
editors, Proc. Formal Methods for Protocol Engineering and Distributed
Systems (FORTE XIII/PSTV XX), Kluwer Academic Publishers, London, UK, October 2000.

Verifying and Testing Asynchronous Circuits using LOTOS

Ji He and Kenneth J. Turner
University of Stirling, Scotland FK9 4LA

Email h.ji@reading.ac.uk, kjt@cs.stir.ac.uk

1st June 2000

Abstract

It is shown how DILL (Digital Logic in LOTOS) can be used to specify,verify and test asynchronous
hardware designs. Asynchronous (unclocked) circuits are a topic of active research in the hardware
community. It is illustrated how DILL can address some of the key challenges. New relations for
(strong) conformance are defined for assessing a circuit implementation against its specification. An
algorithm is also presented for generating and applying implementation tests based on a specification.
Tools have been developed for automated verification of conformance and generation of tests. The
approach is illustrated with three case studies that explore speed independence, delay sensitivity and
testing of sample asynchronous circuit designs.

Keywords: Conformance Testing, Hardware Description, Hardware Verification, LOTOS

1 Introduction

1.1 Background

DILL (Digital Logic in LOTOS, e.g. [9, 10]) is an approach, a language and a toolset for specifying,
analysing and testing digital hardware designs. The authors have developed an extensive library of
typical hardware components, and methods for dealing with synchronous (clocked) circuits. Although
DILL has language facilities for inclusion of standard circuit components, it is really just a veneer on top
of LOTOS. DILL can therefore exploit the rich theories and tools for LOTOS. The recent developments
described in this paper have extended DILL to asynchronous (unclocked) circuits.

Conventional digital circuits operate under control of a master clock that synchronises the major
components. The design of such synchronous circuits is well understood. The clocked nature of designs
avoids problems due to variations in speed among the components. However, asynchronous circuit
design is increasingly attracting attention. These circuits operate at the speed of individual components,
without artificially limiting them to some clock rate. They may thus be capable of faster operation
than synchronous circuits. Unfortunately asynchronous circuits are much harder to design and analyse.
Indeed there are many design strategies which aim to achieve different goals such as independence from
the delays or speed of circuit elements. The challenge is to allow each component to operate as fast as
possible while preserving the circuit function.

Verification of asynchronous circuits, especially speed-independent and delay-insensitive ones, is
an active research topic (e.g. [2, 4]). Rigorous testing of asynchronous circuits is still in its infancy.
This paper presents solutions for verification of asynchronous circuits and for deriving rigorous imple-
mentation tests from their specifications. It thus makes a contribution to the evolving understanding of
asynchronous circuit design. The paper also shows a novel application of protocol design techniques
(LOTOS, conformance testing) to a new domain that is exciting industrial interest.

1.2 Related Work

Formal techniques that have been used for asynchronous circuits include CIRCAL [1], CSP and Delay-
Independent Algebra. Of these, DILL most closely resembles CIRCAL in that both have a behavioural basis
in process algebra, and both have been used in (a)synchronous circuit design. However, the integrated

1

data types in LOTOS makes it much more expressive than CIRCAL. In the authors’ experience, LOTOS

can be used successfully at a variety of abstraction levels whereas CIRCAL appears to be less effective at
higher levels. It is very difficult to use CIRCAL for specifying relatively complicated behaviour.

Like DILL, many other asynchronous verification approaches define relations that judge correctness
of a circuit design. The relations confor and strongconfor defined in this paper resemble those introduced
by others, e.g. conformance [2], decomposition [4] and strong conformance [6]. It is not possible to
detect deadlocks and livelocks with conformance and decomposition. Although strong conformance can
do this, it requires an implementation not to produce less outputs than its specification. This excludes the
possibility of applying the relation to non-deterministic specifications. As will be seen, the (strong)confor
relations defined in this paper have clear advantages over those mentioned above.

For validating hardware designs, test cases are in practice manually defined or are randomly generated.
More rigorous approaches use traditional software testing techniques or state machine representations.
[13] makes use of higher-level state machine specifications, but cannot handle non-deterministic speci-
fications. In the DILL approach, tests are derived from higher-level specifications in a novel adaptation
of the conformance testing theory developed for protocols.

1.3 Structure of Paper

Section 2 discusses various kinds of asynchronous circuit components and how they can be specified in
DILL. Section 3 then explains how asynchronous circuit implementations can be verified against their
specifications, using the notion of conformance relations. The theory and tools also allow automated
derivation of tests for asynchronous circuits. Section 4 shows how an asynchronous FIFO (First-In
First-Out buffer) can be verified to exhibit liveness and speed independence. Automatically generated
tests are also presented. The Or-And example in section 5 demonstrates the subtleties in verifying
speed independence and delay insensitivity. Two plausible implementations are shown to have differing
properties. Finally, section 6 uses the example of a selector to demonstrate how the approach copes with
specifications that allow non-deterministic implementations.

2 Specifying Asynchronous Circuit Components

2.1 Classes of Asynchronous Circuits

Asynchronous circuits exhibit a variety of forms due to the different delay and environment assumptions
made. An asynchronous circuit can only behave correctly when these assumptions are met. Some of the
better-known design approaches include the following.

DI (Delay-Insensitive) circuits are the most robust class in the asynchronous circuit family since they
take the most pessimistic view about delays and the environment. Delays in components and wires
are assumed to be unbounded (but finite). DI circuits can operate correctly regardless of actual
delay magnitudes. Most meaningful DI circuits require more than basic logic gates, so specialised
components are defined [11].

QDI (Quasi Delay-Insensitive) circuits augment the delay model of delay-insensitive circuits with
the use of isochronic forks. These are branching connections on which the difference of delay
magnitudes is negligible. This is a good compromise for building practical circuits using single-
output gates.

SI (Speed-Independent) circuits have gates with unbounded delay, but wires have zero delay. If all
gates have just one output, SI and QDI are actually identical.

Specifying bounded delays needs a formalism that supports quantitative timing specification. This
paper studies the classes above since they assume unbounded delays and so are suitable for LOTOS.
(Quasi) delay-insensitive designs can be easily changed to speed-independent circuits by inserting

2

artificial delay components. Since unbounded delay plus unbounded delay is still unbounded, most of
the wire delays can be absorbed into the preceding components. Only forks and components with more
than one output need special treatment.

