),
display(M,timeout), : {next state,connected,
{next state,idle,{M,nil,SVRList}}; : {M,SVR,SVRList},20000};

top up([Act, SVR],{M,SVR,SVRList})→ : Other →
case gen server:call(SVR,{request,Act,M}) of: display(action,invalid),

{ok,top up} → : {next state,top up,
display(top up,ok), : {M,SVR,SVRList},20000}
{next state,connected, : end.

{M,SVR,SVRList},20000}; :

When the FSM moves to the state connected and top up, a timer is initiated. The
timer is set to 20,000ms. If within the time period, no action is performed, a timeout
event will be generated and sent to the FS. The FSM is reset to the state idle. A
function command is defined to simulate the receiving of external actions. It calls
gen server:send event to triggers the state functions.

208 Q. Guo, J. Derrick, and C. Hoch

4 Translating Our Case Study into μCRL

In this section we describe the verification methodology used in this project. It uses
the process algebra μCRL (micro Common Representation Language) [13] which is an
extension of the process algebra ACP [4], where equational abstract data types have
been integrated into the process specification to enable the specification of both data
and process behaviour. We assume the reader is familiar with μCRL.

4.1 Pre-processing

Before the translation begins, the Erlang input is pre-processed which transforms the
Erlang code into an optimized format, but has identical behaviour. For example, Erlang
makes extensive use of pattern matching in its function definitions, and overlapping
between patterns could lead to the system being represented by a faulty model in
μCRL. This work transforms Erlang programs using the techniques discussed in [15]
where pattern matching clauses in a function are replaced with a series of calling
functions, each of which being guarded by the function patterns match.

For example, the function handle request is transformed as shown above. A data
structure, called a Structure Splitting Tree (SST) [15], is applied for pattern evalua-
tion, and the use of such an SST for pattern evaluation guarantees the elimination of
overlapping between patterns in the transformed program.

handle request(R,M,Chs) → : hr case 6(true,R,M,Chs,Vars) →
hr case 1(eval:pattern match([R], : do top up(M,Chs,Vars);

[connecting]),R,M,Chs,[]). : hr case 6(false,R,M,Chs,Vars) →
: hr case 7(eval:pattern match([R],

hr case 1(true,R,M,Chs,Vars) → : [{top up,Prepaid}]),R,M,
do connecting(M,Chs,Vars); : Chs,Vars++[Prepaid]).

hr case 1(false,R,M,Chs,Vars) → : hr case 7(true,R,M,Chs,Vars) →
hr case 2(eval:pattern match([R], : top up transfer(M,Chs,Vars);

[disconnecting]),R,M,Chs,Vars).: hr case 7(false,R,M,Chs,Vars) →
... : {error, action}

4.2 Translating the Server Component

Erlang performs synchronous and asynchronous communications using the generic
server primitives gen sever:call / handle call and gen sever:cast / handle cast respec-
tively. One then has to model both synchronous and a synchronous communication in
μ CRL, and to do so we use a Server Buffer process (described in [5]). A data type
GSBuffer is defined to contain the data for the process Server Buffer. The actions
gen server call and gscall are defined to write a message to the buffer while, gshall and
handle call to read a message from the buffer.

The database server is translated into a process SDB, and it maintains a num-
ber of clients, each in the form {CName,Prepaid,State} where CName is the client’s
name, Prepaid shows the amount of money saved in the client’s account and State in-
dicates whether the client is connected to an FS or not. The actions server read db and
db send data are defined to read a client’s data out from the process, server read db
| db send data = read db. The actions servr update db and db ack request are used to
update the client’s data in the process, servr update db | db ack request = update db.

Verifying Erlang Telecommunication Systems 209

The functional server (FS) is translated into a process server. The process contains
a server ID SVRID, a capacity C and a client list CLs. It uses the action handle call to
receive the client’s requests: when a request is received, the server process first checks
whether the request is made for itself. If so, the process calls the process handle request
to tackle the request; otherwise, its returns without changing anything.

proc server(SVRID:Term,C:Term,CLs:Term) =
sum(SVR:Term,sum(Request:Term,sum(Client:Ter,

handle call(SVR,Request,Client).
handle request(SVR,Client,Request,C,CLs))))

� eq(SVRID,SVR) � server(SVRID,C,CLs)

For each client’s request, a request process is defined. Once the handle request is
enabled, it selects the corresponding request process. The selected process first performs
all pre-defined actions and then replies the client with a message through the action
gen server reply. For example, when the connecting request is received, the process
handle request connecting is activated. It first checks whether the server reaches its
maximum capacity. If the server is full, the process goes back to the process server
without changing anything; otherwise, if the client has not been connected to a server
before, the process sets up the connection and replies the client with {ok, connected}.

handle request connecting(SVRID:Term,CL:Term,C:Term,CLs:Term) =
sum(Vals:Term, server read db(Vals).