The rest of the paper therefore mainly discusses speed-independent designs. Happily these are a
good match to the DILL approach since component delays are unbounded, just like the interval between
consecutive LOTOS events. In DILL, component ports are connected by synchronising their LOTOS

events. This actually assumes that delay on the connecting wires is negligible, an assumption that is also
adopted by speed-independent circuits. Speed independence is closely related to the concept of semi-
modularity. If new inputs cannot can change any pending outputs, the design is termed semi-modular.
Semi-modularity is commonly used as a correctness criterion for speed independence, since the violation
of semi-modularity causes speed-dependent behaviour.

2.2 Modelling Speed Independence

In this section, basic logic gates are used to illustrate how to model speed independence (really semi-
modularity) of asynchronous circuits. In [9, 10], the specification of basic logic gates allows new inputs
to pre-empt pending outputs. Some of these input transitions may change the levels of pending outputs,
resulting in the violation of semi-modularity. Consider a Nand2 gate (two-input ‘not and’) whose inputs
and output Ip1, Ip2, Op are initially 1, 1, 0. After Ip1 changes to 0, its output should change to 1. If Ip1
changes back to 1 before output happens, the output may either undergo the 1 to 0 transition or remain on
0. This depends on the speed of the gate. To respect semi-modularity, such inputs have to be forbidden.

process Nand2 [Ip1,Ip2,Op] (dtIp1,dtIp2,dtOp:Bit) : noexit :
let newOp:Bit = dtIp1 nand dtIp2 in (* potential output *)

(
Ip1 ?newIp1:Bit [(newIp1 ne dtIp1) and (* first input changes *)

((dtOp eq newOp) or (* no new potential output *)
((dtOp ne newOp) and (* there is potential output *)
((newIp1 nand dtIp2) eq newOp)))]; (* but no change is needed *)

Nand2 [Ip1,Ip2,Op] (newIp1,dtIp2,dtOp) (* continue behaviour *)

Ip2 ?newIp2:Bit [(newIp2 ne dtIp2) and (* second input changes *)
((dtOp eq newOp) or (* no new potential output *)

((dtOp ne newOp) and (* there is potential output *)
((newIp2 nand newIp1) eq newOp)))]; (* but no change is needed *)

Nand2 [Ip1,Ip2,Op] (dtIp1,newIp2,dtOp) (* continue behaviour *)

Op !newOp [dtOp ne newOp]; (* new output produced *)
Nand2 [Ip1,Ip2,Op] (dtIp1,dtIp2,newOp) (* continue behaviour *)

)
endproc

Note that the specification is partial in that inputs are forbidden at certain points. An input offer can
happen only when there is no potential output, or when the new input cannot alter the potential output.

The usual DILL specification of a logic gate [9, 10] is input-receptive. But it possesses inertial delay,
i.e. the gate will not react to short input pulses. The model above is stricter than that of [9, 10], and can
be used for checking if a circuit is semi-modular or not.

2.3 Specifying Asynchronous Circuit Components

Asynchronous circuit design is a specialised discipline that uses special-purpose components in addition
to basic logic gates. These special components are treated as fundamental, even though their implemen-
tation may derived from simpler elements. The special components are assumed to exhibit properties

3

such as speed independence or delay insensitivity. To give a flavour of the approach and to show that
their specifications in DILL are straightforward, a sampling of the components is specified below. For
brevity an abbreviated syntax is used for process definitions. It is also common practice [3] to omit
signal levels when specifying asynchronous circuits, since the levels strictly alternate. For example the
input sequence Ip !0, Ip !1, Ip !0 can be represented as Ip, Ip, Ip. The following outline specifications
respect the requirement of semi-modularity.

Wires are the simplest components. In high-speed circuits such as asynchronous designs, even con-
nections can contribute delays. They are not needed for speed-independent circuits since delays
on wires are assumed to be zero. But when a (quasi) delay-insensitive circuit is transformed to a
speed-independent design, delays on wires may have to be explicitly specified.

Wire [Ip,Op] : Ip; Op; Wire [Ip,Op]

Fork components are also necessary when transforming a (quasi) delay-insensitive design to speed-
independent form. A fork has one input Ip and two outputs Op1, Op2. The value on input Ip is
fanned out to Op1 and Op2. Because of delays, the two outputs may occur at different times. New
input has to wait until both outputs have been produced.

Fork [Ip,Op1,Op2] : Ip; (Op1; exit ||| Op2; exit)>> Fork [Ip,Op1,Op2]

C-Elements are very important in asynchronous design. A C-Element (named after its conventional
output C) is used as a transition synchroniser since its output can change only after both inputs
have changed. For this reason, it is sometimes also called a join element. A C-Element has two
inputs Ip1, Ip2 and an output Op. The output changes to 1 when both inputs have changed to 1,
and changes to 0 when both have changed to 0.

C-Element [Ip1,Ip2,Op] : (Ip1; exit ||| Ip2; exit)>> (Op; C-Element [Ip1,Ip2,Op])

Merge components copy input signals Ip1, Ip2 to a single output Op.
Merge [Ip1,Ip2,Op] : Ip1; Op; Merge [Ip1,Ip2,Op] Ip2; Op; Merge [Ip1,Ip2,Op]

Selectors take a single input Ip and non-deterministically output on Op1 or Op2.
Selector [Ip,Op1,Op2] : Ip; (i; Op1; exit i; Op2; exit)>> Selector [Ip,Op1,Op2]

Sequencers have two data inputs Ip1, Ip2, a control input called C, and two data outputs Op1, Op2.
They wait for an Ip1 or Ip2 signal plus C, and then produce the corresponding output signal.

Sequencer [Ip1,Ip2,C,Op1,Op2] : (S1 [Ip1,Op1] ||| S2 [Ip2,Op2]) |[Op1,Op2]| S3 [C,Op1,Op2]
where

S1 [Ip1,Op1] : Ip1; Op1; S1 [Ip1,Op1]
S2 [Ip2,Op2] : Ip2; Op2; S2 [Ip2,Op2]
S3 [C,Op1,Op2] : C; (i; Op1; S3 [C,Op1,Op2] i; Op2; S3 [C,Op1,Op2])

Latches are the storage elements in asynchronous circuits. A latch has two data inputs Ip1, Ip2, a
control input C, and two data outputs Op1, Op2. A latch waits for exactly one Ip1 or Ip2 input and
a C input, then the corresponding output is produced. In contrast to a sequencer, the environment
must guarantee mutual exclusion of inputs.
Latch[Ip1,Ip2,C,Op1,Op2] :

((Ip1; exit ||| C; exit)>> Op1; Latch [Ip1,Ip2,C,Op1,Op2])

((Ip2; exit ||| C; exit)>> Op2; Latch [Ip1,Ip2,C,Op1,Op2])

RGD Arbiters are named after their signals: Request, Grant, Done. They have four inputs R1, D1, R2,
D2 and two outputs G1, G2. If the arbiter receives two simultaneous requests, it grants exactly
one of them and delays the other. Request Ri is followed by grant Gi and then the done signal Di.
The time intervals G1..D1 and G2..D2 are guaranteed to be mutually exclusive.

RGD [R1,G1,D1,R2,G2,D2] : (S1 [R1,G1] ||| S2 [R2,G2]) |[G1,G2]| S3 [G1,D1,G2,D2]
where

S1 [R1,G1] : R1; G1; S1 [R1,G1]
S2 [R2,G2] : R2; G2; S2 [R2,G2]
S3 [G1,D1,G2,D2] : (i; G1; D1; S3 [G1,D1,G2,D2]) (i; G2; D2; S3 [G1,D1,G2,D2])

4

2.4 Input (Quasi-)Receptiveness

In LOTOS, communication between processes is based on symmetric synchronisation at a gate. Thus an
event can happen only when all processes offer events at this gate. If one of the processes is not able to
do so, the other processes just wait or participate in another event if possible. However, digital hardware
has a clear distinction between inputs and outputs. Signals are absorbed at inputs and are produced at
outputs. A hardware component can never refuse an input signal, and the output signals it produces can
never be blocked by others.

A specification is said to be input-receptive if every input is allowed in every state. In such a case,
the DILL model represents the real circuit faithfully. However input-receptive specifications cannot be
written for most asynchronous circuit components since unexpected inputs are not permitted. Analysing
such partial specifications has the disadvantage of not being exact since the behaviour of a LOTOS model
is only a subset of the behaviour of the real circuit. One way to address this is by explicit deadlock if
unexpected inputs arrive.

If more accurate analysis is required, input quasi-receptive specifications should be written. Infor-
mally, a DILL specification is input quasi-receptive if it can always participate in all input events except
when deadlocked. As an example, the specification of a wire is partial in that input is not allowed when
the wire wants to produce its output. An input quasi-receptive specification can be obtained by adding a
choice when there is a potential output. A wire might thus be specified as:

process Wire [Ip,Op] (dtIp:Bit) : noexit :
Ip ?newIp1:Bit [dtIp ne newIp1]; (* new input *)
(

Op !newIp1; exit (newIp1) (* new output *)

Ip ?newIp2:Bit [newIp2 ne newIp1]; (* forbidden input causes ... *)
stop (* forced deadlock *)

)
>>

accept newIp:Bit in Wire [Ip,Op] (newIp) (* continue behaviour *)
endproc

It is not straightforward to transform a specification with more than just sequence and choice
operators into input quasi-receptive form. In such a case, a partial specification can be used to generate
the corresponding LTS (Labelled Transition System). An LTS is actually a LOTOS specification in
the form of sequence and choice operators. An input quasi-receptive specification can be obtained by
modifying the LTS. For a state that cannot participate in all input events, outgoing edges leading to
deadlock are added for missed inputs. This method works very well for LTSs without internal events.
But subtle problems can arise for those containing internal events. Suppose state S accepts an input Ip1,
performs an internal action, and ends up in state S′ where Ip2 can be accepted. It would be incorrect to
add a transition to state S that accepts Ip2 and leads to deadlock. That is, S accepts Ip2 only through an
internal action.

When a specification is considered from the point of view of input receptiveness, internal events
become less meaningful. Internal events mean the environment has no effect on choices. In the context
of digital design, a circuit produces outputs without influence from its environment. Therefore all
outputs should be preceded by internal events. If internal events are omitted, the environment has
the opportunity to choose which outputs to accept and which to refuse; this is not a proper model of
real circuits. However if the environment is input-receptive, it loses its selective power: it will accept
whatever the circuit produces, even though there are no internal events in the circuit specification. For
this reason, LTSs with internal events are determinised before outgoing edges are added to create input
quasi-receptive specifications. An LTS is input quasi-receptive if, after determinisation, all states except
terminal ones can accept all inputs.

5

3 Asynchronous Circuit Verification and Testing

3.1 Verifying Asynchronous Circuit Designs

The characteristics of asynchronous circuits have implications for verification. As it is more difficult
to specify components in an input (quasi-)receptive manner, verification may still be based on using
components that are not input-receptive. The verification may, however, not be exact in that some
problems may not be discovered. Input quasi-receptive specifications result in a larger state space and
thus make verification more difficult.

A structural implementation (a detailed design) normally has much more behaviour than its abstract
specification. This is not unique to DILL and also applies to many other design methods. This makes it
unrealistic to use equivalence as the criterion for correct design. Equivalence requires that a specification
and its implementation have same behaviour under all possible environments. This requirement would
usually be too strong since practical circuits work correctly only in well-behaved environments.

Assumptions about environments have to be made since these are often not given for asynchronous
circuits. When an environment is not explicit, many methods simply assume the mirror of a specification
as the environment of its implementations [2]. If S is the abstract specification and I is the implementation
specification, verification means comparing S || I with S or checking if a logic formula holds for S || I.
But verifying S || I is not always satisfactory. When an implementation can accept more inputs than its
specification does, S || I restricts the inputs considered to only those in the specification. This assumes that
the environment does not provide extra inputs, so inputs that are accepted only by the implementation are
ignored when verifying the joint behaviour. This is reasonable, but permits an implementation to produce
more outputs than a specification. This is undesirable since an implementation producing unexpected
output for legitimate input is normally erroneous. Moreover, when a specification is non-deterministic
this method may exclude correct deterministic implementations.