(gen server reply(SVRID,tuple(error,tuplenil(unregister user)),CL).
server(SVRID,C,CLs)

� is nil(find client(CL,Vals)) �
(gen server reply(SVRID,tuple(error,tuplenil(already connected)),CL).
server(SVRID,C,CLs)

� eq(find client(CL,Vals),CL) �
(server update db(CL,find client(CL,Vals),CL),true).
gen server reply(SVRID,tuple(ok,tuplenil(connected)),CL).
server(SVRID,C,list append(CL,CLs))

� mcrl less(list number(CLs),C) �
gen server reply(SVRID,tuple(error,tuplenil(busy)),CL).
server(SVRID,C,CLS)))))

The process handle timeout is defined to deal with timeout event. Once the timeout
event is generated from a client, the process handle timeout will be activated. It cuts
off the connection between the server and the client and removes the client from its
user list to release the resource.

4.3 Translating the Client Component

The client was initially modelled as an FSM and implemented using the OTP gen fsm.
This is then translated into μCRL using techniques defined in [14], where the transla-
tion process is comprised of two parts, simulating state management (SSM) and state
function translation (SFT).

In this work, a (one place) stack is used to perform the SSM which is modified by
using a global variable (GV) process. A GV process contains a list of indexed GVs,
where each GV is of the format {VName,Val} where the VName gives the variable’s
name and the Val the value. A GV process with three GVs, V1, V2 and V3, is defined
as follows:

210 Q. Guo, J. Derrick, and C. Hoch

proc
GVs(V1:Term,V2:Term,Var3:Term) =
sum(V:Term,receive val(V).

(GVs(V,V2,V3) � eq(element(int(1),V),element(int(1),V1)) �
(GVs(V1,V,V3) � eq(element(int(1),V),element(int(1),V2)) �

(GVs(V1,V2,V) � eq(element(int(1),V),element(int(1),V3)) � delta))))
+
send val(V1,V2,V3).GVs(V1,V2,V3)

A GV can be read out through the actions read val send val, write val | receive val =
write, and be modified through the actions write val / receive val, write val | receive val
= write. We use a GV to stand for a client where VName and Val are used to save the
client FSM’s current state and the state data respectively. We found that, by applying
such a modification, the state space is largely reduced.

The process receive cmd is defined to receive commands generated from the external
actions. For each client, a unique ID CLID is associated with all its FSM processes.
Once a command is received, the process receive cmd calls the process read clients.
According to the CLID, the designated FSM’s current state and the state data are
read out. The corresponding state process is then selected for performing all defined
actions. Once the execution of the state process finishes, the FSM moves to the process
fsm update state to update the current state and the state data.

For example, when the FSM is in the state idle and the connecting command is
received, the state process fsm idle is activated. The process fsm idle sends the request
to an FS and then waits for reply. If the FS returns busy, the process will calls for
another FS; otherwise, the connection is set up. The process then calls for the process
fsm update state to update the state connected as the current state. Thus we have the
following:

fsm idle(CLID:Term,Data:Term,Cmd:Term,SList:Term,SMList:Term) =
gen server call(hd(SList),Cmd,ClID).
wait for reply(hd(SList),CLID,Data,Cmd,SList,SMList)

wait for reply(SVRID:Term,CLID:Term,Data:Term,Cmd:Term,) =
sum(S:Term,sum(R:Term,sum(CL:Term,

gen server replied(S,R,CL).
((client info(S,R,CL).
(fsm idle(CLID,Data,Cmd,SMList,SMList)

� is nil(SList) � fsm idle(CLID,Data,Cmd,tl(SMList),SMList))
� is busy(element(int(2),R)) �

(fsm update state(CLID,connected,Data,SList,SMList,true,false)
� is connected(element(int(2),R))�

fsm update state(CLID,idle,Data,SList,SMList,false,false,2))))
� eq(CL,CLID) � wait for reply(SVRID,CLID,Data,Cmd)))))