The key point here is the different roles of inputs and outputs in digital circuits. An implementation
passively accepts inputs, so only those available from the environment make sense. An implementation
actively produces outputs, over which the environment has no influence. A LOTOS specification however
does not distinguish inputs and outputs. When a LOTOS specification is used as an environment, it
restricts inputs and outputs equally.

When an implementation is specified in an input (quasi-)receptive way, a distinction is made between
inputs and outputs. If its environment is also receptive, it will deadlock on unexpected outputs from
an implementation. However, it is very hard to extract an input quasi-receptive environment from a
behavioural specification – especially if this is complicated or contains internal events. An alternative
method is therefore adopted for verifying asynchronous circuits. Relations are defined that take into
account the difference between input and output. These relations do not require (quasi-)receptiveness of
the environment or the implementation, and are intuitive criteria for correctness of asynchronous circuits.

3.2 Input-Output Conformance for Asynchronous Circuits

Although many relations have been defined to characterise the relationship between two LTSs, they are
not very helpful for verifying asynchronous circuits. This is especially true when the environment of a
circuit is not explicitly supplied. Two new relations, confor and strongconfor, are therefore defined to
assess (strong) conformance of an implementation to its specification. These relations were inspired by
ioconf and ioco in [14] for conformance testing of communications protocols.

Suppose Spec is an abstract specification of a circuit and Impl is its implementation specification.
Spec may be partial in the sense that in some states it does not accept some inputs, i.e. it is not input-
receptive. An input is absent if the environment of a circuit does not provide it, if the behaviour of the
circuit upon receiving the input is not of interest, or if the behaviour is undefined. Although all circuits

6

are potentially able to accept all inputs at any time, most specifications are partial to avoid too much
detail. Impl may be partial or total in the sense of input receptiveness.

Suppose that sp is a state of Spec and that im is the corresponding state in Impl. To define the confor
relation, first consider the input transitions that sp and im can engage in. If an input ip is acceptable
in sp, it is reasonable to require that ip is also accepted in im. On the other hand, if im can accept an
input which is not acceptable in sp, this input and all the behaviour afterwards can be ignored. Since the
environment will never provide such an input, or even if it is provided, such behaviour is not of interest.
In short, the inputs acceptable in sp should be a subset of those acceptable in im.

As far as outputs are concerned, if sp can produce op then a correct implementation should also
produce it. If sp cannot produce a certain output, neither should its implementation. However when a
specification is allowed to be non-deterministic, it is too strong to require im to produce exactly the same
outputs as sp since a deterministic implementation could produce a subset of the outputs. A suitable
relation should thus require output inclusion instead of output equality. Unfortunately a circuit that
accepts everything but outputs nothing may also be qualified as a correct implementation. The special δ
‘action’ overcomes this weakness by indicating the absence of output. Like any other output action, if δ
belongs to the output set of im it must be in the output set of sp for conformance to hold. In other words,
im can produce nothing only if sp can do nothing as well.

In the above discussion, sp and im are not actually LTS states but are all possible situations that a
circuit may be in after a certain input-output sequence. Because δ is also involved in the sequence, the
state spaces of both specification and implementation are transformed into automata that are explicitly
labelled with δ. The input-output sequences are actually traces of the specification automaton. Formally,
let implementation i ∈ LTS(LI ∪ LU) and specification s ∈ LTS(LI ∪ LU). Then:

i confor s =def ∀σ ∈ STrace(s) : out(i after σ) ⊆ out(s after σ)and
if i afterσ �= ∅ : in(safterσ) ⊆ in(i after σ)

i strongconfor s =def ∀σ ∈ STrace(s) : out(i after σ) = out(s after σ)and
if i afterσ �= ∅ : in(safterσ) ⊆ in(i after σ)

LI and LU refer to the inputs and outputs from the point of view of the implementation. The inputs
and outputs of an automaton after some trace are computed by in and out. The after operator yields an
automaton after it has executed a given trace. STrace generates a suspension trace.

To define suspension traces, the transition relation is extended with the refusal of output actions:
self-loop transitions labelled with LU indicate that no output action can occur. Refusal to output can
also be expressed using δ, which is regarded as an output action distinct from LI and LU . A suspension
trace thus contains ordinary actions and δ actions. If Lδ denotes L ∪ δ, a suspension trace σ ∈ L�δ .

The confor relation requires that, after a suspension trace of s, the outputs that an implementation
i can produce are included in what s can produce. If i can follow the suspension trace, the inputs that
s can accept are also accepted by i. strongconfor has a similar definition except that output inclusion
is replaced by output equality. Normally confor is used when a specification and an implementation
are deterministic, while strongconfor is used when an implementation is more deterministic than a
specification. The (strong)confor relations are more easily observed if the LTSs of specifications are
transformed to suspension automata.

A suspension automaton Γp of an LTS p is obtained by determinising p and adding the necessary
δ transitions. The suspension traces of p coincide with the traces of its suspension automaton Γp. In
addition, for all σ ∈ L�, out(Γp after σ) = out(p after σ); see [14] for the proof. Therefore checking
(strong)confor can be easily reduced to checking trace inclusion on suspension automata. Only traces
without δ transitions are checked for confor, while all the traces of a suspension automaton are checked
for strongconfor.

A verification tool VeriConf has been developed to check the (strong)confor relations using the
programming interface of CADP (Cæsar Aldébaran Development Package [5]). Briefly, CADP is
exploited to generate LTSs of both specification and implementation. Then the verifier is used to produce

7

the suspension automata from the LTSs and to compare the automata according to the relations. The
verifier has been successfully used in analysing several asynchronous circuits, including the examples in
the following sections.

3.3 Testing Asynchronous Circuits

Conformance testing requires several ingredients: a formal specification, an IUT (Implementation Under
Test), a test suite, and a relation that checks correctness of the implementation against the specification.
There should preferably be a test generation algorithm that produces test suites automatically. An IUT
may be a product, a formal specification, or even an informal specification. Presuming that every IUT
has a formal model is referred to the test hypothesis. Note that only the existence of a model is assumed.
In this paper, implementations are modelled as IOLTSs (Input Output Labelled Transition Systems).