The process fsm update state is parameterized with two arguments, FT and FTM.
The FT determines whether the updated current state has timing restrictions on it;
the FTM decides whether the process will be terminated due to some unexpected
events. If the newly updated current state process has timing restrictions, the FT will
be set to true, which enables the process fsm timing to count down the time. If, within
the predefined time period, no external action is performed, a timeout event will be

Verifying Erlang Telecommunication Systems 211

generated and sent to the FS. Afterwards, the process is terminated by setting the
FTM to true. Thus we have the following output from the translation process:

fsm update state(CLID:Term,SNext:Term,Data:Term,Cmd:Term,
SList:Term,SMList:Term,FT:Term,FTM:Term,TR:Nat) =

write val(tuple(CLID,tuplenil(tuple(SNext,tuplenil(Data))))).
(delta � eq(FTM,true) �

(fsm timing(CLID,SNext,Data,SList,SMList,on(TR))
�eq(FT,true)� receive cmd(SList,SMList)))

The process fsm timing and the process count down are parameterized with a timer
[16]. By using an explicit tick action in the process count down, we apply a discrete-time
timing model to support the translation of timeout event. When the process fsm timing
is called at the first time, the timer t is initiated and initialized. The process will either
call for the process count down to start the timing process or the receive cmd process
to continue with another external command.

fsm timing(CLID:Term,SNext:Term,Data:Term,SList:Term,SMList:Term,t:Timer) =
count down(CLID,SNext,Data,SList,t) + receive cmd(SList,SMList)

When the count down process is activated, it checks whether the timer expires (using
the function expire(t:Timer)). If not, the process will first perform the tick action once,
standing for the passing of one time unit. The process then moves back to the process
fsm timing, counting down the timer t by one unit (pred(t)); otherwise, if the timer
expires, the process fsm update state is called, with the next state SNext being reset
to idle and the FTM to true.

count down(CLID:Term,SNext:Term,Data:Term,SList:Term,SMList:Term,t:Timer) =
tick.fsm timing(CLID,SNext,Data,SList,SMList,pred(t))

� not(expire(t)) �
gen server call(hd(SList),timeout,CLID).
fsm update state(CLID,idle,nil,nil,SList,SMList,false,true)

4.4 System Translation

By considering the translation of server section and client section together, the system is
translated into a completeμCRLspecification. In the specification, every server and client
are initialized with a unique client ID. For each client, the process client cmds(CLID,
CmdList) is applied to initialize a list of external actions where CLID indicates the client’s
ID and CmdList saves the sequence of commands. A client receives a command through
the action r cmd(CLID, Cmd).

A client sends a request to an FS through the action gen server call(SVRID,Cmd,
CLID) where SVRID indicates the target server ID while CLID the sender’s ID. A
client receives a reply through the action gen server replied(SVRID,Reply,CLID) where
SVRID shows from which server the reply comes and CLID indicates to which client
the reply is sent.

When receiving a request, an FS process compares its ID with the received SVRID to
examine whether the request is made for the server itself. If so, the request is accepted
and the consequential actions will be performed; otherwise, the FS process ignores the
request and returns without changing anything. Similarly, when receiving a reply, a
client process compares its ID with the received CLID to check whether the message

212 Q. Guo, J. Derrick, and C. Hoch

is replied to the client itself. If so, the client process performs the actions extracted
from the reply; otherwise, the process ignores the message. Through ID checking, a
peer-to-peer communication structure is defined in the μCRL specification.

We have now reached a point whereby the design, as implemented in Erlang/OTP
has been translated (in fact, abstracted) to a μ CRL specification, and we now described
how properties of the initial design can be checked on this model.

5 Verifying the Telecommunication System with μCRL

In this section, a number of system properties are abstracted and verified. In our
experiments, the property under verification (PUV) is devised in a way where the
behaviour of FS(s), the behaviour of client(s) and the communication between the
FS and the client are considered as an integrated whole. Thus, instead of focusing on
particular individual components, the properties we are concerned with in this case
study are defined across the whole system.

5.1 Property Verification

The system used for simulation is constructed as shown in Figure 1 where three func-
tional servers (svr 1, svr 2 and svr 3) and five clients (m 1, m 2, m 3, m 4 and m 5)
are used. We initialize the capacity of every server to 1. The clients m 1, m 3, m 5 are
preset with £1 in their accounts, while m 2, m 4 with £0. We define that the minimum
cost of making a phone call to be £1. The timer for the functions with timing restriction
is set to 20,000ms, and we define the passing of one time unit as 10,000ms, represented
by one tick action. As discussed in Section 3.2, the gen fsm:send event is often called
through external actions. Therefore, before starting a simulation process, for each client
FSM, a sequence of actions needs to be initialized in the process Client Cmds to sim-
ulate the external behaviour.