An IOLTS p is an LTS whose actions L are partitioned into inputs LI and outputs LU , and whose
input actions are always enabled in any state. This class of system is denoted by IOLT S(LI , LU) ⊆
LT S(LI ∪ LU). Specifications, however, are still modelled as an LTS to permit an abstract view of
behaviour. Such specifications are interpreted as incompletely specified IOLTSs where some inputs are
not specified in some states. The intention of incompleteness might be implementation freedom, or
because the environment will not provide undesirable inputs.

Several implementation relations have been defined by others between LTSs and IOLTSs. Some
of these relations, such as the one analogous to testing preorder, are too strong in that they require
specifications to be IOLTSs. This is obviously impractical in most cases. The ioco relation has been
defined to support conformance testing. The ioco relation is very similar to confor. The difference
is that implementations accepted by confor may not be input-receptive, whereas ioco assumes that
implementations are modelled as IOLTSs (and can thus always accept all inputs). Consequently, the
input inclusion condition required by confor is always satisfied in the case of ioco.

A test suite is a set of test cases. For practical reasons, test cases must have finite behaviour. In
addition they should be deterministic to allow a tester to have control over test execution. This requires
that test cases have no choices between multiple input actions or between input and output actions, as
both introduce undesirable non-determinism during a test. As a result a state of a test case is either
terminal, offers one input to the implementation, or accepts all possible outputs from the implementation
(including the δ action). The terminal states of a test are labelled with Pass or Fail to yield a verdict.
When an implementation is tested, it will stop only in a pass or fail state. Since an implementation can
be non-deterministic, different terminal states can be reached with different test runs of the same test
case. Only when an implementation passes all possible test runs is it said to pass the test case.

A test case is modelled as an LT S(LI ∪ LU ∪ {δ}). As before, δ means a state cannot produce
any output. Test cases are obtained by a finite recursive application of the following non-deterministic
choices: terminate the test case; give a next input to the implementation; or check the next outputs of the
implementation. The first choice terminates the generation procedure to ensure a test stops at some point
even though the specification may include infinite behaviour. The second choice will never result in
deadlock as inputs are always enabled. The third choice ensures failure if an implementation produces an
output not belonging to out(Γ). This test generation algorithm guarantees sound test cases with respect
to (strong)confor, and the set of test cases that can be obtained is complete; see [14] for the proof.

In the DILL approach to testing digital circuit designs, a circuit is specified in LOTOS (whose semantics
is given by an LTS). The implementation of the same circuit is described by VHDL (VHSIC Hardware
Description Language [8]). The behaviour of a VHDL program is presumed to be modelled by an IOLTS
that is merely assumed to exist – it need not be known explicitly. The test suite for a circuit is generated
by an algorithm based on that of [14]. The authors have extended CADP to generate hardware test
suites automatically from the suspension automaton of the specification. A VHDL testbench executes
and evaluates the test cases. If there is an inconsistency between the formal specification and its VHDL

8

S1

S3S2

S5S4

S6 S7

A possible test trace:

Ip, Op1(*S1), Op2, Op1(*S4), ...

S0

Ip

Op2Op1

Op2 Op1

Op1 Op3

Op3(*S4), Ip, Op2(*S1), Op1...

Figure 1: Test Trace for Nodes with Several Outputs

implementation, the implementation is regarded as incorrect.
The test cases generated in DILL approach have the form of traces rather than trees. This allows easy

measurement of test coverage, and automatic execution of test cases. A test suite cannot usually cover
the entire behaviour of a specification as this is normally infinite. The strategy is therefore to cover all
transitions in a transition tour that addresses the Chinese Postman problem. As suspension automata may
not be strongly connected, it is not possible to make direct use of conventional transition tour algorithms.
Instead the approach of [7] is used because it is suitable for all kinds of directed graphs. Depth-first
search is used until an unvisited edge cannot be reached. Breadth-first search is then employed to find
an unvisited edge, and then depth-first search recommences. The authors have developed the TestGen
tool that realises this algorithm using the CADP application programming interface.

The problems caused by non-determinism can be solved by marking contradictory output branches
in a suspension automata. This situation arises if an output may not be matched by the implementation
under test since other outputs are permitted. This method is not so effective when the behaviour of an
implementation is non-deterministic. The problem is that when an inconclusive verdict is reached, a
test run is aborted and other test cases are applied. However, the test case could be still useful if other
neighbouring outputs can be found so that the test run may continue.

Contradictory branches in the suspension automaton are therefore marked with ‘�’ and the corre-
sponding state label. Obviously, outputs with the same marks in a test suite are neighbours in the
corresponding suspension automaton. In this way the branching structure of the automaton tree is re-
flected in a test case. The transition tour algorithm is able to cover all the transitions in a suspension
automaton. If an implementation differs from all the outputs with a certain mark, a fail verdict should
be recorded. This technique requires a testbench that is able to search the whole test suite for marks.

Figure 1 is an example of this technique. If an implementation has the behaviour Ip, Op1, Op2,
Op3, ... it will follow Ip, Op1, Op2 in a test run. But when output Op3 fails at Op1(�S4), the testbench
must look for another output with the same mark to see if Op3 can be matched. In this case it can find
Op3(�S4) and continue testing. If an implementation behaves as Ip, Op3, ... then there will be no output
marked with (�S1) that can match Op3; the implementation would be regarded as incorrect.

The testbench would normally search the remainder of a test trace when an inconclusive point is
met so that testing can go forward. However such marks sometimes exist only in the previous part of
the trace, forcing the search to go backward. This means that loops may arise during testing, so the
testbench needs a strategy to avoid this.

The testbench also needs to maintain a timer. Real components do not have unbounded delays, so
when a δ transition is encountered the testbench must record the time that elapses. If there is no output
within a certain period, the δ transition can be regarded as having occurred; otherwise a failure verdict

9

must be given. The value of the timer reflects the delays in the real circuit. A testbench will also have to
decide when to provide inputs. For test case T1 in the later example of figure 3, if InF !0 is provided too
late after the first input InF !1 then an output may have already been produced. The behaviour should be
fully explored by other test cases such as T2. But the tester might not be aware of the interrelationships
among tests. T1 might therefore be used at the risk of producing faulty test results.

4 Case Study: An Asynchronous FIFO

As a typical circuit, an asynchronous FIFO (First In First Out buffer) is specified and analysed. The
FIFO has two inputs InT, InF and two outputs OutT, OutF. Its inputs and outputs use dual-rail encoding
in which one bit needs two signal lines. The pair of T/F (true/false) signal values 1/0 corresponds to
data value 1, while the pair 0/1 corresponds to 0. A signal of 0 on both lines indicates idle, which means
there is no valid data. Lines have to be reset to idle between two transmissions. Suppose a FIFO with
one stage is initially empty. It can accept either 1 or 0 on receipt of InT or InF. The data is delivered
to the output lines. After one successful transmission, the input and output lines that have been raised
return to 0 to wait for other data. The behaviour of one stage can be easily specified:

process Stage [InT,InF,OutT,OutF] :noexit : (* one FIFO stage *)
InT !1; OutT !1; InT !0; OutT !0; (* input/output 1 then idle *)
Stage [InT,InF,OutT,OutF] (* continue behaviour *)

InF !1; OutF !1; InF !0; OutF !0; (* input/output 0 then idle *)
Stage [InT,InF,OutT,OutF] (* continue behaviour*)

endproc
A FIFO with several stages can be obtained by composing instances of this process. For example, a

FIFO with two stages and internal signals IntT, IntF is specified as:
process Spec [InT,InF,OutT,OutF] (* FIFO specification *)

hide IntT,IntF in (* internal signals *)
Stage [InT,Inf,IntT,IntF] (* first stage *)

|[IntT,IntF]|
Stage [IntT,IntF,OutT,OutF] (* second stage *)

endproc
A possible implementation for a FIFO stage is given in figure 2 (a). Apart from the data path, there

are two lines that control data transmission. Req comes from the environment of a stage, indicating that
environment has valid data to transfer. The Ack line goes to the environment, indicating that the stage
is empty and is thus ready to receive new data. Both of these control signals are active when 1. The
implementation use two C-Elements (see section 2.3) and a Nor2 gate (two-input ‘not or’). Initially both
Req and Ack are 1. When there is valid data on InT or InF, it is passed to OutT or OutF. At the same
time, Req should be reset to 0 until InT or InF returns to the idle state. Ack is reset to 0 after receiving
data on OutT or OutF, indicating that the stage is full. When the data on output lines is fetched, the stage
returns to the idle state and is ready for the next transmission. The corresponding DILL specification of
this FIFO cell is as follows:

process Cell [InT,InF,OutT,OutF,Req,Ack] : noexit :
(CElement [InT,Req,OutT] (0,1,0) |[Req]| CElement [InF,Req,OuTF] (0,1,0))

|[OutT,OutF]|
Nor2 [OutT,OutF,Ack] (0,0,1)

endproc
The inputs/output of the C-Elements are initialised to 0,1/0, while those for the Nor2 gate start as 0,0/1.

To ensure a FIFO works correctly, the environment has to be coordinated. For example, it should
provide correct input data according to the dual rail encoding. To make things easier, it is convenient
to think about the environment in two parts: EnvF (environment front-end) is a provider that is always
ready to produce data, while EnvB (environment back-end) is a consumer that can always accept data.

10

Req
C

C

Nor2
Ack

(a)

InT

InF

OutT

OutF

Cell CellEnvF EnvB

InT

InF

Req
IntT
IntR

IntF OutF

OutT
Ack

(b)

Figure 2: Implementation of A Two-Stage FIFO from Individual Cells

process EnvF [Req,InT,InF] : noexit : (* data provider *)
InT !1; Req !0; InT !0; Req !1; (* provide 1 *)
EnvF [Req,InT,InF] (* continue behaviour *)

InF !1; Req !0; InF !0; Req !1; (* provide 0 *)
EnvF [Req,InT,InF] (* continue behaviour *)

endproc

process EnvB [Ack,OutT,OutF] : noexit : (* data consumer *)
OutT !1; Ack !0; OutT !0; Ack !1; (* accept 1 *)
EnvB [Ack,OutT,OutF] (* continue behaviour *)

OutF !1; Ack !0; OutF !0; Ack !1; (* accept 0 *)
EnvB [Ack,OutT,OutF] (* continue behaviour *)

endproc

A two-stage FIFO can then be implemented as in figure 2 (b):

process Impl [InT,InF,OutT,OutF] : noexit : (* FIFO implementation *)
hide Req,IntT,IntF,IntR,Ack in (* internal signals *)

EnvF [Req,InT,InF] (* data provider *)
|[Req,InT,InF]|

Cell [InT,InF,IntT,IntF,IntR,Req] (* first cell *)
|[IntT,IntF,IntR]|

Cell [IntT,IntF,OutT,OutF,Ack,IntR] (* second cell *)
|[Ack,OutT,OutF]|

EnvB [Ack,OutT,OutF] (* data consumer *)
endproc

When speed independence needs to be verified, each building block (including the environment)
should be specified in the input quasi-receptive style. Impl QR is the corresponding implementation
specification. It can use the DILL library for quasi-receptive specifications of the basic building blocks. It
also needs the corresponding quasi-receptive specifications EnvF QR and EnvB QR. EnvF has no inputs
and so is identical to EnvF QR. EnvB QR has the form:

process EnvB QR [Ack,OutT,OutF] : noexit : (* receptive data consumer *)
OutT !1; (* value 1 output by FIFO *)
(Ack !0; (OutT !0; (Ack !1; EnvB QR [Ack,OutT,OutF]

OutT !1; stop OutF !1; stop)
Ack !1; stop OutF !0; stop) (* incorrect ack or FIFO output *)

OutT !0; stop OutF !0; stop) (* incorrect FIFO output *)

OutF !1; (* value 0 output by FIFO *)
(Ack !0; (OutF !0; (Ack !1; EnvB QR [Ack,OutT,OutF]

OutT !1; stop OutF !1; stop)