We first devise two experiments to verify the system’s client-server property. In the
first experiment, the client m 1 attempts to make a phone call while m 2, m 3, m 4
and m 5 are idle; in the second, the client m 2 tries to make a phone call while m 1,
m 3, m 4 and m 5 are idle. Thus, for both these initial experiments, only one client is
active. Through these two experiments we want to check whether the FS(s) and the
client act as defined in design, and whether the communication between the FS and
the client is correctly running.

The commands for the two experiments are coded in the list Cmd = cons(connecting,
cons(calling, nil)) and initialized in the process client cmds respectively. The Labelled
Transition Systems (LTSs) derived from the toolset CADP [8] are shown in Figure 3
and 4. Here, we hide the actions update db and read db as internal actions, denoted by
i in the LTSs.

Verification of the properties can be performed by using the model checker CADP,
where the system properties are formalized by a set of temporal logic formulae. For
example, in the first experiment, to check “without being connected to svr 1, m 1
cannot make a phone call.”. This property can be formalized as:

[not(client info(m 1, connected, svr 1))*. client info(m 1, calling, svr 1))] false

Similarly, to check “when m 1 is connected to svr 1, without delaying enough time (two
tick actions being consecutively performed), a timeout event cannot be generated.”, the
property is formalized as:

Verifying Erlang Telecommunication Systems 213

Fig. 3. LTS: The client m 1 makes a phone call

Fig. 4. LTS: The client m 2 makes a phone call

[true*. client info(m 1, connected, svr 1)*]
<not(‘tick.tick’)*. client info(m 1, timeout, disconnected, svr 1)> false

In the second experiment, to check “when m 2 is connected to svr 1, if m 2 has
not preset enough money in its account, the calling process cannot be accepted.”, the
property is formalized as:

<true*. client info(m 1, connected, svr 1) *. client info(m 2, low prepaid, svr 1) *.
client info(m 1, calling, svr 1)> false

Next, we construct an experiment to examine the system’s behaviour where more
than one clients are active. Two clients m 1 and m 2 request to connect to a server
simultaneously. Since the capacity of the FS is set to 1, according to the design, when
an FS, for example svr 1, accepts the request of a client, say m 1, it should reply
the other m 2 with busy ; the client m 2 should afterwards request a connection to
svr 2. Similar to the previous experiments, we want to check the behaviour of FSs and
the clients in an integrated way, but use more complicated system structure. Figure 5
illustrates the derived LTS. Here, the actions call, buffercall and reply are hidden as
internal actions as well.

214 Q. Guo, J. Derrick, and C. Hoch

Fig. 5. m 1 and m 2 make requests to connect

A number of properties can then be automatically verified via CADP. For example,
to check “when m 1 is connected to svr 1 and m 2 requests to svr 1, svr 1 will reply
m 2 with busy.”. The property is formalized as:

<true*. client info(m 1, connected, svr 1) *. cmd(m 2, connecting) *.
client info(m 2, busy, svr 1)> true

Another property we want to check is formalized as:

<true*. cmd(m 2, connecting) *. client info(m 2, busy, svr 1) *.
cmd(m 2, connecting) *. client info(m 2, connected, svr 2)> true

stating that “when m 2 requests to connect to svr 1 and receives the reply of busy, it
will request to connect to svr 2 and its request will be accepted by svr 2.”

We also devise an experiment to show how the methodology can be used for fault
detection. A system with two FSs (svr 1 and svr 2) and four clients (m 1, m 2, m 3
and m 4) is constructed, where four clients simultaneously request a connection to an
FS. Both svr 1 and svr 2 are meant to be designed with a capacity of 2, and we assume
that one (say svr 2) by mistakenly implemented with a capacity of 1. This could cause
serious problems as one client will iteratively make a request to connect to the system
without knowing whether he/she will ever get through.

The erroneous implementation is then translated into a μCRL specification from
which we derive its LTS, however, since it has a total of 354 states and 407 transitions
it cannot be clearly presented here. As usual we use the toolset CADP to verify the
properties.