11

InF !0

InF !1 InT !1

OutF !1

OutF !1

InF !0

InT !0
OutT !1

InF !1
InT !1

OutF !0

OutT !1 InT !0

InF !1

InT !1

OutT !0OutF !0
OutT !0

FIFO

OutT !0

InF !1 InT !1

OutF !0
InF !0

OutF !1

OutF !1

InF !1
InT !1

OutF !0
OutT !0

InT !0
OutT !1

OutT !1
InT !0

OutT !0

InT !1

InF !1

OutT !0
OutF !0

InF !0

T1

Fail Fail

InF !1

InF !0

OutF !1 OutT !1

FailPass Fail

OutT !1 OutF !1

InT !1

Pass

Fail

T2 T3

Pass

Fail

FIFO_Sus

OutF !0

InF !1

OutF !1 OutT !1

δ

δ

δ

Figure 3: LTS, Suspension Automaton and Several Tests of FIFO

Ack !1; stop OutT !0; stop) (* incorrect ack or FIFO output *)
OutT !0; stop OutF !0; stop) (* incorrect FIFO output *)

Ack !0; stop
endproc

The specification should exhibit liveness. Using CADP, it was verified that the specification satisfies
the following property expressed in ACTL (Action-based Computational Tree Logic [12]). If there is an
input of 1, then output will become 1 eventually: AG([InT !1]A[truetrueUOut!1true]). The formula for
data 0 is similar and was also verified to be true. It was verified that Spec ≈ Impl || (EnvB |[· · ·]| EnvF)
using CADP, where ≈ denotes observational equivalence.

To check speed independence, the input quasi-receptive specifications were used. It was also verified
that Spec ≈ Impl QR || (EnvB QR |[· · ·]| EnvF QR), which gives more confidence in the design of the
FIFO. The implementation Impl QR || (EnvB QR |[· · ·]| EnvF QR) also satisfies the liveness property.

Figure 3 gives the LTS for the FIFO (minimised with respect to observational equivalence), the
suspension automaton for the LTS, and several tests. Because the LTS is deterministic, the suspension
automaton has almost the same structure except for the δ transitions, which appear as circles in the figure.
Test T1 provides two inputs and then checks the output of an implementation. If output OutF changes,
the implementation passes the test. However if OutT changes or if there is no output, the implementation
fails the test. Similarly, test T2 checks output after one input is provided. Test T3 checks output right
away. For this test, an output from the initial state is incorrect and results in a fail verdict. Only after a δ
transition, meaning that no output is produced, can testing continue.

It was established that Impl QR || (EnvB QR |[· · ·]| EnvF QR) strongconf Spec by using the authors’
VeriConf tool. The authors’ TestGen tool produces a single test case of length 28 for the FIFO:

12

InF !1 InF !0 OutF !1 InF !1 OutF !0 OutF !1 InF !0
InT !1 OutF !0 InT !0 OutT !1 InT !1 OutT !0 OutF !1
δ InF !0 OutF !0 InT !1 OutT !1 InT !0 InT !1
OutT !0 OutT !1 δ InT !0 OutT !0 δ Pass

5 Case Study: An Or-And Circuit

This example was introduced in [3] to show the difference between speed independence and delay
insensitivity. Although small, it reveals the necessity of using input quasi-receptive specifications. As in
section 2.3, events are abbreviated by omitting signal values !1 and !0. The circuit has inputs Ip1, Ip2,
Ip3 and outputs Op1, Op2. Output Op1 is the logical or of Ip1, Ip2, while output Op2 is the logical and
of Ip2, Ip3.

The abstract circuit specification is shown in figure 4 (a). The component Or and And gates are
specified in figures 4 (b) and 4 (c) respectively. The proposed implementation is in figure 4 (d). The
verification task is to check if this implementation is delay-insensitive and speed-independent. For
analysing delay insensitivity, the circuit is transformed to figure 4 (e), where the isochronic fork in
figure 4 (d) is replaced by an explicit Fork element. (Refer back to section 2.3 for an explanation of
these.) The implementations in figures 4 (d) and figure 4 (e) are specified as Impl1 and Impl2:

process Impl1 [Ip1,Ip2,Ip3,Op1,Op2] : noexit : (* isochronic fork implementation *)
Or2 [Ip1,Ip2,Op1] |[Ip2]| And2 [Ip2,Ip3,Op2] (* or plus and gates *)

endproc

process Impl2 [Ip1,Ip2,Ip3,Op1,Op2] : noexit : (* ordinary fork implementation *)
hide Int1,Int2 in

(Or2 [Ip1,Int1,Op1] ||| And2 [Int2,Ip3,Op2]) (* or plus and gates ... *)
|[Int1,Int2]|

Fork [Ip2,Int1,Int2] (* with fork input *)
endproc

The state spaces of Impl1 and Impl2 are much larger than that of Spec. For example, both can
accept Ip2 and Ip3 from their initial states but Spec cannot. Since no explicit environment is given, a
direct verification approach is to compare Impl1 || Spec with Spec, i.e. assuming that Spec is also the
environment of its implementations. It was found that Impl1 || Spec ≈ Spec and Impl2 || Spec ≈ Spec
by using CADP. This suggests that figures 4 (d) and (e) are both correct implementations of Spec.

However, to ensure that both implementations are really speed-independent, the more accurate input
quasi-receptive model is needed. Figure 5 shows the revised LTSs. The corresponding implementations
are Impl1 QR and Impl2 QR. It was discovered that Impl1 QR strongconfor Spec by using the authors’
VeriConf tool. Unfortunately Impl2 QR does not have the confor or strongconfor relationship to Spec.
The tool gives a diagnostic trace: Ip1, Op1, Ip3, Ip2, Op2, Ip2, Ip1. By analysing this trace it can be found
that after Op2 is produced, the specification is able to receive Ip1 and Ip2. But for the implementation
in figure 4 (e), after Op2 is produced the fork component may still be in the unstable state since Int1 has
not been produced yet. In this unstable state, an Ip2 input makes the behaviour of the fork component
undefined. This means that figure 4 (e) is not speed-independent, i.e. the correctness of the circuit
depends on the speed of Fork. Figure 4 (d) is therefore not a delay-insensitive implementation of the
specification.