One way to detect such a problem is to check whether the four clients are successfully
connected to the FSs. Since the system is designed with the capacity of 4, all four clients
should have connected to an FS. Thus, for each client, we define the following property:

Verifying Erlang Telecommunication Systems 215

[true*. “cmd(m i, connecting)” *]
(<true* “client info(m i, connected, svr 1))”> or
<true* “client info(m i, connected, svr 2))”>) true

stating “when client m i sends connecting request to the system, its request should
be either accepted by sver 1 or by sver 2”. Using these properties, the CADP model
checker can correctly distinguish the correct and faulty implementations based upon
the design we wish to check against.

5.2 State Space Investigation

In addition to system wide property checking, we were interested in whether the inte-
grated system had a tractable state space as the size of its components grew, thus we
also investigated the state space generated from the μCRL specification by using the
toolset CADP.

Table 1. One FS with capacity of 5

Clients States Transitions
1 39 40
2 413 456
3 4381 5055
4 4845 5681
5 5309 6307

Table 2. Three FSs with capacity
of 1,2 and 3 respectively

Clients States Transitions
1 49 50
2 867 932
3 12307 14073
4 13449 15917
5 14591 17761

We first construct a system where only one FS is applied. The FS’ capacity is set to 5.
A number of clients simultaneously request a phone connection. Before the simulation
starts, all clients have preset enough money in their account. We incrementally increase
the number of clients from 1 to 5, and Table 1 illustrates the changes of the state space
that result. It can be seen that when the second and third client are connected to the
FS, the state space increases rapidly: by a factor of almost 10. However, after this the
subsequent increases level off, and the size is increased by roughly 20% when one new
client is added to the system.

The same phenomenon is noticed as well when we apply three FSs to the system.
The server capacities are set to 1, 2 and 3 respectively, and the resultant state space
is shown in Table 2. This seems to suggest that, with the number of clients being
increased, the state space will fairly reach a saturated point where the state space
is slowly increased by a stable pace. We are currently investigating whether this is a
general phenomenon or one peculiar to this particular example.

6 Conclusions and Future Work

Verification is an important process in the development of Erlang applications. This pa-
per contributes to the recent strand of work which has studied the verification of Erlang
applications using the process algebra μCRL. The basic methodology in this approach

216 Q. Guo, J. Derrick, and C. Hoch

is for an Erlang application to be translated (abstracted) into a μCRL specification,
upon which the standard model checker CADP can be applied.

The study of how best to translate Erlang into μCRL contains many open research
issues and is still in its early stage. Recent results had shown how components such as
supervisor, gen server, gen fsm and the Erlang timeout event could be translated into
μCRL, but the translation rules for each component had been evaluated independently.
At FORTE’07 we defined the rules for translating gen fsm into μCRL, and evaluated
the rules with two case studies. This was extended in [16] by defining the rules for
coping with Erlang timeout events and evaluated the work with some case studies. The
experimental results show quite a promising effect for system verification.

However, no work had investigated the translation rules in an application where the
gen server, supervisor, gen fsm and timeout events were incorporated in an integrated
system. This forces us to face a challenge. If we apply all rules in an integrated way,
will these rules show the similar effects for system verification as they independently
demonstrated? Moreover, will a state space explosion mean that effective verification
is lost? These questions are important to us since we want to make sure (or at least
be confident) that all the defined rules can work in an integrated way, or that this
requirement could be achieved through modifying some rules before we looked at the
translation of other OTP components (such as applications).

In this paper, we have attempted to look at these questions by investigating the ver-
ification of an Erlang telecommunication system in μCRL. The system integrates the
use of the supervisor, gen server, gen fsm components and uses explicit timeout events.
We have shown how the system is translated into a μCRL specification using the pro-
posed translation rules, and verified a number of system properties by using CADP
and investigated the changes of state space when the number of clients increases. In
our experiments, a property under verification (PUV) is defined in a way where the
behaviour of the functional servers (FSs), the behavior of the clients and the commu-
nication between the FSs and the clients should be verified simultaneously. Thus, each
PUV looks at a property in the view of complete system. A faulty implementation was
also used to test the capability of fault detection, and based upon the design the faulty
implementation was correctly distinguished by CADP.

The experimental results suggest that when being applied in an integrated system,
the translation rules show the similar effect for system verification as being applied
independently. The study of the changes in state space suggests, with the number
of clients being increased, the state space is slowly increased by a stable pace. All
experimental evidence gives us confidence that we are working in the correct direction,
and thus we can continue with the study of some other OTP components.

There remains much to be done. Work continues on the automation of the transla-
tion of additional OTP components, as does work on verifying the correctness of the
translation against the Erlang semantics [10,11]. This latter aspect remains a challeng-
ing task, for the full semantics for distributed nodes in an Erlang application can have,
semantically, some very subtle behaviour, as discussed in, for example, [18].