6 Case Study: A Selector

As a final example, a selector (see section 2.3) allows non-deterministic behaviour in implementations.
After a change on input Ip, either Op1 or Op2 may change depending on the implementation. Figure 6

13

Spec Or2

And2

Ip1

Op1
Ip2 Ip3

Ip3 Ip2

Op2

Ip1 Ip2

Ip2 Ip1

Op1

Ip3

Op2

Ip1

Op1

Ip2

Ip2

Ip2

Ip1

Ip1

Op1

Ip2 Ip3

Ip3
Ip2

Op2

Ip1

Ip1

Ip2

Ip2

Ip3

Ip3

Op1

Op2

Op1

Op2

Fork

Or2

And2

And2

Or2

=

(a)

(b)

(e)(c)

(d)

Int1
Int2

Figure 4: An Or-And Circuit

gives its LTS (minimised with respect to observational equivalence), the suspension automaton of the
LTS, and one of the test cases. Test T4 shows that after input Ip !1, an implementation producing either
Op1 !1 or Op2 !1 will pass the test.

The authors’ TestGen tool produces a single test case of length 11 for the selector. This example
shows how contradictory branches are marked. A selector that insists on sending its input to Op1 can
follow test steps 1, 2, 3, 4, 5, 6, 2, 3, ... This is a loop that the testbench must break.

IP !1 Op1 !1 (�S1) Ip !0 Op1 !0 (�S2) δ Ip ! 1
Op2 !1 (�S1) δ Ip !0 Op2 !0 (�S2) Pass

7 Conclusion

An approach to verifying asynchronous circuits has been presented. A key aim has been to model real
hardware effectively using LOTOS. A range of typical asynchronous components has been specified,
demonstrating the applicability of the approach. (Quasi) delay-insensitive circuits are transformed into
speed-independent designs. Violations of speed-independence (or really semi-modularity) are checked
using input (quasi-)receptive specifications.

New relations confor and strongconfor have been defined to assess the implementation of an asyn-
chronous circuit against its specification. The relations provide an intuitive interpretation of correctness
and offer clear advantages compared to other approaches. The VeriConf tool has been developed to sup-
port them. The theory of Input-Output Labelled Transition Systems has also been adapted for generating
tests of asynchronous circuits based on suspension automata. The TestGen tool generates test suites using
transition tours of automata. This allows automatic generation of test suites with reasonable coverage,
and facilitates automatic test execution. The test generation algorithm also allows non-deterministic
implementations to be tested.

14

Ip2 Ip1

Ip1

Op1

Ip2

Ip2

Ip1

Ip1Ip2
Ip1 Ip2

Op1

Ip2 Ip3

Ip2Ip3
Ip3Ip2

Op2

Or2_QR

Ip2

Int1 Int2

Int2 Int1

Ip2

Ip2 Ip2

Fork_QR

And2_QR

Figure 5: Input Quasi-Receptive Specifications of Or-And Components

i i

Op1 !1 Op2 !1

Ip !0

i i

Op2 !0Op1 !0
Op1 !1

Op2 !1

Selector_SusSelector

Ip !1

Ip !0

Ip !1

Pass Fail Pass

T4

Op1 !1 Op2 !1
Op2 !0Op1 !0

Ip !1
S1

S2

δ

Figure 6: LTS, Suspension Automaton and One Test of Selector

References

[1] A. Cerone, D. A. Kearney, and G. J. Milne. Integrating the verification of timing, performance and correctness
properties of concurrent systems. In Proc. Application of Concurrency to System Design, pages 109–119.
IEEE Computer Society Press, 1998.

[2] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. ACM
Distinguished Dissertations. MIT Press, 1989.

[3] J. Ebergen. A formal approach to designing delay-insensitive circuits. Distributed Computing, pages 107–
119, 1991.

[4] J. C. Ebergen, J. Segers, and I. Benko. Parallel program and asynchronous circuit design. In G. Birtwistle
and A. Davis, editors, Asynchronous Digital Circuit Design, Workshops in Computing, pages 51–103.
Springer-Verlag, 1995.

[5] J.-C. Fernández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. CADP
(CÆSAR/ALDÉBARAN Development Package): A protocol validation and verification toolbox. In R. Alur and
T. A. Henzinger, editors, Proc. 8th. Conference on Computer-Aided Verification, number 1102 in Lecture
Notes in Computer Science, pages 437–440. Springer-Verlag, Berlin, Germany, Aug. 1996.

15

[6] G. Gopalakrishnan, E. Brunvand, N. Michell, and S. Nowick. A correctness criterion for asynchronous circuit
validation and optimization. IEEE Transactions on Computer-Aided Design, 13(11):1309–1318, Nov. 1994.

[7] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture validation for processors. In Proc. 22nd.
Annual International Synposium on Computer Architecture, 1995.

[8] IEEE. VHSIC Hardware Design Language. IEEE 1076. Institution of Electrical and Electronic Engineers
Press, New York, USA, 1993.

[9] Ji He and K. J. Turner. Protocol-inspired hardware testing. In G. Csopaki, S. Dibuz, and K. Tarnay, editors,
Proc. Testing Communicating Systems XII, pages 131–147, London, UK, Sept. 1999. Kluwer Academic
Publishers.

[10] Ji He and K. J. Turner. Specification and verification of synchronous hardware using LOTOS. In J. Wu, S. T.
Chanson, and Q. Gao, editors, Proc. Formal Methods for Protocol Engineering and Distributed Systems
(FORTE XII/PSTV XIX), pages 295–312, London, UK, Oct. 1999. Kluwer Academic Publishers.

[11] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger. Synthesis of delay-insensitive modules. In H. Fuchs, editor,
Proc. Chapel Hill Conference on Very Large Scale Integration, pages 67–86. Computer Science Press, 1985.

[12] R. D. Nicola and F. Vaandrager. Three logics for branching bisimulation. In Proc. 5th. Annual Symposium
on Logic in Computer Science (LICS 90), pages 118–129. IEEE Computer Society Press, 1990.

[13] J. M. T. Romijn, O. Sies, and J. R. Moonen. A two-level approach to automated conformance testing of
VHDL designs. Testing of Communicating Systems, 10:432–447, 1997.

[14] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software Concepts and Tools,
17:103–120, 1996.

16