Acknowledgements

This work is supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) grant EP/C525000/1. We would like to thank the developers of the tool sets
of μCRL and CADP for permitting the use of tools for system verification.

Verifying Erlang Telecommunication Systems 217

References

1. Armstrong, J., Virding, R., Wikström, C., Williams, M.: Concurrent Programming
in Erlang, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

2. Arts, T., Benac-Earle, C., Derrick, J.: Verifying Erlang code: a resource locker
case-study. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391,
pp. 184–203. Springer, Heidelberg (2002)

3. Arts, T., Benac-Earle, C., Penas, J.J.S.: Translating Erlang to μCRL. In: The
Fourth International Conference on Application of Concurrency to System Design
(ACSD 2004), June 2004, pp. 135–144. IEEE Computer Society, Los Alamitos
(2004)

4. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge University Press,
Cambridge (1990)

5. Benac-Earle, C.: Model checking the interaction of Erlang components. PhD thesis,
The University of Kent, Canterbury, Department of Computer Science (2006)

6. Benac-Earle, C., Fredlund, L.-Å.: Verification of Language Based Fault-Tolerance.
In: Moreno Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2005.
LNCS, vol. 3643, pp. 140–149. Springer, Heidelberg (2005)

7. Benac-Earle, C., Fredlund, L.-Å., Derrick, J.: Verifying Fault-Tolerant Erlang Pro-
grams. In: Sagonas, K., Armstrong, J. (eds.) Proceedings of ACM SigPlan Erlang
2005 Workshop, pp. 26–34. ACM Press, New York (2005)

8. CADP, http://www.inrialpes.fr/vasy/cadp/
9. Clarke, E., Grumberg, O., Long, D.: Model Checking. MIT Press, Cambridge

(1999)
10. Fredlund, L.Å: Towards a sematics for Erlang. In: Foundatins of Mobile Compu-

tation: A Post-Conference Satellite Workshop of FST and TCS (1999)
11. Fredlund, L.-Å.: A Framework for Reasoning about Erlang Code. PhD thesis, Roral

Institute of Technology, Stockholm, Sweden (2001)
12. Fredlund, L.-Å., Gurov, D., Noll, T., Dam, M., Arts, T., Chugunov, G.: A veri-

fication tool for Erlang. International Journal on Software Tools for Technology
Transfer 4(4), 405–420 (2003)

13. Groote, J.F., Ponse, A.: The syntax and sematics of μCRL. In: Algebra of Com-
municating Processes 1994, Workshop in Computing, pp. 26–62 (1995)

14. Guo, Q.: Verifying Erlang/OTP Components in μCRL. In: Derrick, J., Vain, J.
(eds.) FORTE 2007. LNCS, vol. 4574. pp. 227–246. Springer, Heidelberg (2007)

15. Guo, Q., Derrick, J.: Eliminating overlapping of pattern matching when verifying
Erlang programs in μCRL. In: Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.-H., Yang,
L.T., Xiao, B. (eds.) EUC 2006. LNCS, vol. 4096, Springer, Heidelberg (2006)

16. Guo, Q., Derrick, J.: Verification of Timed Erlang/OTP Components Using the
Process Algebra μCRL. In: Thompson, S., Fredlund, L.-A. (eds.) 6th ACM SIG-
PLAN Erlang Workshop, pp. 55–64. ACM Press, New York (2007)

17. Huch, F.: Verification of Erlang programs using abstract interpretation and model
checking. ACM SIGPLAN Notices 34(9), 261–272 (1999)

18. Svensson, H., Fredlund, L.-ȦA.: A More Accurate Semantics for Distributed Er-
lang. In: Thompson, S., Fredlund, L.-A. (eds) 6th ACM SIGPLAN Erlang Work-
shop, pp. 43–54. ACM Press, New York (2007)

http://www.inrialpes.fr/vasy/cadp/

	Verifying Erlang Telecommunication Systems with the Process Algebra $μ$CRL
	Introduction
	Telecommunication System
	System Infrastructure
	Client Behaviour Modelling

	Erlang Implementation
	Functional Server Implementation
	Client Implementation

	Translating Our Case Study into CRL
	Pre-processing
	Translating the Server Component
	Translating the Client Component
	System Translation

	Verifying the Telecommunication System with CRL
	Property Verification
	State Space Investigation

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

